

Associate (DVA-C01) Exam
Official Study Guide

Certified Developer

®AWS

AWS®

Certified Developer
Official Study Guide
Associate (DVA-C01) Exam

Nick Alteen Jennifer Fisher Casey Gerena

Wes Gruver Asim Jalis Heiwad Osman

Marife Pagan Santosh Patlolla Michael Roth

Copyright © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Published by John Wiley & Sons, Inc., Indianapolis, Indiana.

Published simultaneously in Canada

ISBN: 978-1-119-50819-9
ISBN: 978-1-119-50821-2 (ebk.)
ISBN: 978-1-119-50820-5 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750–8400, fax (978)
646–8600. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748–6011, fax (201) 748–6008, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim
all warranties, including without limitation warranties of fitness for a particular purpose. No warranty
may be created or extended by sales or promotional materials. The advice and strategies contained
herein may not be suitable for every situation. This work is sold with the understanding that the publisher
is not engaged in rendering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the publisher nor the
author shall be liable for damages arising herefrom. The fact that an organization or website is referred to
in this work as a citation and/or a potential source of further information does not mean that the author
or the publisher endorses the information the organization or website may provide or recommendations it
may make. Further, readers should be aware that Internet website listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at (877) 762–2974, outside the U.S. at (317) 572–3993 or
fax (317) 572–4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley prod-
ucts, visit www.wiley.com.

Library of Congress Control Number: 2019943088

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of
John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be
used without written permission. AWS is a registered trademark of Amazon Technologies, Inc. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any
product or vendor mentioned in this book.

10 9 8 7 6 5 4 3 2 1

About the Authors

Nick Alteen, technical training architect, Amazon Web Services

Nick specializes in designing and building training labs that educate the
U.S. intelligence community on AWS best practices and design patterns.
Before this, Nick worked as a cloud support engineer, assisting custom-
ers in resolving any number of issues related to AWS DevOps services,
with a specific focus on configuration management and infrastructure
as code. In his free time, he enjoys building LEGO models with his

daughter and watching horror movies with his wife.

Jennifer Fisher, senior technical curriculum developer, Amazon Web
Services

Jennifer started at AWS in 2014 as a technical trainer and was the lead
instructor for Big Data on AWS. She holds multiple AWS certifications
and currently leads a curriculum development team and develops tech-
nical curriculum and labs to support public sector customers. Before
that, Jennifer spent 20 years as a software and data engineer in the

financial services, defense, and healthcare industries. She holds a BS in programming and
an MS in software engineering management.

Jennifer grew up on a farm in Northern Maine and bought her first computer, a Tandy
TRS-80, with her potato-picking money at the age of 12. She began writing basic programs
and role-playing games, not realizing at the time that her passion for coding would turn into a
lifelong career. She now mentors female engineers and volunteers for K-12 students in STEM.

Jennifer is based in Herndon, Virginia, and lives with her husband Steve. She is a doting
stepmother to Kate, Sophie, and Mason. In her free time, Jennifer enjoys hiking, geocach-
ing, kayaking, mountain biking, weight lifting, and competing in obstacle course races.

Casey Gerena, senior technical trainer, Amazon Web Services

Casey is passionate about helping others learn about the AWS Cloud.
He enjoys teaching others new technical skills to help them solve prob-
lems using serverless technologies such as AWS Lambda. Casey holds a
BS in management information systems from the University of Central
Florida and an MS in logistics and global supply chain management
from Embry-Riddle Aeronautical University. He is pursuing a second

master’s degree in computer science from the Georgia Institute of Technology. Casey holds
several IT certifications, including the Certified Information Systems Security Professional
(CISSP) and nine AWS certifications. Before joining Amazon, Casey was a software devel-
oper and cybersecurity consultant. In his free time, Casey enjoys spending time with his
family, watching movies, playing video games, and running.

vi About the Authors

Wes Gruver, senior technical trainer, Amazon Web Services

Wes has been with AWS since 2015 and is a senior technical trainer
with more than 20 years of experience and success in managing IT
infrastructure and all aspects of application development and manage-
ment. He is currently responsible for training AWS enterprise custom-
ers on how to use the AWS services best suited for their business and
IT solutions. He teaches a broad range of classes, including basic to

advanced architecture, DevOps on AWS, Big Data on AWS, and security operations. In his
free time, Wes teaches scuba diving and loves to travel.

Asim Jalis, senior technical trainer, Amazon Web Services

Asim is a senior technical trainer at AWS. He has an MS in computer
science from the University of Virginia and an MA in mathematics
from the University of Wisconsin. When he is not working with AWS
technologies, he likes to read and write fiction.

Heiwad Osman, senior manager, Solutions Builders, Amazon Web
Services

Heiwad holds a BS in computer science and engineering from UCLA. In
his role as an AWS trainer, he meets with AWS customers and teaches
them to build resilient, scalable cloud applications. He has helped
hundreds of software developers get started with AWS APIs through
in- person training and online training videos. His current professional

interests include user experience, web application development, and machine learning. In
his free time, you can find him in New York City, trying new places to eat or relaxing in
Central Park.

Marife Pagan, technical trainer, Amazon Web Services

Marife is a technical trainer for AWS, delivering training to AWS cus-
tomers in North America. She has more than 15 years of experience
in software and web development. Her experience brings a set of skills
for multiple platforms, including .NET, Java, and Python. She holds a
BS in information technology with a web design/development concen-
tration from George Mason University, in addition to various leading

industry certifications. She is currently working on her master’s degree and pursuing higher
studies in machine learning.

Before working at AWS, Marife worked for various government contracting firms,
including Lockheed Martin. She also serves in the U.S. military as a signal officer working

About the Authors vii

on the setup and maintenance of LAN and WAN signal network footprints, supporting
voice and data for various military operations. She currently lives in the Washington, DC,
metro area, and in her spare time enjoys fitness, travel, and gardening.

Santosh Patlolla, technical curriculum architect, Amazon Web Services

Santosh is a technical curriculum architect for AWS. He has more than
18 years of experience in developing software applications, automated
solutions, and migration projects with complex data conversions.
Santosh has been instrumental in providing production-support solu-
tions and managing application delivery programs for enterprises. He
also designed cost-effective technical and business solutions for the

banking and insurance industries. Santosh is passionate about applying this experience in
using the broad range of AWS services for developing business automations. Outside of
work, he coaches elementary school robotics, and enjoys watching basketball games and
playing with his kids.

Michael Roth, technical trainer, Amazon Web Services

Michael is a technical trainer having joined Amazon in 2015. He is
one of the authors of the SysOps Administrator Study Guide (also by
Wiley). He is a Certified Cisco Network Academy Instructor, and he
has taught Linux. Michael graduated from the University of Michigan
with a BS in zoology and a BA in urban planning. He also has an MS
in telecommunications management from Golden Gate University.

Michael would like to thank his coworkers in the AWS Training and Certification
 organization—he is very proud to be a part of this amazing group of people. Finally, he
would like to thank his spouse, Betsy, and son, Robert. Without their support and love,
this book would not have been possible.

Contents at a Glance
Introduction xxix

Assessment Test xxxv

Chapter 1 Introduction to AWS Cloud API 1

Chapter 2 Introduction to Compute and Networking 37

Chapter 3 Hello, Storage 85

Chapter 4 Hello, Databases 175

Chapter 5 Encryption on AWS 259

Chapter 6 Deployment Strategies 281

Chapter 7 Deployment as Code 317

Chapter 8 Infrastructure as Code 381

Chapter 9 Configuration as Code 445

Chapter 10 Authentication and Authorization 495

Chapter 11 Refactor to Microservices 519

Chapter 12 Serverless Compute 585

Chapter 13 Serverless Applications 621

Chapter 14 Stateless Application Patterns 663

Chapter 15 Monitoring and Troubleshooting 797

Chapter 16 Optimization 833

Appendix Answers to Review Questions 885

Index 917

Contents
Introduction xxix

Assessment Test xxxv

Chapter 1 Introduction to AWS Cloud API 1

Introduction to AWS 2
Getting Started with an AWS Account 2
AWS Management Console 3
AWS Software Development Kits 4
AWS CLI Tools 4

Calling an AWS Cloud Service 5
API Example: Hello World 5
SDK Configuration 7

Working with Regions 9
Regions Are Highly Available 10
Working with Regional API Endpoints 10

API Credentials and AWS Identity and Access Management 14
Users 15
Groups 16
Roles 17
Choosing IAM Identities 19
Managing Authorization with Policies 20
Custom Policies 22

Summary 24
Exam Essentials 24
Resources to Review 25
Exercises 26
Review Questions 33

Chapter 2 Introduction to Compute and Networking 37

Amazon Elastic Compute Cloud 38
Instance Types 39
Storage 40
Software Images 41
Network Interfaces 42
Accessing Instances 43
Instance Lifecycle 43

Running Applications on Instances 44
Connecting to Amazon EC2 Instances 45
Customizing Software with User Data 46
Discovering Instance Metadata 47

xii Contents

Assigning AWS API Credentials 48
Serving a Custom Webpage 49
Monitoring Instances 50

Customizing the Network 51
Amazon Virtual Private Cloud 51
Connecting to Other Networks 51
IP Addresses 52
Subnets 54
Route Tables 55
Security Groups 56
Network Access Control Lists 58
Network Address Translation 61
DHCP Option Sets 63
Monitoring Amazon VPC Network Traffic 64

Managing Your Resources 64
Shared Responsibility Security Model 64
Comparing Managed and Unmanaged Services 65

Developer Tools 66
Summary 66
Exam Essentials 67
Resources to Review 68
Exercises 69
Review Questions 80

Chapter 3 Hello, Storage 85

Introduction to AWS Storage 86
Storage Fundamentals 87

Data Dimensions 87
One Tool Does Not Fit All 90
Block, Object, and File Storage 90
AWS Shared Responsibility Model and Storage 91
Confidentiality, Integrity, Availability Model 91

AWS Block Storage Services 92
Amazon Elastic Block Store 93
Instance Store 97

AWS Object Storage Services 99
Amazon Simple Storage Service 99
Object Lifecycle Management 134

AWS File Storage Services 136
Amazon Elastic File System 136

Storage Comparisons 142
Use Case Comparison 142
Storage Temperature Comparison 143
Comparison of Amazon EBS and Instance Store 143
Comparison of Amazon S3, Amazon EBS, and

Amazon EFS 144

Contents xiii

Cloud Data Migration 145
AWS Storage Gateway 145
AWS Import/Export 146
AWS Snowball 147
AWS Snowball Edge 148
AWS Snowmobile 150
Amazon Kinesis Data Firehose 151
AWS Direct Connect 152
VPN Connection 153

Summary 154
Exam Essentials 154
Resources to Review 159
Exercises 162
Review Questions 170

Chapter 4 Hello, Databases 175

Introduction to Databases 176
Relational Databases 178

Characteristics of Relational Databases 179
Managed vs. Unmanaged Databases 180

Nonrelational Databases 195
NoSQL Database 195
Amazon DynamoDB 196

Data Warehouse 217
Data Warehouse Architecture 217
Amazon Redshift 220

In-Memory Data Stores 226
Caching 226
In-Memory Key-Value Store 228
Amazon ElastiCache 229
Amazon DynamoDB Accelerator 230

Graph Databases 230
Amazon Neptune 231

Cloud Database Migration 232
AWS Database Migration Service 233
AWS Schema Conversion Tool 234

Running Your Own Database on Amazon Elastic
Compute Cloud 235

Compliance and Security 236
AWS Identity and Access Management 236

Summary 237
Exam Essentials 237
Resources to Review 239
Exercises 242
Review Questions 256

xiv Contents

Chapter 5 Encryption on AWS 259

Introduction to Encryption 260
AWS Key Management Service 260

Centralized Key Management 261
Integration with Other AWS Services 261
Auditing Capabilities and High Availability 262
Custom Key Store 262
Compliance 262

AWS CloudHSM 262
Controlling the Access Keys 263

Option 1: You Control the Encryption Method and
the Entire KMI 264

Option 2: You Control the Encryption Method, AWS
Provides the KMI Storage Component, and You Provide
the KMI Management Layer 268

Option 3: AWS Controls the Encryption Method and
the Entire KMI 269

Summary 273
Exam Essentials 273
Resources to Review 274
Exercises 275
Review Questions 279

Chapter 6 Deployment Strategies 281

Deployments on the AWS Cloud 282
Phases of the Release Lifecycle 282
Environment Variables 284
Software Development Lifecycle with AWS Cloud 284
Continuous Integration/Continuous Deployment 285
Deploying Highly Available and Scalable Applications 287
Deploying and Maintaining Applications 288

AWS Elastic Beanstalk 290
Implementation Responsibilities 291
Working with Your Source Repository 292
Concepts 293
AWS Elastic Beanstalk Command Line Interface 296
Customizing Environment Configurations 296
Integrating with Other AWS Services 297
AWS Identity and Access Management Roles 299

Deployment Strategies 299
All-at-Once and In-Place Deployments 300
Rolling Deployments 300
Container Deployments 302

Monitoring and Troubleshooting 303
Summary 307

Contents xv

Exam Essentials 307
Resources to Review 308
Exercises 309
Review Questions 313

Chapter 7 Deployment as Code 317

Introduction to AWS Code Services 318
Continuous Delivery with AWS CodePipeline 318
Benefits of Continuous Delivery 319

Using AWS CodePipeline to Automate Deployments 320
What Is AWS CodePipeline? 320
AWS CodePipeline Concepts 321
AWS CodePipeline Service Limits 328
AWS CodePipeline Tasks 329

Using AWS CodeCommit as a Source Repository 332
What Is AWS CodeCommit? 332
AWS CodeCommit Concepts 333
AWS CodeCommit Service Limits 343
Using AWS CodeCommit with AWS CodePipeline 344

Using AWS CodeBuild to Create Build Artifacts 344
What Is AWS CodeBuild? 345
AWS CodeBuild Concepts 345
AWS CodeBuild Service Limits 351
Using AWS CodeBuild with AWS CodePipeline 352

Using AWS CodeDeploy to Deploy Applications 352
What Is AWS CodeDeploy? 353
AWS CodeDeploy Concepts 353
AWS CodeDeploy Service Limits 370
Using AWS CodeDeploy with AWS CodePipeline 371

Summary 371
Exam Essentials 372
Resources to Review 373
Exercises 374
Review Questions 377

Chapter 8 Infrastructure as Code 381

Introduction to Infrastructure as Code 382
Infrastructure as Code 382
Using AWS CloudFormation to Deploy Infrastructure 383

What Is AWS CloudFormation? 383
AWS CloudFormation Concepts 384
AWS CloudFormation Service Limits 429
Using AWS CloudFormation with AWS CodePipeline 429

Summary 432
Exam Essentials 434

xvi Contents

Resources to Review 436
Exercises 437
Review Questions 440

Chapter 9 Configuration as Code 445

Introduction to Configuration as Code 446
Using AWS OpsWorks Stacks to Deploy Applications 447

What Is AWS OpsWorks Stacks? 447
AWS OpsWorks Stack Concepts 448
AWS OpsWorks Stacks Service Limits 469

Using Amazon Elastic Container Service to Deploy Containers 471
What Is Amazon ECS? 472
Amazon ECS Concepts 472
Amazon ECS Service Limits 482
Using Amazon ECS with AWS CodePipeline 482

Summary 483
Exam Essentials 485
Resources to Review 487
Exercises 488
Review Questions 491

Chapter 10 Authentication and Authorization 495

Introduction to Authentication and Authorization 496
Different Planes of Control 497
Identity and Authorization 497
Microsoft Active Directory 500
AWS Security Token Service 502
Amazon Cognito 505

Summary 508
Exam Essentials 509
Resources to Review 509
Exercises 510
Review Questions 517

Chapter 11 Refactor to Microservices 519

Introduction to Refactor to Microservices 521
Amazon Simple Queue Service 523

Amazon SQS Parameters 525
Dead-Letter Queue 528
Monitoring Amazon SQS Queues Using Amazon

CloudWatch 533
Amazon Simple Notification Service 534

Features and Functionality 536
Amazon SNS APIs 536

Contents xvii

Transport Protocols 537
Amazon SNS Mobile Push Notifications 537
Billing, Limits, and Restrictions 539

Amazon Kinesis Data Streams 540
Multiple Applications 541
High Throughput 541
Real-Time Analytics 542
Open Source Tools 542
Producer Options 542
Consumer Options 543

Amazon Kinesis Data Firehose 543
Amazon Kinesis Data Analytics 544
Amazon Kinesis Video Streams 545
Amazon DynamoDB Streams 546

Amazon DynamoDB Streams Use Case 546
Amazon DynamoDB Streams Consumers 546
Amazon DynamoDB Streams Concurrency and Shards 547

AWS IoT Device Management 547
Rules Engine 548
Message Broker 549
Device Shadow 550

Amazon MQ 550
AWS Step Functions 551

State Machine 551
Task State 554
Choice State 556
Choice Rules 559
Parallel State 561
Parallel State Output 563
End State 564
Input and Output 564
AWS Step Functions Use Case 568

Summary 568
Exam Essentials 569
Resources to Review 570
Exercises 573
Review Questions 582

Chapter 12 Serverless Compute 585

Introduction to Serverless Compute 586
AWS Lambda 586

Where Did the Servers Go? 587
Monolithic vs. Microservices Architecture 588

xviii Contents

AWS Lambda Functions 588
Languages AWS Lambda Supports 589
Creating an AWS Lambda Function 589
Execution Methods/Invocation Models 590
Securing AWS Lambda Functions 592

Inside the AWS Lambda Function 593
Function Package 593
Function Handler 594
Event Object 595
Context Object 595

Configuring the AWS Lambda Function 596
Descriptions and Tags 596
Memory 596
Timeout 596
Network Configuration 596
Concurrency 597
Dead Letter Queues 599
Environment Variables 599
Versioning 599
Creating an Alias 600

Invoking AWS Lambda Functions 601
Monitoring AWS Lambda Functions 602

Using Amazon CloudWatch 602
Using AWS X-Ray 603

Summary 605
Exam Essentials 605
Resources to Review 606
Exercises 607
Review Questions 618

Chapter 13 Serverless Applications 621

Introduction to Serverless Applications 622
Web Server with Amazon Simple Storage Service

(Presentation Tier) 622
Amazon S3 Static Website 623
Configuring Web Traffic Logs 624
Creating Custom Domain Name with Amazon Route 53 625
Speeding Up Content Delivery with Amazon CloudFront 626

Dynamic Data with Amazon API Gateway (Logic or App Tier) 627
Endpoints 628
Resources 629
HTTP Methods 630
Stages 630
Authorizers 630

Contents xix

API Keys 631
Cross-Origin Resource Sharing 631
Integrating with AWS Lambda 631
Monitoring Amazon API Gateway with Amazon

CloudWatch 632
Other Notable Features 633

User Authentication with Amazon Cognito 634
Amazon Cognito User Pools 634
Password Policies 636
Multi-factor Authentication 636
Device Tracking and Remembering 636
User Interface Customization 637
Amazon Cognito Identity Pools 639
Amazon Cognito SDK 639

Standard Three-Tier vs. the Serverless Stack 640
Amazon Aurora Serverless 642
AWS Serverless Application Model 643
AWS SAM CLI 645
AWS Serverless Application Repository 647
Serverless Application Use Cases 647
Summary 647
Exam Essentials 649
Resources to Review 650
Exercises 651
Review Questions 660

Chapter 14 Stateless Application Patterns 663

Introduction to the Stateless Application Pattern 664
Amazon DynamoDB 664

Using Amazon DynamoDB to Store State 665
Primary Key, Partition Key, and Sort Key 665
Using Write Shards to Distribute Workloads Evenly 668
Amazon DynamoDB Tables 672
Provisioned Throughput 672
Creating Tables to Store the State 678
Control Plane 678
Data Plane 679
Return Values 680
Requesting Throttle and Burst Capacity 682
Amazon DynamoDB Secondary Indexes: Global

and Local 682
Amazon DynamoDB Streams 700
Amazon DynamoDB Auto Scaling 707
Managing Throughput Capacity Automatically with

AWS Auto Scaling 708

xx Contents

Partitions and Data Distribution 711
Optimistic Locking with Version Number 713
Disabling Optimistic Locking 714
DynamoDB Tags 714
DynamoDB Items 715
Atomic Counters 715
Conditional Writes 716
Time to Live 719
Error Handling in Your Application 720
Capacity Units Consumed by Conditional Writes 721
Configuring Item Attributes 722
Working with Queries 729
DynamoDB Encryption at Rest 730
On-Demand Backup and Restore 737

Amazon ElastiCache 739
Considerations for Choosing a Distributed Cache 740
ElastiCache Terminology 741
Cache Scenarios 742
Scaling Your Environment 745
Backup and Recovery 746
Control Access 747

Amazon Simple Storage Service 747
Amazon S3 Core Concepts 747
Buckets 748
Bucket Policies 756
Amazon S3 Storage Classes 757
Amazon S3 Default Encryption for S3 Buckets 759
Working with Amazon S3 Objects 761
Performance Optimization 770
Storing Large Attribute Values in Amazon S3 772

Amazon Elastic File System 773
How Amazon EFS Works 773
Creating an IAM User 777
Creating Resources for Amazon EFS 777
Creating a File System 777
Using File Systems 778
Deleting an Amazon EFS File System 779
Managing Access to Encrypted File Systems 779
Amazon EFS Performance 779

Summary 781
Exam Essentials 782
Resources to Review 785
Exercises 786
Review Questions 793

Contents xxi

Chapter 15 Monitoring and Troubleshooting 797

Introduction to Monitoring and Troubleshooting 798
Monitoring Basics 799

Amazon CloudWatch 800
How Amazon CloudWatch Works 801
Amazon CloudWatch Metrics 802
Amazon CloudWatch Logs 811
Amazon CloudWatch Alarms 814
Amazon CloudWatch Dashboards 817

AWS CloudTrail 818
AWS X-Ray 820

AWS X-Ray Use Cases 821
Tracking Application Requests 821

Summary 823
Exam Essentials 823
Resources to Review 825
Exercises 826
Review Questions 829

Chapter 16 Optimization 833

Introduction to Optimization 834
Cost Optimization: Everyone’s Responsibility 834

Tagging 835
Reduce AWS Usage 836

Right Sizing 838
Select the Right Use Case 838
Select the Right Instance Family 838
Select the Right Instance Compatibility 840

Using Instance Reservations 840
AWS Pricing for Reserved Instances 840
Amazon EC2 Reservations 841
Amazon Relational Database Service Reservations 842

Using Spot Instances 843
Spot Fleets 843
Amazon EC2 Fleets 844
Design for Continuity 844

Using AWS Auto Scaling 845
Amazon EC2 Auto Scaling 846
AWS Auto Scaling 847
DynamoDB Auto Scaling 848
Amazon Aurora Auto Scaling 848
Accessing AWS Auto Scaling 848

xxii Contents

Using Containers 849
Containerize Everything 849
Containers without Servers 849

Using Serverless Approaches 850
Optimize Lambda Usage 851

Optimizing Storage 851
Object Storage 852
Block Storage 852
File Storage 853
Optimize Amazon S3 853
Optimize Amazon EBS 855

Optimizing Data Transfer 858
Caching 858

Relational Databases and Amazon DynamoDB 859
Apply NoSQL Design 860
Keep Related Data Together 860
Keep Fewer Tables 860
Distribute Workloads Evenly 861
Use Sort Keys for Version Control 862
Keep the Number of Indexes to a Minimum 862
Choose Projections Carefully 863
Optimize Frequent Queries to Avoid Fetches 863
Use Sparse Indexes 863
Avoid Scans as Much as Possible 863

Monitoring Costs 864
Cost Management Tools 864

Monitoring Performance 868
Amazon CloudWatch 868
AWS Trusted Advisor 869

Summary 869
Exam Essentials 871
Resources to Review 874
Exercises 876
Review Questions 881

Appendix Answers to Review Questions 885

Index 917

Table of Exercises
Exercise 1.1 Sign Up for an Account . 26

Exercise 1.2 Create an IAM Administrators Group and User . 26

Exercise 1.3 Install and Configure the AWS CLI . 28

Exercise 1.4 Download the Code Samples . 28

Exercise 1.5 Run a Python Script that Makes AWS API Calls . 29

Exercise 1.6 Working with Multiple Regions . 29

Exercise 1.7 Working with Additional Profiles . 30

Exercise 2.1 Create an Amazon EC2 Key Pair . 69

Exercise 2.2 Create an Amazon VPC with Public and Private Subnets 70

Exercise 2.3 Use an IAM Role for API Calls from Amazon EC2 Instances 71

Exercise 2.4 Launch an Amazon EC2 Instance as a Web Server 71

Exercise 2.5 Connect to the Amazon EC2 Instance . 73

Exercise 2.6 Configure NAT for Instances in the Private Subnet 74

Exercise 2.7 Launch an Amazon EC2 Instance into the Private Subnet 75

Exercise 2.8 Make Requests to Private Instance . 76

Exercise 2.9 Launch an AWS Cloud9 Instance . 77

Exercise 2.10 Perform Partial Cleanup . 78

Exercise 2.11 (Optional) Complete Cleanup . 79

Exercise 3.1 Create an Amazon Simple Storage Service (Amazon S3) Bucket 163

Exercise 3.2 Upload an Object to a Bucket . 164

Exercise 3.3 Emptying and Deleting a Bucket . 167

Exercise 4.1 Create a Security Group for the Database Tier on Amazon RDS 242

Exercise 4.2 Spin Up the MariaDB Database Instance . 243

Exercise 4.3 Obtain the Endpoint Value for the Amazon RDS Instance 245

Exercise 4.4 Create a SQL Table and Add Records to It . 246

Exercise 4.5 Query the Items in the SQL Table . 248

Exercise 4.6 Remove Amazon RDS Database and Security Group 249

Exercise 4.7 Create an Amazon DynamoDB Table . 250

Exercise 4.8 Add Users to the Amazon DynamoDB Table . 252

Exercise 4.9 Look Up a User in the Amazon DynamoDB Table 253

Exercise 4.10 Write Data to the Table as a Batch Process . 253

Exercise 4.11 Scan the Amazon DynamoDB Table . 254

Exercise 4.12 Remove the Amazon DynamoDB Table . 255

xxiv Table of Exercises

Exercise 5.1 Configure an Amazon S3 Bucket to Deny Unencrypted Uploads 275

Exercise 5.2 Create and Disable an AWS Key Management Service
(AWS KMS) Key . 276

Exercise 5.3 Create an AWS KMS Customer Master Key with the Python SDK 277

Exercise 6.1 Deploy Your Application . 309

Exercise 6.2 Deploy a Blue/Green Solution . 310

Exercise 6.3 Change Your Environment Configuration on AWS Elastic
Beanstalk . 310

Exercise 6.4 Update an Application Version on AWS Elastic Beanstalk 311

Exercise 7.1 Create an AWS CodeCommit Repository and Submit a
Pull Request . 374

Exercise 7.2 Create an Application in AWS CodeDeploy . 375

Exercise 7.3 Create an AWS CodeBuild Project . 375

Exercise 8.1 Write Your Own AWS CloudFormation Template 437

Exercise 8.2 Troubleshoot a Failed Stack Deletion . 438

Exercise 8.3 Monitor Stack Update Activity . 438

Exercise 9.1 Launch a Sample AWS OpsWorks Stacks Environment 488

Exercise 9.2 Launch an Amazon ECS Cluster and Containers 488

Exercise 9.3 Migrate an Amazon RDS Database . 489

Exercise 9.4 Configure Auto Healing Event Notifications in AWS
OpsWorks Stacks . 490

Exercise 10.1 Setting Up a Simple Active Directory . 510

Exercise 10.2 Setting Up an AWS Managed Microsoft AD . 512

Exercise 10.3 Setting Up an Amazon Cloud Directory . 514

Exercise 10.4 Setting Up Amazon Cognito . 516

Exercise 11.1 Create an Amazon SQS Queue, Add Messages, and Receive
Messages . 573

Exercise 11.2 Send an SMS Text Message to Your Mobile Phone with
Amazon SNS . 575

Exercise 11.3 Create an Amazon Kinesis Data Stream and Write/Read Data 575

Exercise 11.4 Create an AWS Step Functions State Machine 1 578

Exercise 11.5 Create an AWS Step Functions State Machine 2 579

Exercise 12.1 Create an Amazon S3 Bucket for CSV Ingestion 608

Exercise 12.2 Create an Amazon S3 Bucket for Final Output JSON 608

Exercise 12.3 Verify List Buckets . 609

Exercise 12.4 Prepare the AWS Lambda Function . 610

Table of Exercises xxv

Exercise 12.5 Create AWS IAM Roles . 612

Exercise 12.6 Create the AWS Lambda Function . 614

Exercise 12.7 Give Amazon S3 Permission to Invoke an AWS Lambda Function 615

Exercise 12.8 Add the Amazon S3 Event Trigger . 616

Exercise 12.9 Test the AWS Lambda Function . 617

Exercise 13.1 Create an Amazon S3 Bucket for the Swagger Template 652

Exercise 13.2 Edit the HTML Files . 653

Exercise 13.3 Define an AWS SAM Template . 655

Exercise 13.4 Define an AWS Lambda Function Locally . 656

Exercise 13.5 Generate an Event Source . 657

Exercise 13.6 Run the AWS Lambda Function . 657

Exercise 13.7 Modify the AWS SAM template to Include an API Locally 658

Exercise 13.8 Modify Your AWS Lambda Function for the API 658

Exercise 13.9 Run Amazon API Gateway Locally . 659

Exercise 14.1 Create an Amazon ElastiCache Cluster Running Memcached 786

Exercise 14.2 Expand the Size of a Memcached Cluster . 787

Exercise 14.3 Create and Attach an Amazon EFS Volume . 787

Exercise 14.4 Create and Upload to an Amazon S3 Bucket . 788

Exercise 14.5 Create an Amazon DynamoDB Table . 789

Exercise 14.6 Enable Amazon S3 Versioning . 789

Exercise 14.7 Create an Amazon DynamoDB Global Table . 790

Exercise 14.8 Enable Cross-Region Replication . 791

Exercise 14.9 Create an Amazon DynamoDB Backup Table . 791

Exercise 14.10 Restoring an Amazon DynamoDB Table from a Backup 792

Exercise 15.1 Create an Amazon CloudWatch Alarm on an Amazon S3 Bucket 826

Exercise 15.2 Enable an AWS CloudTrail Trail on an Amazon S3 Bucket 827

Exercise 15.3 Create an Amazon CloudWatch Dashboard . 828

Exercise 16.1 Set Up a CPU Usage Alarm Using AWS CLI . 876

Exercise 16.2 Modify Amazon EBS Optimization for a Running Instance 877

Exercise 16.3 Create an AWS Config Rule . 878

Exercise 16.4 Create a Launch Configuration and an AWS Auto Scaling Group, and
Schedule a Scaling Action . 879

Foreword
Software development is changing. In today’s competitive market, customers demand low-
latency, highly scalable, responsive applications that work—all the time. Customers expect
to receive the same level of performance and consistency of applications regardless of their
device. Whether they are on a mobile device, desktop, laptop, or Amazon Fire tablet, they
expect that applications will behave similarly across platforms.

The goal of building working applications that respond to increasing expectations means that
building applications on highly available architecture is now more important than ever. As devel-
opers, you can use AWS Cloud computing to build highly available architectures and services on
which to deploy and run your applications.

AWS provides you with a broad set of tools to build and develop your applications. We
empower you by providing the best tools to achieve your goals. To that end, you’ll learn about
compute services, such as Amazon Elastic Compute Cloud (Amazon EC2), and file object storage
services, such as Amazon Simple Storage Service (Amazon S3). You’ll also learn about the many
types of applications that you can build on top of these services.

Historically, developers have been responsible for designing, creating, and running their appli-
cations. In the AWS Cloud, you can create your compute resources with one click using AWS
CloudFormation, or you can fully automate the running of your containers using AWS Fargate.

AWS continually listens to customer feedback to understand your workloads and changing
needs better. AWS also monitors market trends, understanding that you want to build and run
applications on the cloud, but you don’t want to worry about managing the underlying infrastruc-
ture. You want infrastructure to scale automatically, you want services with a built-in high availa-
bility infrastructure, and you want to pay only for what you consume.

In response to these demands, AWS pioneered services such as AWS Lambda, which is based on
serverless technology. It enables you to run compute programming logic in applications without
having to worry about maintaining anything other than their code and core logic.

Today is the most exciting time to be a developer. With AWS services, you can focus on the core
functionality of your application and allow the AWS Cloud to perform all of the administration
of the resources, including server and operating system maintenance. This flexibility provides you
with the unique ability to focus on what matters to you most—building, maintaining, and, most
importantly, innovating your applications.

In this study guide, AWS experts coach you on how to develop and build applications that can
run on and integrate with AWS services. This knowledge allows you, as a developer, to build your
services and features quickly and get them running in the AWS Cloud for your customers to use.
When you complete this guide and the test bank in the accompanying interactive online learn-
ing environment, you have gained the fundamental knowledge to succeed on the AWS Certified
Developer – Associate certification exam.

So imagine, dream, and build, because on the AWS Cloud, the only limit is your imagination.

Werner Vogels
Vice President and Corporate Technology Officer

Amazon

Introduction
Developers are builders. They are responsible for imagining, designing, and building appli-
cations. This study guide is designed to help you develop, build, and create solutions by
using AWS services and to provide you with the knowledge required to obtain the AWS
Certified Developer – Associate certification.

The study guide covers relevant topics on the exam, with additional context to increase
your understanding of how to build applications on AWS. This study guide references the
exam blueprint throughout all of its chapters and content to provide a comprehensive view
of the required knowledge to pass the exam. Furthermore, this study guide was designed
to help you understand the key concepts required to earn the certification and for you to
use as a reference for building highly available applications that run on the AWS Cloud.
However, the study guide does not cover any prerequisite knowledge concerning software
development; that is, the study guide does not cover how to program in Java, Python,
.NET, and other platform languages. Instead, you will use these languages to build, man-
age, and deploy your resources on AWS.

The study guide begins with an introduction to the AWS Cloud and how you can inter-
act with the AWS Cloud by using API calls. API calls are the heart of the AWS Cloud, as
every interaction with AWS is an API call to the service. As such, the initial chapter pro-
vides you with the core knowledge on which the rest of the chapters are built. Because secu-
rity is a top priority for all applications, the first chapter also describes how to create your
API keys by using AWS Identity and Access Management (IAM). The rest of the chapters
cover topics ranging from compute services, storage services, databases, encryption, and
serverless-based applications.

The chapters were designed with the understanding that developers build. To enhance
learning through hands-on experience, at the end of each chapter is an “Exercises” section
with activities that help reinforce the main topic of the chapter. Each chapter also contains
a “Review Questions” section to assess your understanding of the main concepts required
to work with AWS. However, understand that the actual exam will test you on your
ability to combine multiple concepts. The review questions at the end of each chapter focus
only on the topics discussed in that chapter.

To help you determine the level of your AWS Cloud knowledge and aptitude before read-
ing the guide, an assessment test with 50 questions is provided at the end of this introduc-
tion. Two practice exams with 75–100 questions each are also included to help you gauge
your readiness to take the exam.

xxx Introduction

What Does This Book Cover?
This book covers topics that you need to know to prepare for the Amazon Web Services
(AWS) Certified Developer – Associate Exam.

Chapter 1: Introduction to AWS Cloud API This chapter provides an overview of how to
use AWS Cloud API calls. The chapter includes an introduction to AWS software develop-
ment kits (AWS SDKs) and the AWS global infrastructure. A review of AWS API keys and
how to manage them using AWS Identity and Access Management (IAM) is also included.

Chapter 2: Introduction to Compute and Networking This chapter reviews compute and net-
working environments in AWS. It provides an overview of resources, such as Amazon Elastice
Compute Cloud (Amazon EC2), and the network controls exposed through Amazon Virtual
Private Cloud (Amazon VPC).

Chapter 3: Hello, Storage In this chapter, you will learn about cloud storage with AWS. It
provides a review of storage fundamentals and the AWS storage portfolio of services, such
as Amazon Simple Storage Service (Amazon S3) and Amazon S3 Glacier. The chapter also
covers how to choose the right type of storage for a workload.

Chapter 4: Hello, Databases This chapter provides an overview of the AWS database ser-
vices. The chapter provides a baseline understanding of SQL versus NoSQL. It also intro-
duces concepts such as caching with Amazon ElastiCache and business intelligence with
Amazon Redshift. The chapter also covers Amazon Relational Database Service (Amazon
RDS) and Amazon DynamoDB.

Chapter 5: Encryption on AWS In this chapter, you will explore AWS services that enable
you to perform encryption of data at rest using both customer and AWS managed solu-
tions. An overview of each approach and the use case for each is provided. Example archi-
tectures are included that show the differences between a customer and an AWS managed
infrastructure.

Chapter 6: Deployment Strategies In this chapter, you will learn about automated applica-
tion deployment, management, and maintenance by using AWS Elastic Beanstalk. You will
also learn about the various deployment methodologies and options to determine the best
approach for individual workloads.

Chapter 7: Deployment as Code This chapter describes the AWS code services used
to automate infrastructure and application deployments across AWS and on-premises
resources. You will learn about the differences among continuous integration, continuous
delivery, and continuous deployment, in addition to how AWS enables you to achieve each.

Chapter 8: Infrastructure as Code This chapter focuses on AWS CloudFormation and
how you can use the service to create flexible, repeatable templates for a cloud infrastruc-
ture. You will learn about the different AWS CloudFormation template components,
supported resources, and how to integrate non-AWS resources into your templates using
custom resources.

Chapter 9: Configuration as Code In this chapter, you will learn about AWS OpsWorks
Stacks and Amazon Elastic Container Service (Amazon ECS). OpsWorks Stacks enables

Introduction xxxi

you to perform automated configuration management on resources in your AWS account
and on-premises instances using Chef cookbooks. You will learn how to add a Chef cook-
book to your stack, associate it with an instance, and perform configuration changes. Using
Amazon ECS, you will learn how to create clusters and services and how to deploy tasks to
your cluster in response to changes in customer demand.

Chapter 10: Authentication and Authorization This chapter explains the differences
between authentication and authorization and how these differences apply to infrastructure
and applications running on AWS. You will also learn about integrating third-party iden-
tity services, in addition to the differences between the control pane and data pane.

Chapter 11: Refactor to Microservices In this chapter, you will learn about microser-
vices and how to refactor large application stacks into small, portable containers. You will
also learn how to implement messaging infrastructure to enable communication between
microservices running in your environment.

Chapter 12: Serverless Compute This chapter reviews AWS Lambda as a compute service
that you can use to run code without provisioning or managing servers. In this chapter, you
will learn about creating, triggering, and securing Lambda functions. You will also learn
other features of Lambda, such as versioning and aliases.

Chapter 13: Serverless Applications This chapter expands on the serverless concepts you
learned in Chapter 12, “Serverless Compute,” and shows you how to architect a full-stack
serverless web application. You will learn how to map server-based application architec-
tures to serverless application architectures.

Chapter 14: Stateless Application Patterns This chapter expands on the concepts you
learned in Chapter 13, “Serverless Applications,” by explaining how to design stateless
applications. You will learn how to develop applications that do not depend on state infor-
mation stored on individual resources, allowing for additional portability and availability.

Chapter 15: Monitoring and Troubleshooting This chapter discusses AWS services that
you can use to monitor the health of your applications, in addition to changes to AWS
resources over time. You will learn how to use Amazon CloudWatch to perform log analy-
sis and create custom metrics for ingestion by other tools and for creating visualizations in
the dashboard. You will also learn how to use AWS CloudTrail to monitor API activity for
your AWS account to ensure that changes are appropriately audited over time. You will also
learn how to use AWS X-Ray to create visual maps of application components for step-by-
step analysis.

Chapter 16: Optimization This chapter covers some of the best practices and consider-
ations for designing systems to achieve business outcomes at a minimal cost and to main-
tain optimal performance efficiency. This chapter covers scenarios for compute and storage,
how to use a serverless platform, and what to consider for efficient data transfer to opti-
mize your solutions. The chapter describes key AWS tools for managing and monitoring the
cost and performance of your infrastructure. It includes code snippets, samples, and exer-
cises to develop monitoring solutions and designs that integrate other AWS services.

xxxii Introduction

 Interactive Online Learning Environment
and Test Bank
 The authors have worked hard to provide you with some great tools to help you with your
certifi cation process. The interactive online learning environment that accompanies the
AWS Certifi ed Developer – Associate Offi cial Study Guide provides a test bank with study
tools to help you prepare for the certifi cation exam. This helps you increase your chances of
passing it the fi rst time! The test bank includes the following:

Sample Tests All of the questions in this book, including the 50-question assessment test
at the end of this introduction and the review questions that are provided at the end of each
chapter are available online. In addition, there are two practice exams available online with
75–100 questions each. Use these questions to test your knowledge of the study guide mate-
rial. The online test bank runs on multiple devices.

Flashcards The online test banks include more than 200 fl ashcards specifi cally written to
quiz your knowledge of AWS operations. After completing all the exercises, review ques-
tions, practice exams, and fl ashcards, you should be more than ready to take the exam.
The fl ashcard questions are provided in a digital fl ashcard format (a question followed by
a single correct answer). You can use the fl ashcards to reinforce your learning and provide
last-minute test prep before the exam.

Glossary A glossary of key terms from this book is available as a fully searchable PDF.

 Go to www.wiley.com/go/sybextestprep to register and gain access
to this interactive online learning environment and test bank with
study tools.

 Exam Objectives
 The AWS Certifi ed Developer – Associate Exam is intended for individuals who perform
in a developer role. Exam concepts that you should understand for this exam include the
following:

 ■ Core AWS services, uses, and basic AWS architecture best practices

 ■ Developing, deploying, and debugging cloud-based applications using AWS

 In general, certifi cation candidates should understand the following:

 ■ AWS APIs, AWS CLI, and AWS SDKs to write applications

 ■ Key features of AWS services

 ■ AWS shared responsibility model

Introduction xxxiii

 ■ Application lifecycle management

 ■ CI/CD pipeline to deploy applications on AWS

 ■ Using or interacting with AWS services

 ■ Using cloud-native applications to write code

 ■ Writing code using AWS security best practices (for example, not using secret and
access keys in the code, and instead using AWS Identity and Access Management
(IAM) roles)

 ■ Authoring, maintaining, and debugging code modules on AWS

 ■ Writing code for serverless applications

 ■ Using containers in the development process

The exam covers five different domains, with each domain broken down into objectives
and subobjectives.

Objective Map
The following table lists each domain and its weighting in the exam, along with the chap-
ters in this book where that domain’s objectives and subobjectives are covered.

Domain
Percentage
of Exam Chapter

Domain 1: Deployment 22% 6, 7, 8, 9, 12, 13, 14

1.1 Deploy written code in AWS using existing
CI/CD pipelines, processes, and patterns.

6, 7, 8, 9

1.2 Deploy applications using Elastic Beanstalk. 6, 8, 9

1.3 Prepare the application deployment package to
be deployed to AWS.

7, 9, 12

1.4 Deploy serverless applications. 7, 12, 13, 14

Domain 2: Security 26% 1, 3, 4, 5, 6, 10, 12, 14

2.1 Make authenticated calls to AWS services. 1, 4, 10, 12, 13, 14

2.2 Implement encryption using AWS services. 3, 4, 5, 14

2.3 Implement application authentication and
authorization.

3, 10, 13, 14

xxxiv Introduction

Domain 3: Development with AWS Services 30%
1, 2, 3, 4, 5, 7, 9, 12, 13,
14, 16

3.1 Write code for serverless applications. 9, 12, 13

3.2 Translate functional requirements into
 application design.

2, 3, 4, 13, 14

3.3 Implement application design into
application code.

3, 4, 13, 14

3.4 Write code that interacts with AWS services by
using APIs, SDKs, and AWS CLI.

1, 2, 3, 5, 7, 9, 12, 13,
14, 16

Domain 4: Refactoring 10% 2, 3, 4, 11,16

4.1 Optimize application to best use AWS services
and features.

3, 4, 11, 16

4.2 Migrate existing application code to run on AWS. 2, 3, 11

Domain 5: Monitoring and Troubleshooting 12% 2, 4, 6, 8, 11, 12, 13, 15, 16

5.1 Write code that can be monitored. 8, 12, 13, 15, 16

5.2 Perform root cause analysis on faults found in
testing or production.

2, 4, 12, 15

Assessment Test
1. You have an application running on Amazon Elastic Compute Cloud (Amazon EC2) that

needs read-only access to several AWS services. What is the best way to grant that applica-
tion permissions only to a specific set of resources within your account?

A. Use API credentials derived based on the AWS account.

B. Launch the EC2 instance into an AWS Identity and Access Management (IAM) role
and attach the ReadOnlyAccess IAM-managed policy.

C. Declare the necessary permissions as statements in the AWS SDK configuration file on
the EC2 instance.

D. Launch the EC2 instance into an IAM role with custom IAM policies for the permissions.

2. You have deployed a new application in the US West (Oregon) Region. However, you have
accidentally deployed an Amazon Polly lexicon needed for your application in EU (London).
How can you use your lexicon to synthesize speech while minimizing the changes to your
application code and reducing cost?

A. Point your SDK client to the EU (London) for all requests to Amazon Polly, but to US
West (Oregon) for all other API calls.

B. No action needed; the data is automatically available from all Regions.

C. Upload a copy of the lexicon to US West (Oregon).

D. Move the rest of the application resources to EU (London).

3. When you’re placing subnets for a specific Amazon Virtual Private Cloud (Amazon VPC),
you can place the subnets in which of the following?

A. In any Availability Zone within the Region for the Amazon VPC

B. In any Availability Zone in any Region

C. In any AWS edge location

D. In any specific AWS data center

4. You have identified two Amazon Elastic Compute Cloud (Amazon EC2) instances in your
account that appear to have the same private IP address. What could be the cause?

A. These instances are in different Amazon Virtual Private Cloud (Amazon VPCs).

B. The instances are in different subnets.

C. The instances have different network ACLs.

D. The instances have different security groups.

5. You have a workload that requires 15,000 consistent IOPS for data that must be durable.
What combination of the following do you need? (Select TWO.)

A. Use an Amazon Elastic Block Store (Amazon EBS) optimized instance.

B. Use an instance store.

C. Use a Provisioned IOPS SSD volume.

D. Use a previous-generation EBS volume.

xxxvi Assessment Test

6. Your company stores critical documents in Amazon Simple Storage Service (Amazon S3),
but it wants to minimize cost. Most documents are used actively for only about one month
and then used much less frequently after that. However, all data needs to be available
within minutes when requested. How can you meet these requirements?

A. Migrate the data to Amazon S3 Reduced Redundancy Storage (RRS) after 30 days.

B. Migrate the data to Amazon S3 Glacier after 30 days.

C. Migrate the data to Amazon S3 Standard – Infrequent Access (IA) after 30 days.

D. Turn on versioning and then migrate the older version to Amazon S3 Glacier.

7. You are migrating your company’s applications and data from on-premises to the AWS
Cloud. You have performed a data inventory and discovered that you will need to transfer
about 2 PB of data to AWS. Which migration option will be the best choice for your com-
pany with minimal cost and shortest time?

A. AWS Snowball

B. AWS Snowmobile

C. Upload files directly to AWS over the internet using Amazon Simple Storage Service
(Amazon S3) Transfer Acceleration.

D. Amazon Kinesis Data Firehose

8. You are changing your application to take advantage of the elasticity and cost benefits pro-
vided by AWS Auto Scaling. To do this, you must move session state information from the
individual Amazon Elastic Compute Cloud (Amazon EC2) instances. Which of the follow-
ing AWS Cloud services is best suited as an alternative for storing session state information?

A. Amazon DynamoDB

B. Amazon Redshift

C. AWS Storage Gateway

D. Amazon Kinesis

9. Your company’s senior management wants to query several data stores to obtain a “big pic-
ture” view of the business. The amount of data contained within the data stores is at least
2 TB in size. Which of the following is the best AWS service to deliver results to senior
management?

A. Amazon Elastic Block Store (Amazon EBS)

B. Amazon Simple Storage Service (Amazon S3)

C. Amazon Relational Database Service (Amazon RDS)

D. Amazon Redshift

10. Your ecommerce application provides daily and ad hoc reporting to various business
units on customer purchases. These operations result in a high level of read traffic to your
MySQL Amazon Relational Database Service (Amazon RDS) instance. What can you do to
scale up read traffic without impacting your database’s performance?

A. Increase the allocated storage for the Amazon RDS instance.

B. Modify the Amazon RDS instance to be a Multi-AZ deployment.

Assessment Test xxxvii

C. Create a read replica for an Amazon RDS instance.

D. Change the Amazon RDS instance DB engine version.

11. Your company has refactored their application to use NoSQL instead of SQL. They would
like to use a managed service for running the new NoSQL database. Which AWS service
should you recommend?

A. Amazon Relational Database Service (Amazon RDS)

B. Amazon Elastic Compute Cloud (Amazon EC2)

C. Amazon DynamoDB

D. Amazon Redshift

12. A company is currently using Amazon Relational Database Service (Amazon RDS);
however, they are retiring a database that is currently running. They have automatic back-
ups enabled on the database. They want to make sure that they retain the last backup
before deleting the Amazon RDS database. As the lead developer on the project, what
should you do?

A. Delete the database. Amazon RDS automatic backups are already enabled.

B. Create a manual snapshot before deleting the database.

C. Use the AWS Database Migration Service (AWS DMS) to back up the database.

D. SSH into the Amazon RDS database and perform a SQL dump.

13. When using Amazon Redshift, which node do you use to run your SQL queries?

A. Compute node

B. Cluster node

C. Master node

D. Leader node

14. Your company is building a recommendation feature for their application. They would like
to use an AWS managed graph database. Which service should you recommend?

A. Amazon Relational Database Service (Amazon RDS)

B. Amazon Neptune

C. Amazon ElastiCache

D. Amazon Redshift

15. You have an Amazon DynamoDB table that has a partition key and a sort key. However, a
business analyst on your team wants to be able to query the DynamoDB table with a differ-
ent partition key. What should you do?

A. Create a local secondary index.

B. Create a global secondary index.

C. Create a new DynamoDB table.

D. Advise the business analyst that this is not possible.

xxxviii Assessment Test

16. An application is using Amazon DynamoDB. Recently, a developer on your team has
noticed that occasionally the application does not return the most up-to-date data after a
read from the database. How can you solve this issue?

A. Increase the number of read capacity units (RCUs) for the table.

B. Increase the number of write capacity units (WCUs) for the table.

C. Refactor the application to use a SQL database.

D. Configure the application to perform a strongly consistent read.

17. A developer on your team would like to test a new idea and requires a NoSQL database.
Your current applications are using Amazon DynamoDB. What should you recommend?

A. Create a new table inside DynamoDB.

B. Use DynamoDB Local.

C. Use another NoSQL database on-premises.

D. Create an Amazon Elastic Compute Cloud (Amazon EC2) instance, and install a
NoSQL database.

18. The AWS Encryption SDK provides an encryption library that integrates with AWS Key
Management Service (AWS KMS) as a master key provider. Which of the following opera-
tions does the AWS Encryption SDK perform to build on the AWS SDKs?

A. Generates, encrypts, and decrypts data keys

B. Uses the data keys to encrypt and decrypt your raw data

C. Stores the encrypted data keys with the corresponding encrypted data in a single
object

D. All of the above

19. Of all the cryptographic algorithms that the AWS Encryption SDK supports, which one is
the default algorithm?

A. AES-256

B. AES-192

C. AES-128

D. SSH-256

20. Amazon Elastic Block Store (Amazon EBS) volumes are encrypted by default.

A. True

B. False

21. Which of the following cannot be retained when deleting an AWS Elastic Beanstalk
environment?

A. Source code from the Git repository

B. Data from the automatic backups of an Amazon Relational Database Service (Amazon
RDS) instance

C. Packaged code from the source bundle stored in an Amazon Simple Storage Service
(Amazon S3) bucket

D. Data from the snapshot of an Amazon RDS instance

Assessment Test xxxix

22. Which of the following is not part of the AWS Elastic Beanstalk functionality?

A. Notify the account user of language runtime platform changes

B. Display events per environment

C. Show instance statuses per environment

D. Perform automatic changes to AWS Identity and Access Management (IAM) policies

23. What happens to AWS CodePipeline revisions that, upon reaching a manual approval gate,
are rejected?

A. The pipeline continues.

B. A notification is sent to the account administrator.

C. The revision is treated as failed.

D. The pipeline creates a revision clone and continues.

24. Which of the following is an invalid strategy for migrating data to AWS CodeCommit?

A. Incrementally committing files from a large repository

B. Syncing the files from Amazon Simple Storage Service (Amazon S3) using the sync
AWS CLI command

C. Cloning an existing repository, updating the remote, and pushing

D. Manually creating files in the AWS Management Console

25. You have an AWS CodeBuild task in your pipeline that requires large binary files that do
not frequently change. What would be the best way to include these files in your build?

A. Store the files in your source code repository. They will be passed in as part of the
revision.

B. Store the files in an Amazon Simple Storage Service (Amazon S3) bucket and copy
them during the build.

C. Create a custom build container that includes the files.

D. It is not possible to include files above a certain size.

26. When you update an AWS::S3::Bucket resource, what is the expected behavior if the Name
property is updated?

A. The resource is updated with no interruption.

B. The resource is updated with some interruption.

C. The resource is replaced.

D. The resource is deleted.

27. What is the preferred method for updating resources created by AWS CloudFormation?

A. Updating the resource directly in the AWS Management Console

B. Submitting an updated template to AWS CloudFormation to modify the stack

C. Updating the resource using the AWS Command Line Interface (AWS CLI)

D. Updating the resource using an AWS Software Development Kit (AWS SDK)

xl Assessment Test

28. When does the AWS OpsWorks Stacks configure lifecycle event run?

A. On individual instances immediately when they are first created

B. On individual instances after a deploy lifecycle event

C. On all instances in a stack when a single instance comes online or goes offline

D. On all instances in a stack after a deploy lifecycle event

29. Which non-Amazon Elastic Compute Cloud (Amazon EC2) AWS resources can AWS
OpsWorks Stacks manage? (Select THREE.)

A. Elastic IP addresses

B. Amazon Elastic Block Store (Amazon EBS) volumes

C. Amazon Relational Database Service (Amazon RDS) database instances

D. Amazon ElastiCache clusters

E. Amazon Redshift data warehouses

30. Which AWS Cloud service can Simple Active Directory (Simple AD) use to authenticate
users?

A. Amazon WorkDocs

B. Amazon Cognito

C. Amazon Elastic Compute Cloud (Amazon EC2)

D. Amazon Simple Storage Service (Amazon S3)

31. What is the best application of Amazon Cognito?

A. Use instead of Active Directory for AWS Identity and Access Management (IAM) users.

B. Provide authentication to third-party web applications.

C. Use as an Amazon Aurora database.

D. Use to access objects in an Amazon Simple Storage Service (Amazon S3) bucket.

32. You manage a sales tracking system in which point-of-sale devices send transactions of this
form:
{"date":"2017-01-30", "amount":100.20, "product_id": "1012", "region":
"WA", "customer_id": "3382"}

 You need to generate two real-time reports. The first reports on the total sales per day for
each customer. The second reports on the total sales per day for each product. Which AWS
offerings and services can you use to generate these real-time reports?

A. Ingest the data through Amazon Kinesis Data Streams. Use Amazon Kinesis Data Analyt-
ics to query for sales per day for each product and sales per day for each customer using
SQL queries. Feed the result into two new streams in Amazon Kinesis Data Firehose.

B. Ingest the data through Kinesis Data Streams. Use Kinesis Data Firehose to query for
sales per day for each product and sales per day for each customer with SQL queries.
Feed the result into two new streams in Kinesis Data Firehose.

Assessment Test xli

C. Ingest the data through Kinesis Data Analytics. Use Kinesis Data Streams to query for
sales per day for each product and sales per day for each customer with SQL queries. Feed
the result into two new streams in Kinesis Data Firehose.

D. Ingest the data in Amazon Simple Queue Service (Amazon SQS). Use Kinesis Data
Firehose to query for sales per day for each product and sales per day for each
customer with SQL queries. Feed the result into two new streams in Kinesis Data
Firehose.

33. You design an application for selling toys online. Every time a customer orders a toy, you
want to add an item into the orders table in Amazon DynamoDB and send an email to the
customer acknowledging their order. The solution should be performant and cost-effective.
How can you trigger this email?

A. Use an Amazon Simple Queue Service (Amazon SQS) queue.

B. Schedule an AWS Lambda function to check for changes to the orders table every
minute.

C. Schedule an Lambda function to check for changes to the orders table every second.

D. Use Amazon DynamoDB Streams.

34. A company would like to use Amazon DynamoDB. They want to set up a NoSQL-style
trigger. Is this something that can be accomplished? If so, how?

A. No. This cannot be done with DynamoDB and NoSQL.

B. Yes, but not with AWS Lambda.

C. No. DynamoDB is not a supported event source for Lambda.

D. Yes. You can use Amazon DynamoDB Streams and poll them with Lambda.

35. A company wants to access the infrastructure on which AWS Lambda runs. Is this possible?

A. No. Lambda is a managed service and runs the necessary infrastructure on your
behalf.

B. Yes. They can access the infrastructure and make changes to the underlying OS.

C. Yes. They need to open a support ticket.

D. Yes, but they need to contact their Solutions Architect to provide access to the environ-
ment.

36. Using the smallest amount of memory possible for an AWS Lambda function, currently
128 MB, will result in the lowest bill.

A. True. Lambda bills based on the total memory allocated.

B. False. Lambda has a flat rate—memory allocation is not important for billing, only
performance.

C. False. Lambda bills based on memory plus the number of times that you trigger the
function.

D. False. Lambda bills based on memory, the amount of compute time spent on a function
in 100-ms increments, and the number of times that you execute or trigger a function.

xlii Assessment Test

37. Which Amazon services can you use for caching? (Select TWO.)

A. AWS CloudFormation

B. Amazon Simple Storage Service (Amazon S3)

C. Amazon CloudFront

D. Amazon ElastiCache

38. Which Amazon API Gateway feature enables you to create a separate path that can be help-
ful in creating a development endpoint and a production endpoint?

A. Authorizers

B. API keys

C. Stages

D. Cross-origin resource sharing (CORS)

39. Which of the following methods does Amazon API Gateway support?

A. GET

B. POST

C. OPTIONS

D. All of the above

40. Which authorization mechanisms does Amazon API Gateway support?

A. AWS Identity and Access Management (IAM) policies

B. AWS Lambda custom authorizers

C. Amazon Cognito user pools

D. All of the above

41. Which tool can you use to develop and test AWS Lambda functions locally?

A. AWS Serverless Application Model (AWS SAM)

B. AWS SAM CLI

C. AWS CloudFormation

D. None of the above

42. Which serverless AWS service can you use to store user session state?

A. Amazon Elastic Compute Cloud (Amazon EC2)

B. Amazon ElastiCache

C. AWS Elastic Beanstalk

D. Amazon DynamoDB

43. Which AWS service can you use to store user profile information?

A. Amazon CloudFront

B. Amazon Cognito

C. Amazon Kinesis

D. AWS Lambda

Assessment Test xliii

44. Which of the following objects are good candidates to store in a cache? (Select THREE.)

A. Session state

B. Shopping cart

C. Product catalog

D. Bank account balance

45. Which of the following cache engines does Amazon ElastiCache support? (Select TWO.)

A. Redis

B. MySQL

C. Couchbase

D. Memcached

46. How can you aggregate Amazon CloudWatch metrics across Regions?

A. CloudWatch does not aggregate data across Regions.

B. This is enabled by default.

C. Send the metric data from other Regions to Amazon Simple Storage Service (Amazon S3)
for retrieval by CloudWatch.

D. Stream the metric data to Amazon Kinesis, and retrieve it using an AWS Lambda
function.

47. Why would an Amazon CloudWatch alarm report as INSUFFICIENT_DATA instead of OK or
ALARM? (Select THREE.)

A. The alarm was just created.

B. The metric is not available.

C. There is an AWS Identity and Access Management (IAM) permission preventing the
metric from receiving data.

D. Not enough data is available for the metric to determine the alarm state.

E. The alarm period is missing.

48. You were asked to develop an administrative web application that consumes low through-
put and rarely receives high traffic. Which of the following instance type families will be
the most optimized choice?

A. Memory optimized

B. Compute optimized

C. General purpose

D. Accelerated computing

49. Which of the following AWS Cost Management Tools can you use to view your costs and
find ways to take advantage of elasticity?

A. AWS Cost Explorer

B. AWS Trusted Advisor

C. Amazon CloudWatch

D. Amazon EC2 Auto Scaling

xliv Assessment Test

50. Because cloud resources are easier to deploy and they incur usage-based costs, your organi-
zation is setting up good governance rules to manage costs. They are currently focusing on
controlling and restricting Amazon Elastic Compute Cloud (Amazon EC2) instance deploy-
ments. Which of the following is an effective recommendation?

A. Seek approval from Cost Engineering teams before deploying any EC2 instances.

B. Use AWS Identity and Access Management (IAM) policies to enable engineers to
deploy EC2 instances only when specific mandatory tags are used.

C. Review Amazon CloudWatch metrics to optimize the resource utilization.

D. Use AWS Cost Explorer usage and forecasting reports.

51. Because your applications are showing a consistent steady-state compute usage, you have
decided to purchase Amazon Elastic Compute Cloud (Amazon EC2) Reserved Instances to
gain significant pricing discounts. Which of the following is not the best purchase option?

A. All Upfront

B. Partial Upfront

C. No Upfront

D. Pay-as-you-go

52. Your application processes transaction-heavy and IOPS-intensive database workloads. You
need to choose the right Amazon Elastic Block Store (Amazon EBS) volume so that applica-
tion performance is not affected. Which of the following options would you suggest?

A. HDD-backed storage (st1)

B. SSD-backed storage (io1)

C. Amazon Simple Storage Service (Amazon S3) Intelligent Tier class storage

D. Cold HDD-backed storage (sc1)

53. A legacy financial institution is planning for a huge technical upgrade and planning to go
global. The architecture depends heavily on using caching solutions. Which one of the fol-
lowing services does not fit into the caching solutions?

A. Amazon ElastiCache for Redis

B. Amazon ElastiCache for Memcached

C. Amazon DynamoDB Accelerator

D. Amazon Elastic Compute Cloud (Amazon EC2) memory-optimized

54. Which of the following characteristics separates Amazon DynamoDB from the Amazon
Relational Database Service (Amazon RDS) design?

A. Incurs the performance costs of an ACID-compliant transaction system

B. Normalizes data and stores it on multiple tables

C. Keeps related data together

D. May require expensive joins

Assessment Test xlv

55. Which of the following partition key choices is an inefficient design that leads to poor dis-
tribution of the data in an Amazon DynamoDB table?

A. User ID, where the application has many users

B. Device ID, where each device accesses data at relatively similar intervals

C. Status code, where there are only a few possible status codes

D. Session ID, where the user session remains distinct

56. You are planning to build serverless backends by using AWS Lambda to handle web,
mobile, Internet of Things (IoT), and third-party API requests. Which of the following are
the main benefits in opting for a serverless architecture in this scenario? (Select THREE.)

A. No need to manage servers

B. No need to ensure application fault tolerance and fleet management

C. No charge for idle capacity

D. Flexible maintenance schedules

E. Powered for high complex processing

57. Your enterprise infrastructure has recently migrated to the AWS Cloud. You are now trying
to optimize the storage solutions. Which of the following are the appropriate storage man-
agement tools that you can use to review and analyze the storage classes and access patterns
usage to help reduce costs? (Select TWO.)

A. Amazon Simple Storage Service (Amazon S3) analytics

B. Cost allocation Amazon S3 bucket tags

C. Amazon S3 Transfer Acceleration

D. Amazon Route 53

E. AWS Budgets

Answers to Assessment Test
1. D. Use the custom IAM policy to configure the permissions to a specific set of resources in

your account. The ReadOnlyAccess IAM policy restricts write access but grants access to
all resources within your account. AWS account credentials are unrestricted. Policies do not
go in an SDK configuration file. They are enforced by AWS on the backend.

2. C. This is the simplest approach because only a single resource is in the wrong Region.
Option A is a possible approach, but it is not the simplest approach because it introduces
cross-region calls that may increase latency and cross-region data transfer pricing.

3. A. Each Amazon VPC is placed in a specific Region and can span all the Availability Zones
within that Region. Option B is incorrect because a subnet must be placed within the
Region for the selected VPC. Option C is incorrect because edge locations are not available
for subnets, and option D is incorrect because you cannot choose specific data centers.

4. A. Even though each instance in an Amazon VPC has a unique private IP address, you
could assign the same private IP address ranges to multiple Amazon VPCs. Therefore, two
instances in two different Amazon VPCs in your account could end up with the same pri-
vate IP address. Options B, C, and D are incorrect because within the same Amazon VPC,
there is no duplication of private IP addresses.

5. A, C. Amazon EBS optimized instances reserve network bandwidth on the instance for
I/O, and Provisioned IOPS SSD volumes provide the highest consistent IOPS. Option B is
incorrect because instance store is not durable. Option D is incorrect because a previous-
generation EBS volume offers an average of 100 IOPS.

6. C. Migrating the data to Amazon S3 Standard-IA after 30 days using a lifecycle policy is
correct. The lifecycle policy will automatically change the storage class for objects aged
over 30 days. The Standard-IA storage class is for data that is accessed less frequently, but
still requires rapid access when needed. It offers the same high durability, high through-
put, and low latency of Standard, with a lower per gigabyte storage price and per gigabyte
retrieval fee. Option A is incorrect because RRS provides a lower level of redundancy. The
question did not state that the customer is willing to reduce the redundancy level of the
data, and RRS does not replicate objects as many times as standard Amazon S3 storage.
This storage option enables customers to store noncritical, reproducible data. Option B is
incorrect because the fastest retrieval option for Amazon S3 Glacier is typically 3–5 hours.
The customer requires retrieval in minutes. Option D is incorrect. Versioning will increase
the number of files if new versions of files are being uploaded, which will increase cost. The
question did not mention a need for multiple versions of files.

7. A. Option B is incorrect. You could use Snowmobile, but that would not be as cost effective
because it is meant to be used for datasets of 10 PB or more. Option C is incorrect because
uploading files directly over the internet to Amazon S3, even using Amazon S3 Transfer
Accelerator, would take many months and would be using your on-premises bandwidth.
Option D is incorrect because Amazon Kinesis Data Firehose would still be transferring
over the internet and take months to complete while using your on-premises bandwidth.

Answers to Assessment Test xlvii

8. A. DynamoDB is a NoSQL database store that is a good alternative because of its scal-
ability, high availability, and durability characteristics. Many platforms provide open
source, drop-in replacement libraries that enable you to store native sessions in DynamoDB.
DynamoDB is a suitable candidate for a session storage solution in a share-nothing,
distributed architecture.

9. D. Amazon Redshift is the best choice for data warehouse workloads that typically span
multiple data repositories and are at least 2 TB in size.

10. C. Amazon RDS read replicas provide enhanced performance and durability for Amazon
RDS instances. This replication feature makes it easy to scale out elastically beyond the
capacity constraints of a single Amazon RDS instance for read-heavy database workloads.
You can create one or more replicas of a given source Amazon RDS instance and serve
high-volume application read traffic from multiple copies of your data, increasing aggregate
read throughput.

11. C. DynamoDB is the best option. The question states a managed service, so this eliminates
the Amazon EC2 service. Additionally, Amazon RDS and Amazon Redshift are SQL data-
base products. The company is looking for a NoSQL product. DynamoDB is a managed
NoSQL service.

12. B. Automatic backups do not retain the backup after the database is deleted. Therefore,
option A is incorrect. Option C is incorrect. The AWS Database Migration Service is used
to migrate databases from one source to another, which isn’t what you are trying to accom-
plish here. Option D is incorrect because you cannot SSH into the
Amazon RDS database, which is an AWS managed service.

13. D. The leader node acts as the SQL endpoint and receives queries from client applications,
parses the queries, and develops query execution plans. Option A is incorrect because the
compute nodes execute the query execution plan. However, the leader node is where you
will submit the actual query. Options B and C are incorrect because there is no such thing
as a cluster or master node in Amazon Redshift.

14. B. Amazon Neptune is a managed graph database service, which can be used to build
recommendation applications. Option A is incorrect, because Amazon RDS is a managed
database service and you are looking for a graph database. Option C is incorrect. Amazon
ElastiCache is a caching managed database service. Option D is incorrect. Amazon Red-
shift is a data warehouse service.

15. B. A global secondary index enables you to use a different partition key or primary key in
addition to a different sort key. Option A is incorrect because a local secondary index can
only have a different sort key. Option C is incorrect. A new DynamoDB table would not solve
the issue. Option D is incorrect because it is possible to accomplish this.

16. D. The application is configured to perform an eventually consistent read, which may not
return the most up-to-date data. Option A is incorrect—increasing RCUs does not solve
the underlying issue. Option B is incorrect because this is a read issue, not a write issue.
Option C is incorrect. There is no need to refactor the entire application, because the issue
is solvable.

xlviii Answers to Assessment Test

17. B. DynamoDB Local is the downloadable version of DynamoDB that enables you to write
and test applications without accessing the web service. Option A is incorrect. Although
you can create a new table, there is a cost associated with this option, so it is not the best
option. Option C is incorrect. Even though you can use another NoSQL database, your
team is already using DynamoDB. This strategy would require them to learn a new data-
base platform. Additionally, you would have to migrate the database to DynamoDB after
development is done. Option D is incorrect for the same reasons as option C.

18. D. The AWS Encryption SDK is a client-side library designed to streamline data security
operations so that customers can follow encryption best practices. It supports the manage-
ment of data keys, encryption and decryption activities, and the storage of encrypted data.
Thus, option D is correct.

19. A. Options B, C, and D refer to more outdated encryption algorithms. By default, the AWS
Encryption SDK uses the industry-recommended AES-256 algorithm.

20. B. Encryption of Amazon EBS volumes is optional.

21. B. Elastic Beanstalk automatically deletes your Amazon RDS instance when your environ-
ment is deleted and does not automatically retain the data. You must create a snapshot of
the Amazon RDS instance to retain the data.

22. D. Elastic Beanstalk cannot make automated changes to the policies attached to the service
roles and instance roles.

23. C. Option C is correct because if a revision does not pass a manual approval transition
(either by expiring or by being rejected), it is treated as a failed revision. Successive revi-
sions can then progress past this approval gate (if they are approved). Pipeline actions for a
specific revision will not continue past a rejected approval gate, so option A is incorrect. A
notification can be sent to an Amazon Simple Notification Service (Amazon SNS) topic that
you specify when a revision reaches a manual approval gate, but no additional notification
is sent if a change is rejected; therefore, option B is incorrect. Option D is incorrect, as AWS
CodePipeline does not have a concept of “cloning” revisions.

24. B. Though option D would be time-consuming, it is still possible to create files in the AWS
CodeCommit console. Option A is a recommended strategy for migrating a repository con-
taining a large number of files. Option C is also a valid strategy for smaller repositories.
However, there is no way to sync files directly from an Amazon S3 bucket to an AWS Code-
Commit repository. Thus, option B is correct.

25. C. Option A is not recommended, because storing binary files in a Git-based repository
incurs significant storage costs. Option B can work. However, you would have to pay
additional data transfer costs any time a build is started. Option C is the most appropriate
choice, because you can update the build container any time you need to change the files.
Option D is incorrect, as AWS CodeBuild does not limit the size of files that can be used.

26. C. Amazon Simple Storage Service (Amazon S3) bucket names are globally unique and
cannot be changed after a bucket is created. Thus, options A and B are incorrect. Option
D is incorrect because the resource is not being deleted, only updated. Option C is correct
because you must create a replacement bucket when changing this property in AWS
CloudFormation.

Answers to Assessment Test xlix

27. B. Option B is correct because you can manage resources declared in a stack entirely within
AWS CloudFormation by performing stack updates. Manually updating the resource out-
side of AWS CloudFormation (using the AWS Management Console, AWS CLI, or AWS
SDK) will result in inconsistencies between the state expected by AWS CloudFormation and
the actual resource state. This can cause future stack operations to fail. Thus, options A, C,
and D are incorrect.

28. C. Option A is incorrect because this is not the only time configure events run on instances
in a stack. Options B and D are incorrect because the configure event does not run after a
deploy event. AWS OpsWorks Stacks issues a configure lifecycle event on all instances in a
stack any time a single instance goes offline or comes online. This is so that all instances in
a stack can be made “aware” of the instance’s status. Thus, option C is correct.

29. A, B, C. AWS OpsWorks Stacks includes the ability to manage AWS resources such as
Elastic IP addresses, EBS volumes, and Amazon RDS instances. Thus, options A, B, and C
are correct. Options D and E are incorrect because OpsWorks Stacks does not include any
automatic integrations with Amazon ElastiCache or Amazon Redshift.

30. A. Option A is correct because Simple Active Directory (Simple AD) can be used to authen-
ticate users of Amazon WorkDocs. Options B, C, and D are incorrect because Amazon
Cognito is an identity provider (IdP), and you cannot use Simple AD to authenticate users
of Amazon EC2 or Amazon S3.

31. B. Amazon Cognito acts as an identity provider (IdP) to mobile applications, eliminating
the need to embed credentials into the web application itself. Option A is incorrect because
if a customer is currently using Active Directory as their IdP, it is not good practice to cre-
ate another IdP to operate and manage. Option C is incorrect because an Amazon Aurora
database that is used to track data does not assign policies. Option D is incorrect because
you can use Amazon Cognito to control an application’s access to either an S3 bucket or an
Amazon S3 object. You don’t use it to directly control access to that bucket or object.

32. A. Option A is correct because you want to ingest into Amazon Kinesis Data Streams, pass
that into Amazon Kinesis Data Analytics, and finally feed that data into Amazon Kinesis
Data Firehose. Option B is incorrect because Kinesis Data Firehose cannot run SQL que-
ries. Option C is incorrect because Kinesis Data Streams cannot run SQL queries. Option
D is incorrect because Kinesis Data Analytics cannot run SQL queries against data in Ama-
zon SQS.

33. D. Option D is correct because Amazon DynamoDB Streams allows Amazon DynamoDB
to publish a message every time there is a change in a table. This solution is performant
and cost-effective. Option A is incorrect because if you add an item to the orders table in
DynamoDB, it does not automatically produce messages in Amazon Simple Queue Service
(Amazon SQS). Options B and C are incorrect because if you check the orders table every
minute or every second, it will degrade performance and increase costs.

34. D. AWS Lambda supports Amazon DynamoDB event streams as an event source, which
can be polled. You can configure Lambda to poll this stream, look for changes, and create
a trigger. Option A is incorrect because this can be accomplished with DynamoDB event
streams. Option B is incorrect because this can be accomplished with Lambda. Option C
DynamoDB is a supported event source for Lambda.

l Answers to Assessment Test

35. A. AWS Lambda uses containers to operate and is a managed service—you cannot access
the underlying infrastructure. This is a benefit because your organization does not need to
worry about security patching and other system maintenance. Option B is incorrect—you
cannot access the infrastructure. Recall that Lambda is serverless. Option C is incorrect.
AWS Support cannot provide access to the direct environment. Option D is incorrect—the
Solutions Architect cannot provide direct access to the environment.

36. D. AWS Lambda uses three factors when determining cost: the amount of memory allo-
cated, the amount of compute time spent on a function (in 100-ms increments), and the
number of times you execute or trigger a function. Options A, B, and C are all incorrect
because Lambda is billed based on memory allocated, compute time spent on a function in
100-ms increments, and the number of times that you execute or trigger a function.

37. C, D. Option A is incorrect because AWS CloudFormation is a service that helps you model
and set up your AWS resources. Option B is incorrect because you use Amazon S3 as a stor-
age tool for the internet. Options C and D are correct because they are both caching tools.

38. C. Option A is incorrect, as authorizers enable you to control access to your APIs by using
Amazon Cognito or an AWS Lambda function. Option B is incorrect because API keys are
used to provide customers to your API, which is useful for selling your API. Option C is the
correct answer. You can use stages to create a separate path with multiple endpoints, such
as development and production. Option D is incorrect, as CORS is used to allow one ser-
vice to call another service.

39. D. API Gateway supports all of the methods listed. GET, POST, PUT, PATCH, DELETE, HEAD,
and OPTIONS are all supported methods.

40. D. With Amazon API Gateway, you can enable authorization for a particular method with
IAM policies, AWS Lambda custom authorizers, and Amazon Cognito user pools. Options
A, B, and C are all correct, but option D is the best option because it combines all of them.

41. B. Option A is incorrect. Though AWS SAM is needed for the YAML/JSON template
defining the function, it does not allow for testing the AWS Lambda function locally.
Option B is the correct answer. AWS SAM CLI allows you to test the Lambda function
locally. Option C is incorrect. AWS CloudFormation is used to deploy resources to the AWS
Cloud. Option D is incorrect because AWS SAM CLI is the tool to test Lambda functions
locally.

42. D. Option A is incorrect. Amazon EC2 is a virtual machine service. Option B is incorrect
because Amazon ElastiCache deploys clusters of machines, which you are then responsible
for scaling. Option C is incorrect because Elastic Beanstalk deploys full stack applications
by using Amazon EC2. Option D is correct because ElastiCache can store session state in a
NoSQL database. This option is also serverless.

43. B. With Amazon Cognito, you can create user pools to store user profile information and
store attributes such as user name, phone number, address, and so on. Option A is incor-
rect. Amazon CloudFront is a content delivery network (CDN). Option C is incorrect.
Amazon Kinesis is a service that you can implement to collect, process, and analyze stream-
ing data in real time. Option D is incorrect. By using AWS Lambda, you can create custom
programming functions for compute processing.

Answers to Assessment Test li

44. A, B, C. Option D is incorrect because when compared to the other options, a bank bal-
ance is not likely to be stored in a cache; it is probably not data that is retrieved as fre-
quently as the others. Options A, B, and C are all better data candidates to cache because
multiple users are more likely to access them repeatedly. However, you could also cache the
bank account balance for shorter periods if the database query is not performing well.

45. A, D. Options A and D are correct because Amazon ElastiCache supports both the Redis
and Memcached open source caching engines. Option B is incorrect because MySQL is not a
caching engine—it is a relational database engine. Option C is incorrect because Couchbase
is a NoSQL database and not one of the caching engines that ElastiCache supports.

46. A. Amazon CloudWatch does not aggregate data across Regions; therefore, option A is
correct.

47. A, B, D. Amazon CloudWatch alarms changes to a state other than INSUFFICIENT_DATA only
when the alarm resource has had sufficient time to initialize and there is sufficient data avail-
able for the specified metric and period. Option C is incorrect because permissions for sending
metrics to CloudWatch are the responsibility of the resource sending the data. Option D is
incorrect because the alarm does not create successfully unless it has a valid period.

48. C. General-purpose instances provide a balance of compute, memory, and network-
ing resources. T2 instances are a low-cost option that provides a small amount of CPU
resources that can be increased in short bursts when additional cycles are available. They
are well suited for lower-throughput applications, such as administrative applications or
low-traffic websites. For more details on the instance types, see https://aws.amazon
.com/ec2/instance-types/.

49. A. AWS Cost Explorer reflects the cost and usage of Amazon Elastic Compute Cloud
(Amazon EC2) instances over the most recent 13 months and forecasts potential spending
for the next 3 months. By using Cost Explorer, you can examine patterns on how much you
spend on AWS resources over time, identify areas that need further inquiry, and view trends
that help you understand your costs. In addition, you can specify time ranges for the data
and view time data by day or by month. Option D is incorrect because Amazon EC2 Auto
Scaling helps you to maintain application availability and enables you to add or remove EC2
instances automatically according to conditions that you define. It does not give you insights
into costs incurred.

50. B. You can use tags to control permissions. Using IAM policies, you can enforce the tag to
gain precise control over access to resources, ownership, and accurate cost allocation. Option
A is incorrect because eventually deployments become unmanageable, given the scale and rate
at which resources get deployed in a successful organization. Options C and D are incorrect
because Amazon CloudWatch and AWS Cost Explorer are unrelated to access controls and
measures, and these tools monitor resources after they are created.

51. D. You can choose among the three payment options when you purchase a Standard
or Convertible Reserved Instance. With the All Upfront option, you pay for the entire
Reserved Instance term with one upfront payment. This option provides you with the larg-
est discount compared to On-Demand Instance pricing. With the Partial Upfront option,
you make a low upfront payment and then are charged a discounted hourly rate for the
instance for the duration of the Reserved Instance term. The No Upfront option requires no
upfront payment and provides a discounted hourly rate for the duration of the term.

lii Answers to Assessment Test

52. B. The performance of the transaction-heavy workloads depends primarily on IOPS; SSD-
backed volumes are designed for transactional, IOPS-intensive database workloads, boot vol-
umes, and workloads that require high IOPS. For more information, see https://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html.

53. D. Options A, B, and C help in building a high-speed data storage layer that stores a subset of
data. This data is typically transient in nature so that future requests for that data are served
up faster than is possible by accessing the data’s primary storage location. Option D only sup-
plements the setup of your own caching mechanism, and that is not the preferred solution for
this scenario. For more information, see https://aws.amazon.com/caching/aws-caching/.

54. C. Keeping data together is a basic characteristic of a NoSQL database such as Amazon
DynamoDB. Keeping related data in proximity has a major impact on cost and perfor-
mance. Instead of distributing related data items across multiple tables, keep related items
in your NoSQL system as close together as possible. Options A, B, and D are typical char-
acteristics of a relational database.

55. C. The status code option suggests an inefficient partition key, because few possible status
codes lead to uneven distribution of data and cause request throttling. Options A, B, and D
suggest the efficient partition keys because of their distinct nature, which leads to an even
distribution of the data. For more information, see:

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
bp-partition-key-design.html

56. A, B, C. Using a serverless approach means not having to manage servers and not incurring
compute costs when there is no user traffic. This is achieved while still offering instant scale
to meet high demand, such as a flash sale on an ecommerce site or a social media mention
that drives a sudden wave of traffic. Option D is incorrect because AWS Lambda runs your
code on a high-availability compute infrastructure and performs all the administration
of the compute resources, including server and operating system maintenance, capacity
provisioning and automatic scaling, code and security patch deployment, and code moni-
toring and logging. Option E is incorrect because you can configure Lambda functions to
run up to 15 minutes per execution. As a best practice, set the timeout value based on your
expected execution time to prevent your function from running longer than intended.

57. A, B. Use this feature to analyze storage access patterns to help you decide when to transi-
tion the right data to the right storage class. This feature observes data access patterns to
help you determine when to transition less frequently accessed STANDARD storage to the
STANDARD_IA storage class. Option B is correct. A cost allocation tag is a key-value pair
that you associate with an Amazon S3 bucket. To manage storage data most effectively,
you can use these tags to categorize your Amazon S3 objects and filter on these tags in your
data lifecycle policies. Options C and D are incorrect. These options focus on establishing
a solution with an efficient data transfer. Option E is incorrect. With AWS Budgets, you
can set custom budgets that alert you when your costs or usage exceed (or are forecasted to
exceed) your budgeted amount.

Introduction to AWS
Cloud API

The AWS CerTIfIed develoPer –
ASSoCIATe exAm ToPICS Covered In
ThIS ChAPTer mAy InClude, buT Are
noT lImITed To, The folloWIng:

Domain 2: Security

 ✓ 2.1 Make authenticated calls to AWS services.

Domain 3: Development with AWS Services

 ✓ 3.4 Write code that interacts with AWS services by
using APIs, SDKs, and AWS CLI.

Chapter

1

AWS® Certified Developer Official Study Guide
By Nick Alteen, Jennifer Fisher, Casey Gerena, Wes Gruver, Asim Jalis,
Heiwad Osman, Marife Pagan, Santosh Patlolla and Michael Roth

 Amazon Web Services, Inc.

Introduction to AWS
The AWS Cloud provides infrastructure services, such as compute, storage, networking, and
databases, and a broad set of platform capabilities such as mobile services, analytics,
and machine learning (ML). These services are available on demand, through the inter-
net, and with pay-as-you-go pricing.

Think of AWS as a programmable data center. Rather than making a phone call or
sending email to provision servers or other resources, you can manage all of your resources
programmatically, via application programming interfaces (APIs). For example, you can
provision virtual servers on demand in minutes and pay only for the compute capacity you
use. The same is true for de-provisioning those servers; make a single API call to stop pay-
ing for resources that you no longer need. AWS operates many data centers worldwide, so
you are not limited to a single data center.

In this chapter, you are introduced to AWS and shown how to make your first API calls.
The AWS infrastructure behind the API calls follows. Afterward, you will learn how to
manage the API credentials and permissions that you need to make API calls.

Getting Started with an AWS Account
The AWS Certified Developer – Associate is designed for developers who have hands-on
experience working with AWS services. To help you prepare, this book has recommended
exercises at the end of each chapter.

To work with AWS, you’ll need an account. While you must provide contact and pay-
ment information to sign up for an account, you can test many of these services through the
AWS Free Tier. The AWS Free Tier limits allow you to become familiar with the APIs for
the included services without incurring charges.

The AWS Free Tier automatically provides usage alerts to help you stay in control of
usage and identify possible charges. You can define additional alerts with AWS Budgets. To
best take advantage of the AWS Free Tier and reduce costs, take some time to review the
AWS Free Tier limits, and make sure to shut down or delete resources when you are done
using them.

To create an account, sign up at https://aws.amazon.com/free.

Introduction to AWS 3

AWS Management Console
After you have created an account, you will be prompted to sign in to the AWS Management
Console. As part of the sign-up process, you define an email address and password to sign in
to the console as the root user for the account.

The console is a web interface where you can create, configure, and monitor AWS
resources in your account. You can quickly identify the AWS services that are available
to you and explore the functionality of those services. Links are also provided to learning
materials to help you get started.

Sign in to the console, as shown in Figure 1.1, at https://signin.aws.amazon.com/
console.

f I gu r e 1.1 AWS Management Console

Because all the functionality of AWS is exposed through APIs, AWS provides more
than only the web interface for managing resources. For example, the console is also
 available as a mobile app for iOS and for Android.

After you become familiar with a service, you can manage AWS resources programmati-
cally through either the AWS Command Line Interface (AWS CLI) or the AWS software
development kits (AWS SDKs), as shown in Figure 1.2.

4 Chapter 1 ■ Introduction to AWS Cloud API

f I gu r e 1. 2 Options for managing AWS resources

AWS Management
Console

Your AWS
Resources

AWS CLI

AWS SDK

AWS Software Development Kits
AWS SDKs are available in many popular programming languages such as Java, .NET,
JavaScript, PHP, Python, Ruby, Go, and C++. AWS also provides specialty SDKs such as
the AWS Mobile SDK and AWS Internet of Things (IoT) Device SDK.

Although the instructions for installing and using an AWS SDK vary depending on the
operating system and programming language, they share many similarities. In this chapter,
the examples are provided in Python.

The Python SDK for AWS is called AWS SDK for Python (Boto). If Python 2 or Python 3
is already installed on your machine, install boto3 using pip, the Python package manager.

To install boto3, open a terminal and run the following command:

pip install boto3 --upgrade –user

For documentation on the Python SDK, see http://boto3.readthedocs.io/.
For more information on SDKs for other programming languages or platforms, see

https://aws.amazon.com/tools/#sdk.

AWS CLI Tools
In addition to the AWS Management Console and SDKs, AWS provides tools to manage
AWS resources from the command line. One such tool is the AWS CLI, which is available
on Windows, Linux/Unix, and macOS.

The AWS CLI allows you to perform actions similar to those from the SDKs but in an
interactive scripting environment. Because the AWS CLI is interactive, it is a good environ-
ment for experimenting with AWS features. Also, the AWS CLI and the SDK on the same
server can share configuration settings.

If you prefer to manage your resources using PowerShell, use the AWS Tools for
PowerShell instead of the AWS CLI. Other specialty command line tools are also provided,
such as the Elastic Beanstalk command line interface and AWS SAM Local. For more infor-
mation about these tools and installation, see https://aws.amazon.com/tools/#cli.

Calling an AWS Cloud Service 5

 Calling an AWS Cloud Service
 The functionality of AWS is powered by web services that are agnostic to the programming
language and SDK. In this section, you use the AWS Python SDK to make an API request.

 This is an overview of both making an API call and the parameters to confi gure the
SDK. Subsequent sections will describe those parameters.

 Locate the API reference documentation about the underlying web
services and programming language–specific documentation for each
SDK at https://aws.amazon.com/documentation .

 API Example: Hello World
 In the following example, you will make a request to Amazon Polly . Amazon Polly pro-
vides text-to-speech service with natural-sounding speech, and it is able to provide speech
in multiple languages with a variety of male and female voices. Furthermore, you can
modify attributes, such as pronunciation, volume, pitch, or speed, by defi ning lexicons or
supplying Speech Synthesis Markup Language (SSML).

 This Python code example uses the AWS SDK for Python (Boto) and Amazon Polly to
generate an audio clip that says, “Hello World.”

 import boto3

 #Explicit Client Configuration
 polly = boto3.client('polly',
 region_name='us-west-2',
 aws_access_key_id='AKIAIO5FODNN7EXAMPLE',
 aws_secret_access_key='ABCDEF+c2L7yXeGvUyrPgYsDnWRRC1AYEXAMPLE'
)

 result = polly.synthesize_speech(Text='Hello World!',
 OutputFormat='mp3',
 VoiceId='Aditi')

 # Save the Audio from the response
 audio = result['AudioStream'].read()
 with open("helloworld.mp3","wb") as file:
 file.write(audio)

 The AWS SDK maps the function call to an HTTPS request to an Amazon Polly API
endpoint that is determined by the region name (region_name) parameter.

 The SDK also adds authorization information to your request by signing the request
using a key derived from the AWS secret access key.

 When your request is received at the Amazon Polly API endpoint, AWS authenticates the
signature and evaluates AWS Identity and Access Management (IAM) policies to authorize
the API action.

6 Chapter 1 ■ Introduction to AWS Cloud API

If authorization succeeds, Amazon Polly processes the request, generates an MP3 audio
file, and then returns it to the SDK client as part of the response to the HTTPS request, as
shown in Figure 1.3.

f I gu r e 1. 3 API request and authorization

Your code calls
the SDK method
to synthesize
speech.

SDK returns
the response
to your code.

Amazon Polly generates
an audio file and includes
it in the response body

SDK generates a signed
request and sends it to
Amazon Polly Regional
API Endpoint over
HTTPS.

Amazon Polly checks
signature and then
validates credentials and
permissions with lAM.

lAM looks up
policies and
Allows or
Denies the
request.

1 2 3 4

6 5

API Requests
Examine the request that is being transmitted in step 2 of Figure 1.3. When the SDK makes
the request to Amazon Polly, it submits a JSON body using a standard HTTP POST to
https://polly.us-west-2.amazonaws.com/v1/speech.

The SDK sets the following properties in the request:

POST /v1/speech HTTP/1.1
host: polly.us-west-2.amazonaws.com
content-Type: application/json
x-amz-date: 20180411T051402Z
authorization: AWS4-HMAC-SHA256 Credential=AKIAIO5FODNN7EXAMPLE/20180411/
us-west-2/polly/aws4_request, SignedHeaders=content-length;content-type;host;x-
amz-date, Signature=d968197e88a6a8de69d1a7bcab414669eecd5f841e13dc90e4a7852
c2c428038

{
 "OutputFormat": "mp3",
 "Text" : "Hello World!",
 "VoiceId": "Aditi"
}

Notice that the API endpoint or host URL includes the AWS Region parameter (us-west-2).
The SDK also generates an authorization header by taking in the AWS access key credentials
and applying the AWS Signature Version 4 signing process to the request.

Calling an AWS Cloud Service 7

 API Responses
 The API response corresponds to step 5 of Figure 1.3 . For the example API request, the fol-
lowing headers are set in the response:

 HTTP/1.1 200
 status: 200
 content-type: audio/mpeg
 date: Wed, 11 Apr 2018 05:14:02 GMT
 x-amzn-requestcharacters: 12
 x-amzn-requestid: 924141bb-b0a6-11e8-b565-b1fabccdcbd9
 transfer-encoding: chunked
 connection: keep-alive

 The headers include a standard HTTP response code. In this case, the status is 200. In
general, AWS responds with standard HTTP response codes, such as the following:

 ■ HTTP/200, if successful

 ■ HTTP/403, if authorization is denied

 You can also use an x-amzn-requestid header to troubleshoot when contacting AWS Support.
 The response body includes the audio stream; in this case, the audio stream is in MP3 format.
 The AWS SDK wraps the web response and returns an object to the application. This

step corresponds to step 6 of Figure 1.3 . If the HTTP status code is not HTTP/200, the
SDK generates an exception that your code can handle.

 The AWS Signature Version 4 signing process incorporates the current
date into the process to sign API requests, so make sure that the clock on
the computer making API requests is accurate. AWS API requests must be
received within 15 minutes of the timestamp in the request to be valid.

 SDK Configuration
 In the previous example, the AWS Region and AWS credentials are provided explicitly in
the code. The SDK client initialization code from the earlier example is shown again here:

 # Explicit Client Configuration
 polly = boto3.client('polly',
 region_name='us-west-2',
 aws_access_key_id='AKIAIO5FODNN7EXAMPLE',
 aws_secret_access_key='ABCDEF+c2L7yXeGvUyrPgYsDnWRRC1AYEXAMPLE'
)

 This explicit approach of hardcoding credentials into the code is not recommended,
because it carries the risk of checking the credentials into a source-control repository. This
would expose the keys to everyone who has access to the repository and could even result
in public disclosure. To prevent this, confi gure the SDK credentials separately from the
application source code.

8 Chapter 1 ■ Introduction to AWS Cloud API

The SDK and AWS CLI automatically check several locations for credentials, and for the
region if they are not explicitly provided in the code. These locations include environment
variables, programming language–specific parameter stores, and local files.

To configure an AWS access key on your local machine in a local file, create a creden-
tials file in the .aws folder in the home folder for the current user. Within this file, specify
credentials for the default profile. You may optionally include additional named profiles
beyond the default as needed.

[default]
aws_access_key id=AKIAIO5FODNN7EXAMPLE
aws_secret_access_key=ABCDEF+c2L7yXeGvUyrPgYsDnWRRC1AYEXAMPLE

From File: ~/.aws/credentials

Furthermore, hardcoding the AWS Region into the code makes it difficult to deploy
your application in different AWS Regions. Instead, create a config file also within the .aws
folder within your current user’s home directory. Within this file, specify a region to use
with the default profile.

[default]
region = us-west-2

From File: ~/.aws/config

As an alternative to creating the credentials and config files manually, you can use the
AWS CLI to generate the credentials and config files for the default profile as follows:

aws configure

This command prompts for credentials and region settings. When the command completes,
the config and credentials files are generated, as shown in Figure 1.4.

f I gu r e 1. 4 Configuring API credentials

When the configuration is complete, replace this snippet of code:

Explicit Client Configuration
polly = boto3.client('polly',
 region_name='us-west-2',
 aws_access_key_id='AKIAIO5FODNN7EXAMPLE',
 aws_secret_access_key='ABCDEF+c2L7yXeGvUyrPgYsDnWRRC1AYEXAMPLE'
)

Working with Regions 9

 with this line of code:

 # Implicit Client Configuration
 polly = boto3.client('polly')

 By separating your code from the credentials, you make it easier to collaborate with
other developers while making sure that your credentials are not inadvertently disclosed
to others.

 For code running on an AWS compute environment, such as Amazon
Elastic Compute Cloud (Amazon EC2) or AWS Lambda, instead of using
local files, assign an IAM role to the environment. This enables the SDK
to load the credentials automatically from the role and to refresh the
credentials as they are automatically rotated.

 Working with Regions
 Now take a closer look at what it means to confi gure the AWS SDK with an AWS Region . AWS
operates facilities in multiple regions across the world, as shown in Figure 1.5 . Each
AWS Region is located in a separate geographic area and maintains its own, isolated copies
of AWS services. For many AWS services, you are required to select a specifi c region to
process API requests and in which to provision your resources.

 f I gu r e 1.5 AWS Regions, Availability Zones, and planned regions (as of February 2019)

2

2

3

2
3

3
3

1

3

3

3
2

4
3

3
6

3
3

3

3
3

10 Chapter 1 ■ Introduction to AWS Cloud API

Customers expect that their data is durably held and that services remain highly available.
In this section, you will explore how the structure of a region lends itself to providing reliable
service and how to choose an appropriate region for your application.

Regions Are Highly Available
Each AWS Region contains multiple data centers, grouped together to form Availability
Zones. Regions are composed of multiple Availability Zones, which allows AWS to provide
highly available services in a way that differentiates them from traditional architectures
with single or multiple data centers.

Availability Zones are physically separated from each other and are designed to oper-
ate independently from each other in the case of a fault or natural disaster, as shown in
Figure 1.6. Even though they are physically separated, Availability Zones are connected
via low-latency, high-throughput redundant networking.

f I gu r e 1.6 Regions and Availability Zones

AWS Cloud

Region
AZ

AZAZ

Region
AZ

AZAZ

AWS customers can improve the resilience of their applications by deploying a copy of
each application to a second Availability Zone within the same region. This allows the
application to remain available to customers even in the face of events that could disrupt an
entire data center. Similarly, many of the AWS services automatically replicate data across
multiple Availability Zones within an AWS Region to provide high availability and durabil-
ity of the data.

An example of an AWS service that replicates data across Availability Zones within a
region is Amazon Simple Storage Service (Amazon S3). Amazon S3 enable you to upload
files and store those files as objects within a bucket. By default, Amazon S3 automatically
replicates objects across a minimum of three Availability Zones within the region hosting
the bucket. This design protects data even against the loss of one entire Availability Zone.

Working with Regional API Endpoints
Many AWS services expose regional API endpoints. When making web service calls to
regional endpoints, the region can typically be identified in the URL that you invoke.
API calls to a regional endpoint usually affect only the resources within the specific AWS
Region that corresponds to that endpoint.

Working with Regions 11

To explore this concept, revisit the previous example of making a request to Amazon
Polly to synthesize speech from text.

Initializing SDK Client with Explicit Region Configuration
polly = boto3.client('polly', region_name='us-west-2')
result = polly.synthesize_speech(Text='Hello World!',
 OutputFormat='mp3',
 VoiceId='Aditi')

To explicitly configure the AWS SDK to use the US West (Oregon) Region, set the region_
name parameter to us-west-2 when initializing the SDK client, as in the previous example.

This configuration results in the SDK computing the following URL for the API request,
as shown in Figure 1.7.

f I gu r e 1.7 A regional API endpoint and API action

Amazon Polly

polly.us-west-2.amazonaws.com/v1/speech

US West
(Oregon)

Synthesize
Speech

Service Region API Action

You can see regional isolation in practice by uploading a lexicon to Amazon Polly. A
lexicon stores custom pronunciation information that can be used when synthesizing
speech from text. For example, you can require Amazon Polly to expand the acronym AWS
to “Amazon Web Services” in the generated audio file by providing the following XML
lexicon. The file tells Amazon Polly to speak the alias “Amazon Web Services” when it
encounters the grapheme “AWS” in text.

<?xml version="1.0" encoding="UTF-8"?>
<lexicon version="1.0"
 xmlns="http://www.w3.org/2005/01/pronunciation-lexicon"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2005/01/pronunciation-lexicon
 http://www.w3.org/TR/2007/CR-pronunciation-lexicon-20071212/pls.xsd"
 alphabet="ipa"
 xml:lang="en-US">
 <lexeme>
 <grapheme>AWS</grapheme>
 <alias>Amazon Web Services</alias>
 </lexeme>
</lexicon>
File: aws-lexicon.xml

12 Chapter 1 ■ Introduction to AWS Cloud API

To use this lexicon when you synthesize speech, you must first upload it to Amazon
Polly. The following shell snippet uses the AWS CLI to upload to the lexicon to the speci-
fied region:

aws polly put-lexicon --name awsLexicon --content file://aws-lexicon.xml
--region us-west-2

You can use the awsLexicon after it is uploaded. The following example generates a
speech request that will be customized by the lexicon. This request is also being made to
the us-west-2 API endpoint.

Synthesizing speech with custom lexicon in the same region
aws polly synthesize-speech --text 'Hello AWS World!' --voice-id Joanna
--output-format mp3 hello.mp3 --lexicon-names="awsLexicon" --region us-west-2
{
 "ContentType": "audio/mpeg",
 "RequestCharacters": "15"
}

Assuming that the CLI is configured correctly with an appropriate access key, this
request succeeds. In the downloaded audio file, you will hear Joanna say “Hello Amazon
Web Services World,” confirming that the lexicon is in effect.

However, if you run the same API request again, but change the region to the US East
(N. Virginia) Region, as in the following example, you will get a different result:

Trying again against a different Regional API endpoint
aws polly synthesize-speech --text 'Hello AWS World' --voice-id Joanna --output-
format mp3 hello-custom.mp3 --lexicon-names="awsLexicon" --region us-east-1

An error occurred (LexiconNotFoundException) when calling the SynthesizeSpeech
operation: Lexicon not found

In this case, an error occurs because the awsLexicon resides only in the US West
(Oregon) Region where you placed it. When working with AWS services that are regional
in scope, you are in control over where the data resides—AWS does not automatically copy
your data for these services to other regions without an explicit action on your part. If you
must use the lexicon in regions other than US West (Oregon), you could upload the lexicon
to each region in which you plan to use it.

Identifying AWS Regions
When working with AWS services, the AWS Management Console refers to regions differ-
ently from the parameters used in the AWS CLI and SDK.

Table 1.1 lists several region names and the corresponding parameters for the AWS CLI
and SDK.

Working with Regions 13

TA b le 1.1 Sample of Region Names and Regions

Region Name Region

US East (N. Virginia) us-east-1

US West (Oregon) us-west-2

EU (Frankfurt) eu-central-1

EU (London) eu-west-2

EU (Paris) eu-west-3

Asia Pacific (Tokyo) ap-northeast-1

Asia Pacific (Mumbai) ap-south-1

Asia Pacific (Singapore) ap-southeast-1

There are other AWS services, such as IAM, that are not limited to a single region.
When you interact with these services in the console, the region selector in the upper-right
corner of the console displays “Global.” The API endpoint for IAM is the same regardless
of the region. Table 1.2 lists some API endpoints.

TA b le 1. 2 Selected IAM Service API Endpoints

Region Name API Endpoint

US East (N. Virginia) iam.amazonaws.com

US East (Ohio) iam.amazonaws.com

US West (N. California) iam.amazonaws.com

In the case of IAM, having IAM resources available in multiple regions is a useful strat-
egy. IAM provides a way to create API credentials, and this means you can use the same set
of API credentials to access resources in different AWS Regions.

For each AWS service, you can find the regions in which that service is available, along
with the corresponding API endpoints, in the AWS General Reference documentation. The
following link provides a comprehensive list of AWS services and their regional API end-
points: https://docs.aws.amazon.com/general/latest/gr/rande.html.

14 Chapter 1 ■ Introduction to AWS Cloud API

 The exam may ask you to identify a URL or endpoint for an AWS resource,
such as an Amazon S3 bucket, that has been deployed to a specific region.
While the test does not require memorization of the region list, AWS recom-
mends that you become familiar with the naming convention for regions
and how it is related to the naming convention for Availability Zones.

 Choosing a Region
 One factor for choosing an AWS Region is the availability of the services required by your
application. Other aspects to consider when choosing a region include latency, price, and data
residency. Table 1.3 describes selection criteria to include when choosing an AWS Region.

 TA b le 1. 3 Selecting an AWS Region

Selection Criteria Description

Service availability Choose a region that has all or most of the services you intend to
use. Each region exposes its own AWS Cloud service endpoints,
and not all AWS services are available in all regions.

Proximity and latency Choose a region closer to application users, on-premises servers,
or your other workloads. This allows you to decrease the latency
of API calls.

Data residency Choose a region that allows you to stay compliant with regulatory
or contractual requirements to store data within a specific geo-
graphic region.

Business continuity Choose a pair of regions based on any specific requirements
regarding data replication for disaster recovery. For example, you
may select a second AWS Region as a target for replicating data
based on its distance from the primary AWS Region.

Price AWS service prices are set per region. Consider cost when service
availability and latency are similar between candidate regions.

 API Credentials and AWS Identity
and Access Management
 Now that you have seen how to make API calls and identifi ed the infrastructure provided
by the AWS Cloud, take a closer look at the access keys needed to make API calls. In AWS,
an access key is a type of security credential that is associated with an identity. So, to make
API calls, fi rst you will create an identity in AWS Identity and Access Management (IAM).

API Credentials and AWS Identity and Access Management 15

 To manage authentication and authorization for people or applications, IAM provides
users, groups, and roles as identities that you can manage. IAM authenticates the security
credentials used to sign an API call to verify that the request is coming from a known
identity. Then, IAM authorizes the request by evaluating the policies associated with
the identity and resources affected by the request. This section provides reviews users,
groups, roles, and policies.

 When you first create an account and sign in with your email address
and password, you are authenticating as the root user for your account.
Few AWS operations require root user permissions. To protect your
account, do not generate an access key based on the root user. Instead,
create an IAM user and generate an access key for that user. To provide
administrator access, add that user to a group that provides administrator
permissions.

 Users
 IAM users can be assigned long-term security credentials. You might create an IAM user
when you have a new team member or application that needs to make AWS API calls.
Manage the API permissions of the user by associating permissions policies with the user or
adding the user to a group that has permissions policies associated with it.

 After you create an IAM user, you can assign credentials to allow AWS Management
Console access, programmatic access, or both, as shown in Figure 1.8 .

 f I gu r e 1. 8 IAM user long-term credentials

IAM User

Long–Term Security Credentials

AWS Management Console Access
User Name and Password

Programmatic Access
Access Key ID
Secret Access Key

carla

 AWS Management Console Access
 To sign in to the console, IAM users authenticate with an IAM user name and password.
As part of the sign-in process, IAM users are prompted to provide either the account ID or
alias so that IAM user names only need to be unique within your account. If multi-factor
authentication (MFA) is enabled for an IAM user, they must provide their MFA code when
they attempt to sign in.

16 Chapter 1 ■ Introduction to AWS Cloud API

 To simplify sign-in, use the special sign-in link in the IAM dashboard that
prefills the account field in the console sign-in form.

 AWS IAM User API Access Keys
 For programmatic access to AWS , create an access key for the IAM user. An AWS access
key is composed of the following two distinct parts:

 1. Access key ID

 2. Secret access key

 Here is an example of an AWS access key:

 aws_access_key_id = AKIAJXR7IOGGTEIVNX7Q
 aws_secret_access_key: oe/H0e2Ptj/fvwrdj6Wedo43Vsm05DHDADZ+tnP5

 Each user may have up to two active access keys at any time. These access keys are
long-term credentials and remain valid until you explicitly revoke them.

 Given the importance of the secret access key, you can view or download it
only once. If you forget the secret access key, create a new access key and
then revoke the earlier key.

 Other Credentials for IAM Users
 In addition to passwords, multifactor devices, and access keys, IAM users can have other
types of security credentials. You can have X.509 certifi cates, which are used with SOAP
APIs, or you can have GIT credentials as either Secure Shell (SSH) keys or passwords to
interact with the AWS CodeCommit service.

 Groups
 To help you manage the permissions of collections of IAM users, IAM provides IAM groups .
IAM groups do not have their own credentials, but when an IAM user makes an API call
with their access key, AWS looks up that user’s group memberships and fi nds the relevant
permissions policies. Associate users who need the same permissions with a group and then
assign policies to the group instead of associating the permissions directly to each user.

 For example, all developers working on a specifi c project could each have their own
IAM user. Each of these users can be added to a group, named developers , to manage their
permissions collectively. In this way, each team member has unique credentials while they
are also given the same permissions.

 You may create additional groups. For example, you may create a second group for the
team members responsible for changing the build and deployment pipeline to which you
can assign a name such as devtools .

 The relationship between IAM users and IAM groups is many-to-many . An individual
IAM user can be a member of many IAM groups, and each IAM group can have many

API Credentials and AWS Identity and Access Management 17

IAM users associated with the group. IAM users within an IAM group inherit permissions
from the policies attached to their group, plus any permissions from policies that are associ-
ated directly with that IAM user.

In the example shown in Figure 1.9, carla inherits permissions from the IAM user carla
and from the group developers, and takumi inherits the union of all of the policies from
developers and from devtools, in addition to any policies directly associated with takumi.

f I gu r e 1. 9 IAM groups and IAM users

developers

carla jan takumi

IAM Groups

IAM Users

devtools

In the case that multiple permissions policies apply to the same API action, any policy
that has the effect deny will take precedence over any policy that has the effect allow. This
order of precedence is applied regardless of whether the policies are associated with the
user, group, or resource.

Roles
There are situations in which you might not want to create and manage new sets of
long-term credentials for team members or applications.

In a large company with many employees, you can use your existing corporate identity store
instead of creating new identities and credentials for each team member who manages AWS.

Alternatively, you may delegate permissions to an AWS service to perform actions on your
behalf. One common example of this is when application code running on an AWS compute
service, such as Amazon EC2, needs permissions to make AWS API calls. In this case, AWS
recommends allowing Amazon EC2 to manage the credentials for each instance.

In both situations, rather than creating new IAM users, create an IAM role to assign
permissions. IAM roles can be assumed for short-term sessions, as shown in Figure 1.10.

f I gu r e 1.10 IAM roles

IAM Roles

Temporary Security Credentials
Access Key ID
Secret Access Key
Session Token

auditors

18 Chapter 1 ■ Introduction to AWS Cloud API

To control access to an IAM role, define a trust policy that specifies which principals
can assume a role. Potential principals include AWS services and also users who have
authenticated using identity federation. Principals could also include users who authenticate
with web identity federation, IAM users, IAM groups, or IAM roles from other accounts.

This example trust policy allows Amazon EC2 to request short-term credentials associ-
ated with an IAM role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

When a principal assumes a role, AWS provides new short-term security credentials that
are valid for a time-limited session through the AWS Security Token Service (AWS STS).
These credentials are composed of an access key ID, secret access key, and, additionally, a
session token with a known expiration date.

This example displays the credentials that are generated when the role is assumed:

{
 "AccessKeyId": "ASIAJHP2KG65VIKQU2XQ",
 "SecretAccessKey": "zkvPEbYxCLVVD0seWdRnesc8krNDPHEX1cFMyI5W",
 "SessionToken":
"FQoDYXdzEMf//////////wEaDL1b0Wd7VTA3J25cNyL4ARzNSRczH4U3f8gJwi1W8XiDLWJIE9EdX
4l4KXTiST40gPoWc9Do9QkcN2xRHk6/qVT6W23d0u6+5YFY9C2wnoEeTTmiQBT5SMjqku5MYlhrCDy
FQAVbo6RKUeOZXXSG8REshuFGBtaCNmv95lFF6srCT1b4FZtTtULE7WV3LMcDs6Z2XuN+6aGTawhY5
0RMnlKRL1w6yHq++RysQWbBHkuNeK/VqjueDINFODPOje9ZnYePVjR5uLmL8ZARWYVBFrB2tpxG07/
dseUS9O2q1hMP8DJuEfsbaiK2ASsmXSRA8vOZnuu4AsBq6ERasBw5EcpICP/Ne8zdKO/93tYF",
 "Expiration": "2018-04-18T22:55:59Z"
}

When these short-term credentials are used, AWS looks up the permissions policies asso-
ciated with the IAM role that was assumed. This is true even if the principal that assumed
the role was an IAM user—policies that were associated with the IAM user or their groups
are not evaluated when the role credentials are used to make a request. The IAM role is a
distinct identity with its own permissions. Furthermore, you cannot nest IAM roles or add
IAM roles to IAM groups, as shown in Figure 1.11.

API Credentials and AWS Identity and Access Management 19

f I gu r e 1.11 IAM roles are distinct from IAM users and groups.

IAM Roles

IAM Groups

IAM Users

Choosing IAM Identities
Consider the following to determine how to define authorization and authentication.

Scenario: During Development
IAM users can be a convenient way to share access to an account with your team members
or for application code that is running locally. The associated long-term credentials are easy
to work with on a local development laptop, or on other hardware in your control, such as
on-premises servers. To manage the permissions of collections of IAM users more simply,
add those users to IAM groups.

Scenario: When Deploying Code to AWS
Use IAM roles. AWS compute services can be configured to distribute and rotate the role
credentials automatically on your behalf, making it easier for you to manage credentials
securely.

Scenario: When You Have an Existing External Identity Provider
When you have an external identity provider, such Active Directory, use IAM roles. That
way, team members can use the single sign-on they already use to access AWS without
needing to remember an extra password. Also, if a team member leaves, you disable their
corporate access in only one place—the external directory.

Use roles in cases in which you need to make AWS API calls from untrusted machines
because role credentials automatically expire. For example, use IAM roles for client-side
code that must upload data to Amazon S3 or interact with Amazon DynamoDB.

Table 1.4 describes the use cases for IAM identities.

20 Chapter 1 ■ Introduction to AWS Cloud API

 TA b le 1. 4 IAM Users and IAM Roles Usage

For Code Running on… Suggestion

A local development laptop or on-premises server IAM user

An AWS compute environment such as Amazon EC2 IAM role

An IAM user mobile device IAM role

Enterprise environments with an external identity provider IAM role

 The exam tests your knowledge of the recommended practices for dis-
tributing AWS credentials to your code depending on where that code is
running.

 Managing Authorization with Policies
 Manage the permissions for each user, group, or role by assigning IAM policies that either
allow or deny permissions to specifi c API actions, as shown in Figure 1.12 . Any API action
is implicitly denied unless there is a policy that explicitly allows it. If there is a policy that
explicitly denies an action, that policy always takes precedence. In this way, AWS defaults
to secure operation and errs on the side of protecting the resources in cases where there are
confl icting policies.

 f I gu r e 1.12 IAM policies and IAM identities

IAM Roles

IAM Groups

IAM Users

IAM Policies

API Credentials and AWS Identity and Access Management 21

One method of granting permissions is to use AWS managed policies. AWS provides
these policies to support common tasks and are automatically updated as new services and
API operations are added.

When choosing permissions policies, AWS recommends that you adopt the principle of
least privilege and grant someone the minimum permissions they need to complete a task.
If they need more access later, they can ask for it, and you can update the permissions then.

Take the example of an application that uses Amazon Polly. If the application uses only
Amazon Polly to synthesize speech, use the AmazonPollyReadOnlyAccess policy, which
grants permissions to Amazon Polly actions that do not store any data or modify data
stored in AWS. The policy is represented as a JSON document and shown here:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "polly:DescribeVoices",
 "polly:GetLexicon",
 "polly:ListLexicons",
 "polly:SynthesizeSpeech"
],
 "Resource": [
 "*"
]
 }
]

If the application needs permission to upload (or delete) a custom lexicon, this opera-
tion modifies a state in Amazon Polly. To grant permissions to these actions, use the
AmazonPollyFullAccess policy. The policy is shown here. Notice that the actions granted
by the policy shown here are represented as "polly:*", where the * provides access to all
Amazon Polly API actions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "polly:*"
],
 "Resource": [

22 Chapter 1 ■ Introduction to AWS Cloud API

 "*"
]
 }i
]
}

Custom Policies
AWS recommends that you use the AWS managed policies whenever possible. However,
when you need more control, you can define custom policies.

As shown in the earlier examples, an IAM policy is a JSON-style document composed of
one or more statements. Each statement has an effect that will either allow or deny access
to specific API actions on AWS resources. A deny statement takes precedence over any
allow statements. Use an Amazon Resource Name (ARN) to specify precisely the resource
or resources to which a custom policy applies.

For example, the following policy authorizes access to the DeleteLexicon action in
Amazon Polly on the resource specified by the ARN. In this case, the resource is a particu-
lar lexicon within a specific account and within a specific region.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "AllowDeleteForSpecifiedLexicon",
 "Effect": "Allow",
 "Action": [
 "polly:DeleteLexicon"],
 "Resource": "arn:aws:polly:us-west-2:123456789012:lexicon/awsLexicon"
 }
]
}

To allow slightly broader permissions in a similar policy, use wildcards in the ARN.
For example, to allow a user to delete any lexicon within the specified region and account,
replace awsLexicon with an * in the ARN, as shown here:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "AllowDeleteSpecifiedRegion",
 "Effect": "Allow",
 "Action": [
 "polly:DeleteLexicon"],

API Credentials and AWS Identity and Access Management 23

 "Resource": "arn:aws:polly:us-east-2:123456789012:lexicon/*"
 }
]
}

An ARN always starts with arn: and can include the following components to identify a
particular AWS resource uniquely:

Partition Usually aws. For some regions, such as in China, this can have a different
value.

Service Namespace of the AWS service.

Region The region in which the resource is located. Some resources do not require a
region to be specified.

Account ID The account in which the resource resides. Some resources do not require an
account ID to be specified.

Resource The specific resource within the namespace of the AWS service. For services that
have multiple types of resources, there may also be a resource type.

These are example formats for an ARN:

arn:partition:service:region:account-id:resource
arn:partition:service:region:account-id:resourcetype/resource
arn:partition:service:region:account-id:resourcetype:resource

Here are some examples of ARNs for various AWS resources:

<!-- Amazon Polly Lexicon -->
arn:aws:polly:us-west-2:123456789012:lexicon/awsLexicon

<!-- IAM user name -->
arn:aws:iam::123456789012:user/carla

<!-- Object in an Amazon S3 bucket -->
arn:aws:s3:::bucket-name/exampleobject.png

A single policy document can have multiple statements. Additional components to a
statement may include an optional statement ID (Sid) and condition blocks to restrict when
the policy applies. If the policy is attached to a resource rather than to an IAM identity,
then the policy must also specify a principal (to whom the policy applies), as shown in
Figure 1.13.

24 Chapter 1 ■ Introduction to AWS Cloud API

f I gu r e 1.13 IAM policy elements

IAM Policy

Optional top-level elements
Statement

Sid

Effect

Principal

Action

Resource

Condition Block

Statement

Statement

Statement

Write custom policies manually or use tools like the Visual Policy Editor in the AWS
Management Console to generate policies more easily. To help you test the effects of poli-
cies, you can also use the IAM policy simulator at https://policysim.aws.amazon.com.

Summary
In this chapter, you learned about the AWS Management Console, the AWS CLI, and the
AWS SDKs that AWS uses to configure and manage your resources. You learned how to
make API request calls to the AWS Cloud, use configuration files, select an AWS Region,
manage AWS API credentials, and identify regional API endpoints. The chapter also dis-
cussed AWS account root users, IAM, IAM policies, IAM groups, IAM roles, long-term
and short-term credentials, the access key ID, and the secret access key.

Exam Essentials
Know the ways to manage AWS resources. Recall that the AWS SDK, AWS CLI, and
the AWS Management Console are options for managing the AWS resources within
your account.

Know the importance of AWS Regions. Be able to identify the impact of AWS Region
selection on your application code, such as the relationship between region selection and
user latency. Also recognize how region selection impacts API calls and API endpoints.

Resources to Review 25

Know about IAM users and IAM roles. Know when it is appropriate to use IAM users or
IAM roles for a given application that needs to make AWS API calls.

Know how to recognize valid IAM policies. Identify valid IAM policies and predict the
effects of policy statements.

Resources to Review

AWS Free Tier:

https://aws.amazon.com/free

Getting Started Resource Center: Create an AWS Account:

https://aws.amazon.com/getting-started

Tracking Your Free Tier Usage:

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/
tracking-free-tier-usage.html

AWS Documentation:

https://aws.amazon.com/documentation

AWS Management Console:

https://signin.aws.amazon.com/console

AWS Command Line Interface (AWS CLI):

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

SDKs, Toolkits, and Installation Directions:

https://aws.amazon.com/tools/#sdk

Amazon Polly:

https://docs.aws.amazon.com/polly/latest/dg/what-is.html

AWS Regions and Regional API Endpoints:

https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS IAM Documentation:

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started.html

AWS IAM Best Practices:

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS IAM FAQs:

https://aws.amazon.com/iam/faqs/

AWS Signature Version 4 Signing Process:

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

26 Chapter 1 ■ Introduction to AWS Cloud API

AWS Whitepapers (Introduction to AWS):

https://aws.amazon.com/whitepapers/

AWS Training and Certification:

https://aws.amazon.com/training

AWS Events and Webinars:

https://aws.amazon.com/about-aws/events

AWS Glossary:

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html

Exercises

e x e r C I S e 1 .1

Sign up for an Account

In this exercise, you’ll sign up for an account.

1. Open your browser and go to https://aws.amazon.com/free/.

2. Choose Create a Free Account.

3. Provide personal information.

4. Provide payment Information.

5. Verify your phone number.

6. Select a support plan.

7. Choose Sign in to the Console.

8. Sign in to the console.

You are now signed in to the AWS Management Console.

e x e r C I S e 1 . 2

Create an IAm Administrators group and user

In this exercise, you’ll define an Administrators group and then add a user to that group.
Generate API keys for this user and call this user DevAdmin.

1. Sign in to the AWS Management Console (at signin.aws.amazon.com/console).

2. Select All Services.

3. To open the IAM dashboard, select IAM.

Exercises 27

4. To view the list of IAM groups, select Groups.

If this is a new account, the list is empty.

5. Choose Create New Group.

6. For Group Name, enter Administrators.

7. Choose Next Step.

8. On the Attach Policy page, select the AdministratorAccess policy.

9. Choose Next Step.

10. On the Review page, choose Create Group to create the Administrators group.

11. To view the list of IAM users, select Users.

If this is a new account, the list is empty.

12. Choose Add user.

13. Set the user name to DevAdmin.

14. Select both Access type check boxes: Programmatic access and AWS Management
Console access.

15. Choose Next: Permissions.

16. To add this user to the Administrators group, select the Administrators group check
box.

17. Clear the Require password reset check box.

18. Choose Next: Tags.

19. Provide a tag with a key of project and a value of dev-study-guide.

Use tags to add customizable key-value pairs to resources so that you can more eas-
ily track and manage them.

20. Choose Next: Review.

21. Choose Create user.

22. Download the credentials.csv file.

23. Rename the file to devadmin-credentials.csv, and move the file to a folder
where you would like to keep it.

24. Sign out of the AWS Management Console by clicking your name in the top bar and
selecting Sign Out.

You now have a .csv file that contains a user name, password, access key ID, secret
access key, and console login link. Use the DevAdmin user name, password, and console
sign-in link to sign in to the AWS Management Console for all future exercises unless oth-
erwise noted. Use the access key to configure the SDK in the following exercises.

28 Chapter 1 ■ Introduction to AWS Cloud API

e x e r C I S e 1 . 3

Install and Configure the AWS ClI

In this exercise, you’ll install and configure the AWS Command Line Interface (AWS CLI).
The AWS CLI requires Python2 or Python3. Install Python using pip, the Python installer.

1. Install Python from https://www.python.org/downloads/.

2. Open a terminal window.

3. To install the AWS CLI, run the following command:

pip install aws-cli --upgrade --user

4. (Optional) If you encounter issues with step 3, review the AWS CLI Installation guide
for alternative installation options here:

https://docs.aws.amazon.com/cli/latest/userguide/installing.html

5. To configure the AWS CLI with a default profile for credentials, run the following
command:

aws configure

6. Enter the following values when prompted:

 ■ AWS Access Key ID: Paste the value from the CSV you downloaded in Exercise 1.2.

 ■ AWS Secret Access Key: Paste the value from the CSV you downloaded in Exercise 1.2.

 ■ Default region name: Enter us-east-1.

 ■ Default output format: Press Enter to leave this blank.

7. Run the CLI command to verify that your CLI is working correctly, and view the avail-
able voices for Amazon Polly.

aws polly describe-voices --language en-US --output table

A table in the terminal lists the available voices for Amazon Polly for the language US
English.

e x e r C I S e 1 . 4

download the Code Samples

In this exercise, you’ll download the code snippets to execute future exercises.

1. If you do not already have Git installed, install it from https://git-scm.com/
downloads.

2. Open a command terminal.

Exercises 29

3. Create a folder on the hard drive to store the examples.

4. Navigate to a folder to host the code.

5. To download the samples using Git, run the following command:

git clone http://example.com/example.git

A folder named <<example>> contains the code examples for this study guide.

e x e r C I S e 1 . 5

run a Python Script that makes AWS API Calls

In this exercise, you’ll run the Python script to make an AWS API call.

1. Open a terminal window and navigate to the folder with the book sample code.

2. To install the AWS SDK for Python (Boto), run the following command:

pip install boto3

3. Navigate to the chapter-01 folder where you downloaded the sample code.

4. To generate an MP3 in the chapter-01 folder, run the helloworld.py program.

python helloworld.py

5. To hear the audio, open the generated file, helloworld.mp3.

6. (Optional) Modify the Python code to use a different voice. See Exercise 1.3 for an
AWS CLI command that provides the list of available voices.

You hear “Hello World” when you play the generated audio file. If you completed the
optional challenge, you also hear the audio spoken in a different voice from the first audio.

e x e r C I S e 1 . 6

Working with multiple regions

In this exercise, you’ll use Amazon Polly to understand the effects of working with
different AWS Regions.

1. Open a terminal window and navigate to the folder with the book sample code.

2. Navigate to chapter-01 in the folder where you downloaded the sample code.

3. Verify that the region is us-east-1 by running the following command:

aws configure get region

(continued)

30 Chapter 1 ■ Introduction to AWS Cloud API

e x e r C I S e 1 . 6 (c ont inue d)

4. Upload aws-lexicon.xml to the Amazon Polly service in the default region, which is
US East (N. Virginia).

aws polly put-lexicon --name awsLexicon --content file://aws-lexicon.xml

5. The file helloaws.py is currently overriding the region to be EU (London). Run the
Python code and observe the LexiconNotFoundException that returns.

python.helloaws.py

6. Upload the lexicon to EU (London) by setting the region to eu-west-2.

aws polly put-lexicon --name awsLexicon --content
file://aws-lexicon.xml --region eu-west-2

7. Run the following Python script again:

python helloaws.py

Observe that it executes successfully this time and generates an MP3 file in the
 current folder.

8. Play the generated helloaws.mp3 file to confirm that it says, “Hello Amazon Web
Services.”

9. (Optional) Delete the lexicons with the following commands:

aws polly delete-lexicon --name awsLexicon
aws polly delete-lexicon --name awsLexicon --region eu-west-2

Even though the text supplied by the API call to synthesize speech was “Hello AWS!,”
the generated audio file uses the lexicon you uploaded to pronounce it as “Hello Amazon
Web Services.”

e x e r C I S e 1 . 7

Working with Additional Profiles

In this exercise, you define a limited user for the account and configure a new profile in
the SDK to use these credentials. Notice that the permissions are restrictive and that you
need to update the permissions for that user to be more permissive.

1. Sign in to the AWS Management Console (at aws.amazon.com) using the credentials
for DevAdmin from Exercise 1.2.

2. Select Services.

3. Select IAM to open the IAM dashboard.

4. Select Users to view the list of IAM users.

Exercises 31

5. Choose Add user.

6. Set the user name to DevRestricted.

7. For Access type, select Programmatic access.

8. Choose Next Permissions.

9. Select Attach existing policies directly.

10. Select the AmazonPollyReadOnlyAccess policy.

11. To narrow the options, in Filter, enter polly.

12. Choose Next: Tags.

13. Define a tag as follows:

 ■ Key: project

 ■ Value: dev-study-guide

14. Choose Next: Review.

15. Choose Create User.

16. To configure the SDK in the following steps, download the credentials.csv file.

17. Rename the downloaded file to devrestricted-credentials.csv and move it to the
same folder where you put the CSV file from Exercise 1.2.

18. Open a terminal window and navigate to the folder with the sample code.

19. Navigate to the chapter-01 folder.

20. (Optional) Review the code in upload-restricted.py.

21. Configure the AWS CLI with a new profile called restricted. Run the following
command:

aws configure --profile restricted

When prompted, enter the following values:

 ■ AWS Access Key ID: Copy the value from the CSV you downloaded.

 ■ AWS Secret Access Key: Copy the value from the CSV you downloaded.

 ■ Default region name: Enter us-east-1.

 ■ Default output format: Press Enter to retain the default setting.

22. Upload the lexicon.

The upload operation is expected to fail because of the restricted permissions associ-
ated with the profile specified in the script. Run the following Python script:

python upload-restricted.py

(continued)

32 Chapter 1 ■ Introduction to AWS Cloud API

e x e r C I S e 1 . 7 (c ont inue d)

23. Return to the AWS Management Console for IAM, and in the left navigation,
select Users.

24. To view a user summary page, select DevRestricted user.

25. Choose Add permissions.

26. Select Attach existing policies directly.

27. To filter out other policies, in the search box, enter polly, and select the
AmazonPollyFullAccess policy.

28. Choose Next: Review.

29. Choose Add permissions.

30. Repeat step 22 to upload the lexicon.

The upload is successful. After the change in permissions, you did not have to
modify the credentials. After a short delay, the new policy automatically takes effect
on new API calls from DevRestricted.

31. Delete the lexicon by running the following command:

aws polly delete-lexicon --name awsLexicon --region eu-west-2

In this exercise, you have configured the SDK and AWS CLI to refer to a secondary cre-
dentials profile and have tested the distinction between the AWS managed IAM policies
related to Amazon Polly. You have also confirmed that it is possible to change the permis-
sions of an IAM user without changing the access key used by that user.

Review Questions 33

Review Questions
1. Which of the following is typically used to sign API calls to AWS services?

A. Customer master key (CMK)

B. AWS access key

C. IAM user name and password

D. Account number

2. When you make API calls to AWS services, for most services those requests are directed at a
specific endpoint that corresponds to which of the following?

A. AWS facility

B. AWS Availability Zone

C. AWS Region

D. AWS edge location

3. When you’re configuring a local development machine to make AWS API calls, which of the
following is the simplest secure method of obtaining an API credential?

A. Create an IAM user, assign permissions by adding the user to an IAM group with IAM
policies attached, and generate an access key for programmatic access.

B. Sign in with your email and password, and visit My Security Credentials to generate an
access key.

C. Generate long-term credentials for a built-in IAM role.

D. Use your existing user name and password by configuring local environment variables.

4. You have a large number of employees, and each employee already has an identity in an
external directory. How might you manage AWS API credentials for each employee so that
they can interact with AWS for short-term sessions?

A. Create an IAM user and credentials for each member of your organization.

B. Share a single password through a file stored in an encrypted Amazon S3 bucket.

C. Define a set of IAM roles, and establish a trust relationship between your directory
and AWS.

D. Configure the AWS Key Management Service (AWS KMS) to store credentials for each user.

5. You have a team member who needs access to write records to an existing Amazon
DynamoDB table within your account. How might you grant write permission to this
specific table and only this table?

A. Write a custom IAM policy that specifies the table as the resource, and attach that
policy to the IAM user for the team member.

B. Attach the DynamoDBFullAccess managed policy to the IAM role used by the team
member.

C. Delete the table and recreate it. Permissions are set when the DynamoDB table
is created.

D. Create a new user within DynamoDB, and assign table write permissions.

34 Chapter 1 ■ Introduction to AWS Cloud API

6. You created a Movies DynamoDB table in the AWS Management Console, but when you
try to list your DynamoDB tables by using the Java SDK, you do not see this table. Why?

A. DynamoDB tables created in the AWS Management Console are not accessible from
the API.

B. Your SDK may be listing your resources from a different AWS Region in which the
table does not exist.

C. The security group applied to the Movies table is keeping it hidden.

D. Listing tables is supported only in C# and not in the Java SDK.

7. You make an API request to describe voices offered by Amazon Polly by using the AWS CLI,
and you receive the following error message:

Could not connect to the endpoint URL:
https://polly.us-east-1a.amazonaws.com/v1/voices

What went wrong?

A. Your API credentials have been rejected.

B. You have incorrectly configured the AWS Region for your API call.

C. Amazon Polly does not offer a feature to describe the list of available voices.

D. Amazon Polly is not accessible from the AWS CLI because it is only in the AWS SDK.

8. To what resource does this IAM policy grant access, and for which actions?

{
"Version": "2012-10-17",
"Statement": {
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::example_bucket"
}
}

A. The policy grants full access to read the objects in the Amazon S3 bucket.

B. The policy grants the holder the permission to list the contents of the Amazon S3
bucket called example_bucket.

C. Nothing. The policy was valid only until October 17, 2012 (2012-10-17), and is now
expired.

D. The policy grants the user access to list the contents of all Amazon S3 buckets within
the current account.

9. When an IAM user makes an API call, that user’s long-term credentials are valid in which
context?

A. Only in the AWS Region in which their identity resides

B. Only in the Availability Zone in which their identity resides

Review Questions 35

C. Only in the edge location in which their identity resides

D. Across multiple AWS Regions

10. When you use identity federation to assume a role, where are the credentials you use to
make AWS API calls generated?

A. Access key ID and secret access key are generated locally on the client.

B. The AWS Security Token Service (AWS STS) generates the access key ID, secret access
key, and session token.

C. The AWS Key Management Service (AWS KMS) generates a customer master key
(CMK).

D. Your Security Assertion Markup Language (SAML) identity provider generates the
access key ID, secret access key, and session token.

11. You have an on-premises application that needs to sample data from all your Amazon
DynamoDB tables. You have defined an IAM user for your application called
TableAuditor. How can you give the TableAuditor user read access to new DynamoDB
tables as soon they are created in your account?

A. Define a custom IAM policy that lists each DynamoDB table. Revoke the access key,
and issue a new access key for TableAuditor when tables are created.

B. Create an IAM user and attach one custom IAM policy per AWS Region that has
DynamoDB tables.

C. Add the TableAuditor user to the IAM role DynamoDBReadOnlyAccess.

D. Attach the AWS managed IAM policy AmazonDynamoDBReadOnlyAccess to the
TableAuditor user.

12. The principals who have access to assume an IAM role are defined in which document?

A. IAM access policy

B. IAM trust policy

C. MS grant token

D. AWS credentials file

13. A new developer has joined your small team. You would like to help your team member set
up a development computer for access to the team account quickly and securely. How do
you proceed?

A. Generate an access key based on your IAM user, and share it with your team member.

B. Create a new directory with AWS Directory Service, and assign permissions in the AWS
Key Management Service (AWS KMS).

C. Create an IAM user, add it to an IAM group that has the appropriate permissions, and
generate a long-term access key.

D. Create a new IAM role for this team member, assign permissions to the role, and
 generate a long-term access key.

36 Chapter 1 ■ Introduction to AWS Cloud API

14. You have been working with the Amazon Polly service in your application by using the
Python SDK for Linux. You are building a second application in C#, and you would like to
run that application on a separate Windows Server with .NET. How can you proceed?

A. Migrate all your code for all applications to C#, and modify your account to a
Windows account.

B. Go to the Amazon Polly service, and change the supported languages to include .NET.

C. Install the AWS SDK for .NET on your Windows Server, and leave your existing
 application unchanged.

D. Implement a proxy service that accepts your API requests, and translate them to
Python.

15. You are a Virginia-based company, and you have been asked to implement a custom
 application exclusively for customers in Australia. This application has no dependencies on
any of your existing applications. What is a method you use to keep the customer latency to
this new application low?

A. Set up an AWS Direct Connect (DX) between your on-premises environment and US
East (N Virginia), and host the application from your own data center in Virginia.

B. Create all resources for this application in the Asia Pacific (Sydney) Region, and
manage them from your current account.

C. Deploy the application to the US East (N Virginia) Region, and select Amazon EC2
instances with enhanced networking.

D. It does not matter which region you select, because all resources are automatically
 replicated globally.

Introduction to
Compute and
Networking

The AWS CerTIfIed developer –
ASSoCIATe exAm TopICS Covered IN
ThIS ChApTer mAy INClude, buT Are
NoT lImITed To, The folloWINg:

Domain 3: Development with AWS Services

 ✓ 3.2 Translate functional requirements into application
design.

 ✓ 3.4 Write code that interacts with AWS services by using
APIs, SDKs, and AWS CLI.

Domain 4: Refactoring

 ✓ 4.2 Migrate existing application code to run on AWS.

Domain 5: Monitoring and Troubleshooting

 ✓ 5.2 Perform root cause analysis on faults found in
testing or production.

Chapter

2

AWS® Certified Developer Official Study Guide
By Nick Alteen, Jennifer Fisher, Casey Gerena, Wes Gruver, Asim Jalis,
Heiwad Osman, Marife Pagan, Santosh Patlolla and Michael Roth

 Amazon Web Services, Inc.

Now that you have an AWS account and you can make
application programming interface (API) calls from your
local machine, it is time to explore how to run code on

the AWS Cloud. AWS provides a broad set of compute options through the following
services:

 ■ Amazon Elastic Compute Cloud (Amazon EC2)

 ■ Amazon Lightsail

 ■ AWS Elastic Beanstalk

 ■ Amazon Elastic Container Service (Amazon ECS)

 ■ Amazon Elastic Container Service for Kubernetes (Amazon EKS)

 ■ AWS Lambda

In this chapter, you will explore Amazon EC2, which provides you with environments
called instances. You will learn about the components of an Amazon EC2 instance and
explore an example of customizing an instance to run an application. Then, to learn how to
customize the network environment for your instances, you will explore the network controls
of Amazon Virtual Private Cloud (Amazon VPC). Finally, you will review some of the con-
cerns related to managing your compute and networking environments.

Amazon EC2 and Amazon VPC are foundational services, and many of the concepts
introduced in this chapter are transferrable to working with other AWS services.

Amazon Elastic Compute Cloud
Amazon Elastic Compute Cloud (Amazon EC2) enables you to provision computing envi-
ronments called instances. With Amazon EC2, you have the flexibility to choose the hard-
ware resources you need. You are in control of the operating system and any other software
that will run on the instance.

An Amazon EC2 instance runs on a host machine within a specific AWS Availability
Zone. Typically, Amazon EC2 instances provide virtualized access to the underlying host
machine resources. Using a combination of hardware and software components, instances
present a virtualized interface to machine resources to the operating system. This virtual-
ization enables multiple, different isolated guest environments to share the same underly-
ing host machine. In addition to virtualized environments, some EC2 instance types offer
bare-metal access. Bare-metal instances provide your applications with direct access to the
processor and memory resources of the underlying server.

Amazon Elastic Compute Cloud 39

Instance Types
With Amazon EC2, you choose your hardware resources from a broad set of preconfig-
ured options by selecting a specific instance type and instance size. For example, your
instance has a number of virtual CPUs (vCPUs) and a specific amount of RAM. The
instance type is rated for a certain level of network throughput. Some instance types also
include other hardware resources such as high-performance local disks, graphics cards, or
even field-programmable gate arrays (FPGAs). The details of how the instance accesses the
host resources, such as the specific hypervisor in use, also depend on the instance type
that you select.

Even though AWS presets the hardware allocation for an instance type, a wide variety
of instance types and sizes are available so that you can select the right level of resources
for your application. For example, a t2.nano instance type allocates a fraction of a virtual
CPU and 0.5 GiB of RAM to your instance. On the other end of the size spectrum, an
x1e.32xlarge instance type provides 128 virtual CPUs and 3,904 GiB of RAM.

Instance types are also grouped into instance families to help you choose the appropriate
instance for your application. Instances within a given family share similar characteristics,
such as the ratio of vCPU to RAM or access to different types of storage options.

For an overview of the different instance families and their use cases, see Table 2.1.

TA b le 2 .1 Amazon EC2 Instance Families

Amazon EC2 Instance
Family For Applications That Require…

General purpose A balanced mix of CPU, RAM, and other resources

Compute optimized A high amount of CPU, such as high-performance web servers,
scientific modeling, and video encoding

Memory optimized A large amount of RAM, such as in-memory databases and
distributed web scale in-memory caches

Storage optimized A large amount of storage and input/output (I/O) throughput,
such as data warehousing, analytics, and big data distributed
computing

Accelerated computing Dedicated Graphics Processing Unit (GPU) or Field Program-
mable Gate Array (FPGA) resources, such as 3D rendering, deep
learning, genomics research, and real-time video processing

When you select an instance, choose a size that is appropriate for your current workload
because Amazon EC2 instances are resizable. To change the hardware allocation, stop the
instance, modify the instance type attribute, and then start the instance again.

40 Chapter 2 ■ Introduction to Compute and Networking

Storage
Your instance requires storage volumes for both the root volume and any additional stor-
age volumes that you want to configure. You can create persistent storage volumes with the
Amazon Elastic Block Store (Amazon EBS) service to provide block storage devices for
Amazon EC2 instances. Certain instance types enable you to mount volumes based on an
instance store, which is temporary storage local to the host machine.

For an overview of the relationship between Amazon EBS volumes, instance store vol-
umes, and the Amazon EC2 instance, see Figure 2.1.

f I gu r e 2 .1 Amazon EC2 storage

vol-xxxxx
Root Volume

Host Computer

Amazon EC2 Instance

Instance Store

Amazon EBS Volumes

vol-xxxxx

Persistent Storage
For Amazon EC2 instances, Amazon EBS provides persistent block storage. Similar to a
hard drive, block storage volumes provide read/write access at a block level and can be
formatted with a file system. Also similar to a hard drive, you can attach each EBS volume
to a single instance at a time. Amazon EBS is suitable for installing operating systems and
applications and for data that you want to store persistently. You can also encrypt the
volumes.

When you create an EBS volume, you provision a specific size for the storage volume.
You choose from several types of volumes with different underlying storage technologies
and performance options. You can increase the size of the volume later, even while it is
being used by a running instance.

Amazon Elastic Compute Cloud 41

While an EBS volume is attached to a particular instance, only that instance can access
the data on that volume. However, you can detach an EBS volume from one instance and
then attach that volume to another instance in the same Availability Zone.

EBS volumes are decoupled from the underlying physical host running the instance. The
decoupling of the storage volume from the host machine enables you to persist data even if
your instance is no longer running on the physical host. Although the EC2 instance treats
the EBS volume as a local disk, the underlying host machine reads and writes to the EBS
volume over the network. To maintain peak performance for this connection, you can use
EBS-optimized instance types. EBS-optimized instances reserve dedicated network band-
width specifically for traffic to the EBS volume.

EBS volumes automatically replicate the data for a particular volume within the same
Availability Zone as your Amazon EC2 instance. To increase durability of your data, you
can use Amazon EBS to make point-in-time snapshots of an EBS volume. Data for Amazon
EBS snapshots is automatically replicated across multiple Availability Zones within a
region, and these snapshots can be used to create new volumes. If there’s an accidental
delete or other application error, snapshots enable you to recover your data.

Temporary Storage
Certain Amazon EC2 instance types also allow you to mount instance store volumes—
storage local to the physical host that runs your Amazon EC2 instance. An instance store
volume is a good fit for high-performance storage of caches or temporary files and for use
cases in which your application is already replicating the data to other locations.

This storage can have a high read/write performance because it is physically attached to
the host machine that runs the instance. However, because this storage is local to the host
machine, your data persists only while the instance is running on that host machine. The
data persists if the instance reboots; however, AWS deletes the data on the instance store
whenever you stop or terminate the instance.

Software Images
When the server first boots, it requires an operating system (OS) and the configuration of
the attached storage volumes. An Amazon Machine Image (AMI) provides the template
for the OS and applications on the root volume of your instance. AMIs also provide a
block device mapping that can specify additional volumes to mount when an instance
launches, as shown in Figure 2.2.

AWS provides a variety of AMIs. Paid AMIs are available through the AWS Marketplace.
You can create your own AMIs from an Amazon EC2 instance that you have previously

customized or by importing your own virtual machine (VM) images. Each AWS Region
maintains its own listing of AMIs. Any AMIs that you create are available only within a
specific region unless you copy them to other regions. You can share AMIs between AWS
accounts. To control which AWS accounts can use your AMIs, define the launch permis-
sions for your AMI.

42 Chapter 2 ■ Introduction to Compute and Networking

Depending on the source of the AMI and the type of software license required, the
cost of the software licensing may be included in the hourly rate of the instance (such as
Windows Server). For instances from the AWS Marketplace, charges are incurred for
software licensing in addition to the Amazon EC2 infrastructure.

f I gu r e 2 . 2 Amazon Machine Images

Amazon Machine
Image

Instances EBS Volumes

Availability Zone

Instances EBS Volumes

Availability Zone

Region

Network Interfaces
Virtual network interfaces called elastic network interfaces provide networking for your
Amazon EC2 instances. Elastic network interfaces are associated with a software-defined
network provided by Amazon VPC. Each Amazon EC2 instance is assigned a primary
network interface that is associated with a subnet within an Amazon VPC. By default,
if you omit the network configuration, Amazon EC2 assigns the instance to one of the
subnets within the default VPC. The instance receives both a private IP address to com-
municate with instances inside the Amazon VPC and a public IP address to communicate
with the internet. A security group protects the traffic entering and exiting the network
interface. Security groups act as a stateful firewall. To make network connections to your
instance, you must set security group rules to allow the connection.

You can attach additional network interfaces to an EC2 instance. Each network inter-
face has its own MAC addresses and IP address associations. Unlike the primary network
interface, you can detach secondary network interfaces from one Amazon EC2 instance
and then attach it to another instance.

The number of network interfaces that you can attach to an instance and the network
throughput depends on the specific instance type and size that you select. The number of
network interfaces that you attach does not affect the network throughput of the instance;
the bandwidth available to the instance depends on the instance type and size, not the num-
ber of network interfaces.

Amazon Elastic Compute Cloud 43

Accessing Instances
By default, Linux Amazon EC2 instances provide remote access through SSH, and
Windows Amazon EC2 instances provide remote access through the Remote Desktop
Protocol (RDP). To connect to these services, you must have the appropriate inbound rules
on the security group for the instance.

Depending on the operating system and AMI that you use to launch the instance, a
default administrator is provided for your initial sign-in. To acquire the credentials needed
to sign in as the default user, you must specify an Amazon EC2 key pair when you launch
the instance. After you sign in, you can create additional users with the appropriate Linux
or Windows tools.

Default User
The default user for Amazon Linux instances is ec2-user. For other Linux operating sys-
tems, this default user may vary depending on the AMI provider. For example, the default
user for Ubuntu Linux is ubuntu.

For Windows instances, the default user is Administrator. This account may have
a different name depending on the language of the server. For example, if the server
is configured with French as the language, the administrator account is localized to
Administrateur.

Amazon EC2 Key Pairs
An Amazon EC2 key pair has a name, and it is composed of a public key and a private key.
AWS retains the public key, and it is your responsibility to store the private key securely. If
you specify an Amazon EC2 key pair when you launch the instance, it secures the sign-in
credentials as part of the Amazon EC2 instance provisioning process. For a Linux instance,
the public key from the key pair is added to the ~/.ssh/authorized_keys file for the
default user. For a Windows instance, the password for the default administrator account is
encrypted with the public key and can be decrypted with the private key.

When you create a new key pair, you can import a key pair that you generated locally,
or you can have AWS generate a key pair for you. If you request that AWS generate the
key pair, you can download the private key only at the time the key pair is generated. You
are responsible for storing the private key file securely. You will not be able to download it
again after it is created.

If you do not specify a key pair when you launch the instance, you are unable to sign in
to that instance. Amazon EC2 key pairs are regional in scope, so you need key pairs in each
region where you launch EC2 instances.

Instance Lifecycle
An Amazon EC2 instance has three primary states: running, stopped, and terminated.
Additionally, there are intermediate states of pending, stopping, and shutting down. An
Amazon EC2 instance accrues charges for the compute resources only when it is in the

44 Chapter 2 ■ Introduction to Compute and Networking

running state. However, EBS volumes persist data even when an instance is stopped, so the
charges for persistent storage from any EBS volumes accrue independently from the state of
the instance.

When you first launch an instance from an AMI, it goes into the pending state until it
enters the running state on a host machine.

After an instance is running, for instances with EBS-backed storage, you can stop the
instance. If you stop the instance, it enters the stopping state. Any data on instance store
drives on that host are erased.

When an instance is stopped, you can modify attributes that cannot be changed, such
as instance type, while the instance is running. You can also start stopped instances. When
you start an instance, it enters the pending state until it is running again.

Typically, each time an instance is started, it is launched on a different physical host
machine than before. If the underlying physical host is impaired and requires maintenance,
stopping and then starting the Amazon EC2 instance moves the instance to a healthy host.

You can also terminate an instance. It first goes through shutting down; then eventu-
ally it is terminated. The default behavior is to delete the EBS volumes associated with the
instance on termination.

To view the lifecycle of an Amazon EC2 instance, see Figure 2.3.

f I gu r e 2 . 3 Amazon EC2 instance lifecycle

AMI

rebooting

pending

running stopping

EBS-Backed Instances Only

stopped

shutting-down

terminated

Launch Start

Reboot Stop

Terminate

Terminate

Running Applications on Instances
This section reviews how to connect to an EC2 instance and explores some features that
are useful when you run applications or custom code on an instance. These features include
ways of customizing the software on an instance, how your code can discover proper-
ties about the instance, and how to provide API credentials to your code running on an

Running Applications on Instances 45

instance. An example that ties these features together is provided. Finally, the section
describes how you can monitor the status of the instance.

Connecting to Amazon EC2 Instances
With EC2 instances, you have full administrative control to install software packages on
your instance and create additional user accounts as needed. By default, to connect to a
Linux instance, you can directly use the private key from the Amazon EC2 key pair with
an SSH client, as shown in Figure 2.4.

f I gu r e 2 . 4 Using SSH with an Amazon EC2 instance

For a Windows instance, the password for the Administrator account is encrypted with
the public key. You can decrypt the password by using the associated private key, as illus-
trated in Figure 2.5 and Figure 2.6.

f I gu r e 2 .5 Decrypting a Windows password

46 Chapter 2 ■ Introduction to Compute and Networking

f I gu r e 2 .6 Viewing a Windows password

After you have decrypted the password, you can use Microsoft Remote Desktop to con-
nect to the instance, as shown in Figure 2.7.

f I gu r e 2 .7 Connecting to a Windows instance

Customizing Software with User Data
You can connect to your instance and install any applications you want from an interactive
session. However, one of the advantages of moving to the cloud is to automate previously
manual steps. Instead of logging in to the instance, another way to customize the software

Running Applications on Instances 47

on your instance is to provide user data as part of the request to launch the instance. For
Linux instances, user data can be a shell script or a cloud-init directive. On Windows
instances, depending on the version of Windows Server, either EC2Config or EC2Launch
processes the user data. By default, commands supplied to user data execute only at first
boot of the instance.

Here is an example of installing an Apache web server on an Amazon Linux 2 instance
with a shell script that is provided as the user data:

#!/bin/bash
yum update -y
yum install httpd -y
systemctl start httpd
systemctl enable httpd

Discovering Instance Metadata
With the instance metadata service (IMDS), code running on an Amazon EC2 instance can
discover properties about that instance. The instance metadata service exposes a special IP
address, 169.254.169.254, which you can query using HTTP to perform lookups. You can
query a broad range of metadata attributes, as shown in Figure 2.8 These attributes can
include the instance ID and credentials derived from an Identity and Access Management
(IAM) role.

f I gu r e 2 . 8 Amazon EC2 metadata attributes

With IMDS, it also possible to retrieve the user data that was used to bootstrap an
instance, as shown in Figure 2.9.

48 Chapter 2 ■ Introduction to Compute and Networking

 f I gu r e 2 . 9 Querying Amazon EC2 user data

 Anyone who can access an instance can view its metadata and user
data. Do not store sensitive data, such as passwords or access keys, as
user data.

 Assigning AWS API Credentials
 You can assign an IAM role to an Amazon EC2 instance. The AWS Software Development
Kit (SDK) and AWS Command Line Interface (AWS CLI) can automatically discover these
credentials through the Amazon EC2 metadata service. You can skip the task of explicitly
confi guring credentials fi les on your instances during bootstrapping.

 When you assign an IAM role to an instance, it is assigned indirectly, through an
instance profi le, which is a container for an IAM role. You can associate a particular
instance profi le with many Amazon EC2 instances. However, a particular Amazon
EC2 instance can be associated with one instance profi le at a time, and an instance
profi le can be associated with only one IAM role. You can associate or disassociate
Amazon EC2 instances with an instance profi le at launch or even when the instances
are running.

 When an instance profi le with an IAM role is associated with an instance, the Amazon
EC2 service makes the necessary calls to the AWS Security Token Service (AWS STS) auto-
matically to generate short-term credentials for that instance. These credentials are based
on the IAM role associated with the instance profi le. The credentials are exposed to the
instance through the Amazon EC2 metadata service, as shown in Figure 2.10 .

 f I gu r e 2 .10 Instance profile and IAM role credentials

Instance

Pull Latest Credentials via
Metadata Service

Temporary
Credentials

EC2 Service

EC2 Periodically Refreshes
Role Credentials with STS

AWS STS

Instance Profile

Running Applications on Instances 49

Serving a Custom Webpage
This example combines Amazon EC2 user data, the Amazon EC2 metadata service, and
IAM roles to configure an Amazon EC2 instance. In the example, a web server displays a
static webpage that shows custom information.

The following is a bootstrapping script that enables you to configure an Amazon EC2
instance running Amazon Linux 2. At first boot of the instance, the script generates a static
page that displays the instance ID, instance type, Availability Zone, and public IP address
of the instance at the time the script was executed.

The first line of the script declares the type of script. Then the script installs the Apache
web server and configures it to run as a service. Because the script is running as the root
user, there is no requirement to preface the commands with sudo.

Next, the script makes several calls to the Amazon EC2 metadata service and saves the
results into environment variables to be used later in the script.

To generate an MP3 file that speaks out the instance ID, the script makes an API call
to Amazon Polly. For this API call to succeed, you must assign the instance an IAM role
that allows permissions to the Amazon Polly SynthesizeSpeech action. The managed
AmazonPollyReadOnlyAccess policy can grant these permissions.

Next, the script generates a static HTML page. This page references the values that were
previously stored as environment variables. After this script completes, your Amazon EC2
instance can respond to HTTP requests and show the customized page. To see this page,
you must verify that the Amazon EC2 instance has port 80 open in its security group and is
assigned a public IP address.

#!/bin/bash

Install Apache Web Server
yum update -y
yum install httpd -y
systemctl start httpd
systemctl enable httpd

Discover configuration using the EC2 metadata service
ID=$(curl 169.254.169.254/latest/meta-data/instance-id)
TYPE=$(curl 169.254.169.254/latest/meta-data/instance-type)
AZ=$(curl 169.254.169.254/latest/meta-data/placement/availability-zone)
IPV4=$(curl -f 169.254.169.254/latest/meta-data/public-ipv4)

Set up the Web Site
cd /var/www/html

Make AWS Cloud API calls to generate an audio file
VOICE=$(aws polly describe-voices --language-code en-US \
--region us-west-2 --query Voices[0].Id --output text)
aws polly synthesize-speech --region us-west-2 --voice-id $VOICE \
--text "Hello from EC2 instance $ID." --output-format mp3 instance.mp3

50 Chapter 2 ■ Introduction to Compute and Networking

Generate customized index.html for this instance
echo "<html><body><H1>Welcome to your EC2 Instance</H1><p><p>" > ./index.html
echo "<audio controls>" >> ./index.html
echo '<source src="instance.mp3" type="audio/mp3">' >> ./index.html
echo 'Here is an audio greeting. ' >> ./index.html
echo "</audio><p><p>" >> ./index.html
echo "There are many other instances, but" >> ./index.html
echo "$ID is yours.<p><p>" >> ./index.html
echo "This is a $TYPE instance" >> ./index.html
echo " in $AZ. <p><p>" >> ./index.html
if ["$IPV4"];
then
 echo "The public IP is $IPV4.<p><p>" >> ./index.html
else
 echo "This instance does NOT have" >> ./index.html
 echo "a public IP address.<p><p>" >> ./index.html
fi
echo "--Audio provided by the $VOICE voice.<p><p>" >> ./index.html
echo "</body></html>" >> ./index.html

Monitoring Instances
Now that you have an application running on your instance, you may be interested in
understanding how that application performs, or if it is still running at all. Amazon EC2
performs automated status checks of the software and hardware of the underlying host
machine every minute. These status checks are to verify that the instance can connect to the
network and can run successfully on the host machine. If the status checks find no underly-
ing issues, they return the status OK. If an issue is detected that prevents normal operation
of the Amazon EC2 instance, the status checks return the status as impaired. The results of
these status checks are available in Amazon CloudWatch.

For each of your instances, the Amazon EC2 service automatically collects metrics
related to CPU utilization, disk reads and writes, and network utilization and makes
them available in CloudWatch. You can supplement these built-in metrics with
data from the guest operating system on your instance, such as memory utilization
and logs from your application, by installing and configuring the CloudWatch agent
on the instance.

Using CloudWatch, you can automate actions based on a metric through CloudWatch
alarms. For example, you can configure an CloudWatch alarm that applies the recover
instance action if status checks show that the host running the instance is impaired.

Customizing the Network 51

Customizing the Network
While the default Amazon VPC service provides a quick way to start with Amazon EC2
instances, it is important to understand how multiple Amazon EC2 instances communicate
within an Amazon VPC network. The AWS Certified Developer – Associate exam may test
your knowledge of Amazon VPC by asking troubleshooting questions related to the net-
work. In this section, you’ll explore the Amazon VPC that enables you to create software-
defined networks within an AWS Region.

Amazon Virtual Private Cloud
Amazon Virtual Private Cloud (Amazon VPC) provides logically isolated networks
within your AWS account. These networks are software defined and can span all of the
Availability Zones within a specific AWS Region. For each VPC, you have full control over
whether the Amazon VPC is connected to the internet, to a private on-premises network,
or to other Amazon VPCs. Until you explicitly create these connections, instances in your
VPC are able to communicate with other instances in the same VPC only.

You define an Amazon VPC with one or more blocks of addresses specified in the
Classless Inter-Domain Routing (CIDR) notation. If, for example, you specified 10.0.0.0/16
as the block for a VPC, this means that the VPC includes IP addresses in the range from
10.0.0.0 through 10.0.255.255. For an example of an Amazon VPC spanning multiple
Availability Zones in a region, see Figure 2.11.

f I gu r e 2 .11 Amazon VPC overview

Region

Example VPC

Availability Zone A Availability Zone B Availability Zone C

10.0.0.0/16

Connecting to Other Networks
By default, an Amazon VPC is an isolated network. Instances within an Amazon VPC
cannot communicate with the internet or other networks until you explicitly create connec-
tions. Table 2.2 provides an overview of various types of connections that you can establish
between an Amazon VPC and other networks.

52 Chapter 2 ■ Introduction to Compute and Networking

TA b le 2 . 2 Amazon VPC Connection Types

Connection Type Description

Internet Gateway A highly available connection that allows outbound and inbound
requests to the internet from your Amazon VPC

Egress Only
Internet Gateway

A special type of internet gateway for IPv6 that allows outbound traffic
and corresponding responses but blocks inbound connections

Virtual Private
Gateway

Allows you to establish a private connection to your corporate net-
work by using a VPN connection or through Direct Connect (DX)

Amazon VPC
Endpoints

Allows traffic from your Amazon VPC to go to specific AWS services or
third-party SaaS services without traversing an internet gateway

Amazon VPC
Peering

Privately routes traffic from one Amazon VPC to another Amazon VPC
by establishing a peer relationship between this VPC and another VPC

AWS Transit
Gateway

Allows you to centrally manage connectivity between many VPCs and
an on-premises environment using a single gateway

For an example of an Amazon VPC with a connection to an internet gateway and a VPN
connection to an on-premises network provided by a virtual private gateway, see Figure 2.12.

f I gu r e 2 .12 Amazon VPC with gateway connections

Example VPC

Internet Gateway

Virtual Private Gateway

Internet Users

Corporate
Data Center

VPN

10.0.0.0/16

IP Addresses
When working with Amazon VPC, all instances placed within a particular VPC are
assigned one or more IP addresses. There are four different types of IP addresses available
for use with Amazon VPC. Primarily, these IP addresses are based on IPv4; however, you
can enable support for IPv6.

Customizing the Network 53

Private IP Addresses
Private IP addresses are IPv4 addresses that are not reachable from the internet. These
addresses are unique within a VPC and used for traffic that is to be routed internally within
the VPC, for private communication with corporate networks, or for private communica-
tion with other VPCs.

When you create a VPC, you assign one or more blocks of addresses to the VPC, and
typically these blocks will be within the range of IPv4 addresses reserved for private net-
works as specified in RFC1918. When an instance is launched, it is launched into a subnet
within the VPC, and the instance is assigned a private IP address automatically from the
block of addresses assigned to that particular subnet. When an instance is assigned a pri-
vate IPv4 address, this association persists for the lifecycle of the instance—even when the
instance is stopped.

Public IP Addresses
Whether an EC2 instance is assigned public IP addresses automatically, in addition to the
private IP address, depends on the following factors:

 ■ Configuration passed when launching the instance

 ■ Options for the subnet in which that instance is launched

Unlike the private IP address, the public IP address is an IPv4 address that is reachable
from the internet.

AWS manages the association between an instance and a public IPv4 address, and the
association persists only while the instance is running. You cannot manually associate or
disassociate public IP addresses from an instance.

Elastic IP Addresses
An Elastic IP address is similar to a public IP address in that it is an IPv4 address that is
reachable from the internet. However, unlike public IP addresses, you manage the asso-
ciation between instances and Elastic IP addresses. You control when these addresses are
allocated, and you can associate, disassociate, or move these addresses between instances
as needed.

You may also assign Elastic IP addresses to infrastructure such as NAT gateways.
These addresses can come from a pool of IP addresses that AWS manages or from blocks
of IPv4 addresses you have brought to your AWS account.

IPv6 Addresses
In addition to IPv4 addresses, you can associate an Amazon-provided block of IPv6
addresses to your VPC. When you enable IPv6 in your VPC, the network operates in
dual-stack mode, meaning that IPv4 and IPv6 commutations are independent of each
other. Your resources can communicate over IPv4, IPv6, or both.

54 Chapter 2 ■ Introduction to Compute and Networking

Subnets
Within an Amazon VPC, you define one or more subnets. A subnet is associated with a
specific Availability Zone within the region containing the Amazon VPC. Each subnet has
its own block of private IP addresses defined using CIDR notation. This block is a subset
of the overall IP address range assigned to the Amazon VPC and does not overlap with any
other subnet in the same Amazon VPC.

For example, a subnet may be assigned the CIDR block range 10.0.0.0/24, which would
include addresses in the range 10.0.0.0–10.0.0.255. Out of the 256 possible addresses,
Amazon VPC reserves the first four IP addresses and the last IP address in the range, leav-
ing 251 IP addresses in the subnet.

When you launch an Amazon EC2 instance into a subnet, its primary network interface
assigns a private IPv4 address automatically from the CIDR range assigned to the subnet.

Typically, you create at least two types of configurations for subnets in a VPC. The first
is for subnets in which you place instances that you want to reach directly from the inter-
net. This could be an instance running as a web server, for example. Subnets of this type
are known as public subnets.

The second type of configuration is usually a subnet that backend instances use that
must be accessible to your other instances but should not be directly accessible from the
internet. Subnets of this type are known as private subnets. For example, if you had
an instance that was dedicated to running a database, such as MySQL, you could place
that instance in a private subnet. It would be accessible from the web server in the public
subnet, but it would not accept traffic from the internet.

For an example of an Amazon VPC with a public and a private subnet, see Figure 2.13.

f I gu r e 2 .13 Amazon VPC with public and private subnets

Example VPC

Availability Zone A

Public Subnet A

Private Subnet A

Instance

Instance

Private: 10.0.0.5
Public: 203.0.113.17

Private: 10.0.0.5

10.0.0.0/16

Internet Users

10.0.0.0/24

10.0.2.0/23

Internet Gateway

Customizing the Network 55

In addition to Amazon EC2 instances, many AWS managed services, such as Amazon
Relational Database Service (Amazon RDS) or Amazon ElastiCache, also enable you to
expose your resources in specific subnets and, in particular, into private subnets. You can
create these resources and access them privately from instances within your Amazon VPC.

Route Tables
Network traffic exiting a subnet is controlled with routes that are defined in a route table.
Routes define how the implicit router in the Amazon VPC routes IP traffic from a subnet to
destinations outside that subnet. Each route table includes a rule called the local route. This
rule or route is what allows traffic from instances in one subnet within the Amazon VPC
to send traffic to instances in any other subnets within the same Amazon VPC. A route is
composed of two parts: a destination and a target for the network traffic.

Unless explicitly associated with a specific route table, subnets associate with a
default route table called the main route table. By default, the main route table includes
only the local route. This means that subnets that are associated with the default route
table have no connection to the internet. They can route traffic privately only within the
Amazon VPC. However, you can modify this table or define additional route tables and
rules as required.

For an example of the main route table for an Amazon VPC, see Table 2.3.

TA b le 2 . 3 Main Route Table Example

Destination Target

10.0.0.0/16 local

Route tables and the configured rules differentiate public subnets from private subnets.
For example, you might create a public subnet by associating the subnet with a route table
that includes a rule to route internet-bound traffic through an internet gateway. To repre-
sent any IP address on the internet in the rule, you can use the 0.0.0.0/0 CIDR block.
Table 2.4 is an example of a route table that contains the defined rules.

TA b le 2 . 4 Public Route Table Example

Destination Target

10.0.0.0/16 local

0.0.0.0/0 igw-example123

56 Chapter 2 ■ Introduction to Compute and Networking

When you launch an Amazon EC2 instance into a public subnet, assign a public IP
address to the instance. Even though the subnet has a route to an internet gateway, the
instance is not able to communicate with the internet without a public IP address. Route
table rules are evaluated in order of specificity.

To review a diagram of an Amazon VPC that has a public and a private subnet config-
ured with the route table rules, see Figure 2.14.

f I gu r e 2 .14 Amazon VPC with public and private subnets with rules

Example VPC

Availability Zone A Public Route Table

Destination Target

10.0.0.0/16 local

0.0.0.0/0 igw-example123

Main Route Table

Destination Target

10.0.0.0/16 local

Router Internet Gateway
(igw-example123)

Internet
Users

Public Subnet A 10.0.0.0/24

10.0.0.0/16

Private Subnet A 10.0.2.0/23

Security Groups
Security groups act as a stateful firewall for your Amazon EC2 instances. When you define
security group rules, you specify the source or destination of the network traffic in addi-
tion to the protocols and ports that you allow. If you change the security group rules, that
change propagates to any instances associated with that security group.

By using inbound security group rules, you can control the source, protocols, and ports
of allowed network traffic. For example, you could allow TCP connections that originate
from the IPv4 address of your home network so that you can administer an Amazon EC2
instance using SSH.

Outbound rules enable you to control destination, protocols, and ports of allowed
network traffic. Security groups include a default outbound rule that allows all outbound
requests on all protocols and ports to all destinations. To control outbound requests more
tightly, you can remove this default rule and add specific outbound rules in its place.

Customizing the Network 57

When you specify a source or destination for a security group rule, you can use IPv4 or
IPv6 address ranges. Alternatively, you can use an identifier for a security group as a source
or destination.

Assume that you have two EC2 instances—one instance is running a web server, and
a second instance is running a database application. To allow network connections to
these instances, you create two security groups: a security group for your web server
instances called websg and a second security group for your database instances called
databasesg.

For websg, you set inbound rules that allow web requests from anywhere. You also
allow inbound SSH but only from a specific IP address that your administrator uses. You
have not yet modified the default outbound rule for websg, so all outgoing connections
are allowed.

For databasesg, you write an inbound rule that allows incoming traffic on TCP port
3306 originating from websg. Remove the default outbound rule and instead add rules to
allow outbound connections to download software updates over HTTP and HTTPS. All
other outbound connections from databasesg will be blocked.

To view the diagram of the security groups and rules for this scenario, see Figure 2.15.
Also, see Table 2.5, Table 2.6, Table 2.7, and Table 2.8 for the corresponding inbound and
outbound rules for these security groups.

f I gu r e 2 .15 Security groups

Admin

SSH

Web Requests

SQL Requests

Web Server Instance Database Server Instance

websg - sg-123 databasesg - sg-456Internet Users

TA b le 2 .5 Inbound Rules for websg

Protocol Port Source Comments

TCP 80 0.0.0.0/0 Allow incoming HTTP requests from internet users

TCP 443 0.0.0.0/0 Allow incoming HTTPS requests from internet users

TCP 22 10.10.0.6/32 Allow incoming SSH only from the administrator’s
computer

58 Chapter 2 ■ Introduction to Compute and Networking

TA b le 2 .6 Outbound Rule for websg

Protocol Port Destination Comments

All All 0.0.0.0/0 Allow all outbound IPv4 traffic

TA b le 2 .7 Inbound Rule for databasesg

Protocol Port Source Comments

TCP 3306 sg-123 Allow inbound SQL queries from websg

TA b le 2 . 8 Outbound Rules for databasesg

Protocol Port Destination Comments

TCP 80 0.0.0.0/0 Allow all outbound HTTP for updates

TCP 443 0.0.0.0/0 Allow outbound HTTPS requests for updates

If you specify an inbound rule, replies to that incoming connection are permitted.
Similarly, if you specify an outbound rule, the replies to the outbound request are permit-
ted. In the previous example, when a web server instance makes a connection to a database,
only the outbound rule for the web server and the inbound rule for the database must allow
the flow. The inbound rule for the web server and the outbound rule for the database will
not be evaluated for this flow.

Security groups only support rules to allow traffic. Therefore, if you assign multiple
security groups to your instance, the security group rules combine in the most permissive
way; each group contributes to opening up more access to the instance.

If you fail to specify a security group when you launch the Amazon EC2 instance, the
instance associates with the default security group for the Amazon VPC. If your Amazon
EC2 instance has more than one network interface, you can manage the security groups for
each network interface independently from the others.

Network Access Control Lists
In addition to routes, network access control lists (network ACLs) allow an administra-
tor to control traffic that enters and leaves a subnet. A network ACL consists of inbound
and outbound rules that you can associate with multiple subnets within a specific Amazon
VPC. Network ACLs act as a stateless firewall for traffic to or from a specific subnet.

Customizing the Network 59

Whereas security group rules provide only the capability to allow traffic, network ACL
rules support the ability to allow specific types of traffic and to deny specific traffic.

However, unlike security groups, network ACLs are stateless and do not track con-
nections and their replies. This means that to allow for a particular traffic flow, both
inbound and outbound rules must allow it for that network ACL. For inbound rules,
you can specify the protocol, port range, and source IP address range. For outbound
rules, you specify the protocol, port range, and destination IP address range. For each
rule, you also choose whether the rule allows or denies traffic. Rules in a network ACL
are numbered and evaluated in order from the smallest to largest rule number.

If you do not specify a network ACL, the subnet is associated with the default network
ACL for the Amazon VPC. This network ACL comes with rules that allow all inbound and
outbound traffic. Table 2.9 shows an example of the inbound rules for a default network
ACL. The final rule for the network ACL, rule 100, is a universal rule that explicitly denies
traffic that does not match any other rule. Because there is a rule to allow all traffic and
rules are evaluated in order, this universal rule has no effect. However, if you remove or
modify rule 100, then the final rule would apply to any traffic that did not match any of the
other rules.

TA b le 2 . 9 Default Network ACL Inbound Rules

Rule Number Type Protocol Port Range Source Allow/Deny

100 All traffic All All 0.0.0.0/0 Allow

* All traffic All All 0.0.0.0/0 Deny

Table 2.10 shows an example of the outbound rules for the default network ACL for an
Amazon VPC. As before, the final rule is a universal rule that denies traffic unless it has
been explicitly allowed by a preceding rule.

TA b le 2 .10 Default Network ACL Outbound Rules

Rule Number Type Protocol Port Range Destination Allow/Deny

100 All traffic All All 0.0.0.0/0 Allow

* All traffic All All 0.0.0.0/0 Deny

Figure 2.16 shows an example of an Amazon VPC with security groups protecting
Amazon EC2 instances and network ACLs protecting subnets.

60 Chapter 2 ■ Introduction to Compute and Networking

f I gu r e 2 .16 Network ACLs and security groups

Example VPC

Availability Zone A

Public Subnet A

NAT Gateway

Private Subnet A

10.0.0.0/24

10.0.2.0/23

10.0.0.0/16

NACL

Router

Internet Gateway Internet Users

Corporate
Data Center

Virtual Private Gateway

VPN

NACL

Security Group

Instance

Security Group

Instance

Security Group

Instance

Figure 2.17 shows the same Amazon VPC, represented in a different way to highlight
the features that control network traffic within an Amazon VPC.

f I gu r e 2 .17 Controlling network traffic within an Amazon VPC

Instance

Security
Group

Subnet
10.0.0.0/24

Network
ACL

Route Table

Route Table

Router

10.0.0.0/16Example VPC

Network
ACL

Subnet
10.0.2.0/23

Security
Group

Security
Group

Instance

Instance

Internet Gateway

Virtual Private Gateway

Table 2.11 summarizes key aspects of security groups and network ACLs.

Customizing the Network 61

TA b le 2 .11 Security Groups and Network ACLs

Feature Security Group Network ACL

Applies to Amazon EC2 instance or elastic
network interface.

Subnet

Type of firewall Stateful: Replies to an allowed
traffic flow are automatically
allowed.

Stateless: Must provide both inbound
and outbound rules to allow a spe-
cific traffic flow.

Rules Only allow traffic. Allow or deny traffic.

Network Address Translation
Network address translation (NAT) allows for instances in a private subnet to make out-
bound requests to the internet without exposing those instances to inbound connections
from internet users. To provide NAT for outbound requests from private subnets, you can
use an Amazon EC2 instance configured to perform NAT or a NAT gateway. The instances
in the private subnet maintain their own private IP addresses and effectively share the pub-
lic IP address of the NAT when making internet requests.

For the NAT to perform its job, you must place the NAT instance or a NAT gateway in
a correctly configured public subnet to forward traffic to the internet. Make sure that the
public subnet has a route to an internet gateway, as previously shown in Table 2.4. To sup-
port outbound network requests, you can associate the private subnet with a route table,
similar to the one shown in Table 2.12.

TA b le 2 .12 Private Route Table Example

Destination Target

10.0.0.0/16 local

0.0.0.0/0 nat-example456

For the Amazon VPC configuration example, Figure 2.18 shows the corresponding route
tables for the public and private subnets using the NAT gateway.

62 Chapter 2 ■ Introduction to Compute and Networking

f I gu r e 2 .18 Example of Amazon VPC with NAT

Example VPC

Availability Zone A Public Route Table

Destination Target

10.0.0.0/16 local

0.0.0.0/0 igw-example123

Private Route Table

Destination Target

10.0.0.0/16 local

0.0.0.0/0 nat-example456

Router Internet Gateway
(igw-example123)

example.com

Public Subnet A 10.0.0.0/24

Private: 10.0.0.128

Private: 10.0.0.5

Instance

Public: 203.0.113.24

NAT Gateway
(nat-example456)

10.0.0.0/16

Private Subnet A 10.0.2.0/23

Internet-bound requests route to the NAT gateway through the route table of the pri-
vate subnet. The NAT, located in a public subnet, then makes a corresponding request out
to the internet. This second outbound request appears to have originated from the public
IP address of the NAT when the external website received it. When the website responds,
NAT receives the reply and forwards it to the instance that initiated the original request.
Figure 2.19 shows the network flow.

Using an Amazon EC2 instance for NAT instead of a NAT gateway requires you to dis-
able the source/destination check setting for the NAT instance.

This setting protects Amazon EC2 instances by requiring that the instance be the source
or destination of any network traffic it receives. In the case of the NAT instance, while the
packets are routed to the instance via a route table, they are addressed to destinations on
the internet rather than the NAT. Disabling this setting allows the network traffic to be
delivered to the NAT instance.

Customizing the Network 63

f I gu r e 2 .19 NAT gateway in Amazon VPC

2
3

4

1

Example VPC

Availability Zone A

Internet Gateway example.com

Public Subnet A

NAT Gateway

10.0.0.0/24

Private Subnet A 10.0.2.0/23

Instance

10.0.0.0/16

DHCP Option Sets
The Dynamic Host Configuration Protocol (DHCP) provides a standard for passing config-
uration information to hosts on a TCP/IP network. The options field of a DHCP message
contains the configuration parameters.

Some of those parameters are the address of domain name servers (DNS), the domain
names of the instances, and the addresses of Network Time Protocol (NTP) servers. By
default, the Amazon VPC uses the DNS that AWS provides. However, you can override
these settings by specifying a custom set of DHCP options.

64 Chapter 2 ■ Introduction to Compute and Networking

Monitoring Amazon VPC Network Traffic
You can monitor the network flows within your Amazon VPC by enabling Amazon VPC
Flow Logs. You can then publish these logs to Amazon CloudWatch Logs or store them as
log files in Amazon Simple Storage Service (Amazon S3). Enable Amazon VPC Flow Logs
on a particular Amazon VPC, on a subnet, or on a specific elastic network interface, such
as for an Amazon EC2 instance.

For each network session, the Flow Logs capture metadata, such as the source, destina-
tion, protocol, port, packet count, byte count, and time interval. The log entry specifies
whether the traffic was accepted or rejected. This information helps you debug the network
configuration.

Managing Your Resources
You now know that you can customize the software running on your Amazon EC2
instances. Additionally, with Amazon VPC, you can control the virtual network for those
instances through security groups, network ACLs, subnets, and route tables. Because you
can configure your operating environment in AWS, you share the responsibility for securing
your applications running in the AWS Cloud with AWS.

Shared Responsibility Security Model
AWS is responsible for the security of the cloud. This involves securing physical access
to the underlying infrastructure, such as the AWS Regions and Availability Zones. This
responsibility includes procedures for restricting access to the servers, physical networks,
and decommissioning of hardware that is no longer useful. As part of securing the cloud
infrastructure, AWS is also responsible for maintaining the underlying software for each
service provided.

As the AWS customer, you are responsible for security on the cloud. This responsibility
includes making secure choices when configuring your infrastructure and developing your
applications. These responsibilities can include configuring the relevant encryption options
and configuring your firewall rules. Even though this is your responsibility, you can sim-
plify this task by taking advantage of AWS tools for encryption, defining firewall rules, and
managing access and authorization to your AWS resources. For a summary of AWS and
customer responsibilities, see Figure 2.20.

Managing Your Resources 65

f I gu r e 2 . 20 Shared responsibility security model

Compute Storage Database Networking

Hardware / AWS Global Infrastructure

Software

Regions Availability Zones Edge Locations

Platform, Applications, Identity & Access Management

Customer Data

Operating System, Network & Firewall Configuration

Client-Side Data
Encryption

Server-Side Data
Encryption

Network Traffic
Protection

Customer
Responsibility for
Security “in” the Cloud

AWS
Responsibility for
Security “of” the Cloud

For example, with Amazon EC2, AWS is responsible for the software on the physical
host machines up through maintaining the virtualization layer. However, beyond that, it is
your responsibility to ensure that the guest operating system and everything running on it
are secured. Your responsibilities include the following tasks:

 ■ Making sure that any sensitive data is secured

 ■ Making sure that the guest operating system is patched regularly

 ■ Managing the guest operating system’s user accounts

 ■ Securing any applications that are installed on that instance

AWS provides tools to help you manage these concerns. For example, use AWS Systems
Manager to automate the patching of instances on your behalf. You can also use network
controls, such as security groups, to restrict access to the instance. However, it is your
responsibility to configure these features in a way that meets the security requirements for
your specific application.

Comparing Managed and Unmanaged Services
Even though services such as Amazon EC2 provide many low-level customizations, other
AWS services provide a managed experience. When you use AWS managed services, you
may find that you have less responsibility. For example, for Amazon RDS, AWS manages
the software installed on the underlying database instance. You interact with the database
using your SQL client rather than a shell session, and you do not install your own software

66 Chapter 2 ■ Introduction to Compute and Networking

on the database instance. In this case, parts of your operational burden for security are
reduced—AWS manages the operating system and software on the database instance.

Developer Tools
In addition to providing the low-level infrastructure pieces, such as Amazon EC2 instances
and VPC networking components, the AWS Cloud provides higher-level services to help
developers be more productive.

With AWS Cloud9, you can create developer environments that execute on either an
Amazon EC2 instance or another server. AWS Cloud9 provides a web interface for edit-
ing code, debugging, and running commands. It supports more than 40 programming
languages, and it can automatically configure the AWS SDK to use short-term managed
credentials.

To access an AWS Cloud9 environment, sign in to the AWS Management Console.
Within the AWS Cloud9 environment, the files you edit and run are on the remote instance
or server. If you choose to run the AWS Cloud9 environment on an EC2 instance, you can
customize the underlying EC2 instance as needed, even after the environment has been cre-
ated. For example, you can edit the security groups of the instance or increase the size of
the Amazon EBS volume attached to the instance.

This service simplifies the common task of developing code, running it on Amazon EC2,
and collaborating with other developers. If you want to reduce cost, one advantage of AWS
Cloud9 is that it can automatically stop the underlying instance a short time after you close
your browser window, and it automatically starts the instance the next time you try to con-
nect. You can further explore EC2 instances, VPCs, and AWS Cloud9 environments in the
exercises that accompany this chapter.

Summary
Amazon Elastic Compute Cloud (Amazon EC2) instances are compute environments that
provide you with full control over the operating system and software. The instance type
and instance size determine the hardware available to an instance. This includes proper-
ties such as vCPU, RAM, access to local storage, and network bandwidth. Amazon Elastic
Block Store (Amazon EBS) provides persistent storage for EC2 instances. An Amazon
Machine Image (AMI) provides the template for the software on the instance. Additionally,
user data allows you to run a script on the instance to automatically update the software
on the instance. To make AWS API calls from code running on an EC2 instance, assign an
AWS Identity and Access Management (IAM) role to the instance by way of an instance
profile. Use Amazon CloudWatch to collect instance monitoring and utilization metrics.

Amazon Virtual Private Cloud (Amazon VPC) enables your EC2 instances to be placed
into isolated networks where you have control over the connectivity to other networks, such as
the internet, on-premises networks, or other VPCs. Within a VPC, the network is segmented

Exam Essentials 67

into subnets. Instances within a subnet in a VPC are assigned private IPv4 addresses. They
can be assigned public IPv4 addresses, Elastic IP addresses, or IPv6 addresses.

Routing between the instances in the VPC and other networks is controlled on a subnet
level using routes and route tables. This configuration enables you to define some subnets as
public and others as private. In addition to routing, network traffic can also be controlled
by two sets of controls that act as firewalls in a VPC. Network access control lists (network
ACLs) act as a stateless firewall on all traffic that leaves or enters a subnet. Security groups
act as a stateful firewall that protects individual traffic flows at an instance level.

The responsibility for keeping your instances secure is shared between AWS and you,
the customer. AWS is responsible for securing access to the infrastructure and providing
you with controls that you can use to secure your instances. As an AWS customer, you are
responsible for configuring your resources in a way that is secure and meets your applica-
tion needs.

Exam Essentials
Know the basics of Amazon EC2, such as resource types, instance types, AMIs, and storage.
Be familiar with launching and connecting to Amazon EC2 instances. Understand the
resource types of Amazon EC2 instance types. Be familiar with the purpose of an AMI
in relation to launching an instance. Understand the distinction between persistent and
ephemeral storage related to a particular Amazon EC2 instance.

Know about user data, instance metadata, and credentials. Be familiar with using user
data to customize the software by executing scripts on instances. Any scripts or code run-
ning on an instance can use the Amazon EC2 metadata service to discover the instance
configuration. Use IAM roles to provide AWS Cloud API credentials automatically to code
running on an Amazon EC2 instance.

Know how Amazon EC2 communicates with Amazon VPC. Understand the relation-
ship between an EC2 instance and the Amazon VPC network. There may be questions
that ask you to troubleshoot issues related to connecting to an Amazon EC2 instance. Be
familiar with how Amazon VPC enables communication between Amazon EC2 instances
within the same Amazon VPC and isolates those instances from other Amazon VPCs.
Recognize how route tables, network access control lists, and security groups control net-
work traffic.

Know about public and private subnets. Within an Amazon VPC, you must be able to
distinguish between public and private subnets. Public subnets allow you to assign public
IPv4 addresses to Amazon EC2 instances. By contrast, instances in a private subnet have
only private IP addresses. The key distinction is that public subnets have a route table entry
that forwards internet-bound traffic to an internet gateway. Private subnets do not have
a direct route to the internet. Instead, these subnets have a route that forwards internet-
bound traffic through a NAT gateway or NAT instance.

68 Chapter 2 ■ Introduction to Compute and Networking

Know about security groups and network ACLs. Be familiar with security groups and
network ACLs. Security groups are used with Amazon EC2 instances, acting as state-
ful firewalls. They provide only rules that allow traffic. In comparison, network ACLs
allow traffic between subnets and are stateless. They can allow or deny specific types of
traffic.

Know about responsibilities shared between you and AWS. Be familiar with the sepa-
ration between AWS responsibility and your responsibility concerning Amazon EC2
instances. AWS is responsible for providing secure building blocks up until the hypervi-
sor layer for the Amazon EC2 instance. This includes securing the physical facilities and
machines and any hardware decommissioning. You are responsible for patching the guest
operating system and applications. You are also responsible for configuring firewall rules,
encryption, and access to the instance in a way that meets their requirements.

Resources to Review
Amazon EC2 Instance Types:

https://aws.amazon.com/ec2/instance-types/

Amazon EC2 User Guide for Linux Instances:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/index.html

Amazon EC2 User Guide for Windows Instances:

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/index.html

Amazon EC2 Foundations on YouTube:

https://www.youtube.com/watch?v=bgoPfn-Ppd8

Amazon EC2 Instance Metadata and User Data:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
ec2-instance-metadata.html

Amazon EC2 FAQs:

https://aws.amazon.com/ec2/faqs/

Amazon VPC User Guide:

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html

Amazon VPC Fundamentals and Connectivity on YouTube:

https://www.youtube.com/watch?v=Tff1mekxOJ4

Amazon VPC Security:

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Security.html

IP Addressing in Your VPC:

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html

Exercises 69

 Amazon VPC FAQs:

https://aws.amazon.com/vpc/faqs/

 AWS Cloud9 User Guide:

https://docs.aws.amazon.com/cloud9/latest/user-guide/welcome.html

 Exercises
 These exercises provide hands-on experience with the fundamentals of working with
Amazon EC2 and Amazon VPC. You will create an isolated network in the AWS Cloud
and then launch Amazon EC2 instances into that network. The exam has questions that
test your knowledge of how to troubleshoot common network-connectivity issues relating
to Amazon EC2 instances.

 For the following exercises, verify that the region is US West (Oregon). The directions
for these exercises assume that you have already completed Exercises 1.1, 1.2, 1.3, and 1.4
in Chapter 1, “Introduction to AWS Cloud API.”

 You can complete these exercises within the AWS Free Tier, provided that you follow the
steps to clean up resources promptly.

 The results from these exercises are used in a later chapter, so follow all
the activities and directions exactly.

 e x e r C I S e 2 .1

Create an Amazon eC2 Key pair

 In this exercise, you’ll generate and save an Amazon EC2 key pair. You are responsible
for saving the private key and using it when you want to connect to your Amazon EC2
instances.

 1. Sign in to the AWS Management Console using the DevAdmin IAM user you created
in Exercise 1.2.

 2. To open the Amazon EC2 console, select Services ➢ EC2 .

 3. Select Network & Security ➢ Key Pairs .

 4. Select Create Key Pair .

 5. For Key pair name , enter devassoc , and then choose Create .

 The key pair automatically downloads to your Downloads folder.

 6. Move this key to a safe location on your computer. You need it to connect to your
Amazon EC2 instances using Secure Shell (SSH) or Remote Desktop Protocol (RDP).

70 Chapter 2 ■ Introduction to Compute and Networking

e x e r C I S e 2 . 2

Create an Amazon vpC with public and private Subnets

In this exercise, you’ll create an Amazon Virtual Private Cloud (Amazon VPC). Within that
Amazon VPC, you will have a public subnet directly connected to the internet through an
internet gateway. You will also have a private subnet that only has an indirect connection
to the internet using network address translation (NAT).

1. To display the Amazon VPC dashboard, select Services ➢ VPC.

2. Select Launch VPC Wizard.

If a field does not contain an explicit value in these directions, retain the default
value.

3. Select VPC with Public and Private Subnets and then click Select.

4. Enter the following details for Amazon VPC:

a. For Amazon VPC name, enter devassoc.

b. In the public and private subnets drop-down lists, select the first AZ.

c. In the Elastic IP Allocation ID prompt, select Use a NAT instance instead.

d. For the Amazon EC2 Key Pair Name, select devassoc.

5. Choose Create VPC.

6. When the Amazon VPC is created, choose OK.

7. Copy the VPC ID of the Amazon VPC named devassoc to a text document.

8. To view the list of subnets, select Subnets. In the filter box, paste the VPC ID you
copied and then press the Enter key to filter the results.

Two subnets are listed: Public subnet and Private subnet.

9. Copy the Subnet ID of the public and private subnet to the text file.

After you have created Amazon VPC, your text document will look like the following:

VPC ID: VPC-06bb2198eaexample
Public subnet ID: subnet-0625e239a2example
Private subnet ID: subnet-0e78325d9eexample

Exercises 71

 e x e r C I S e 2 . 3

use an IAm role for ApI Calls from Amazon eC2 Instances

 In this exercise, you’ll create an IAM role for the web server. This role enables you to make AWS
Cloud API calls from code running on the Amazon EC2 instance of the web server. You are not
required to save IAM credentials in a fi le on the instance. To do this, create a new IAM role and
call it the devassoc-webserver role. The role provides permissions needed for the API calls.

 1. Select Services ➢ IAM .

 2. Select Roles and choose Create Role .

 3. Under Choose the service that will use this role , select the option that allows
Amazon EC2 instances to call AWS services on your behalf, and then choose
Next: Permissions .

 4. Select the following AWS managed policies to attach them to the devassoc-
webserver role and then choose Next: Tags :

 AmazonPollyReadOnlyAccess : Grant read-only access to resources, list lexicons,
fetch lexicons, list available voices, and synthesize speech to apply lexicons to the
synthesized speech.

TranslateReadOnly : Allow permissions to detect the dominant language in text,
translate text, and list and retrieve custom terminologies.

 These permissions are required to complete future exercises.

 5. Enter the following tag details and then choose Next: Review :

Key : project

Value : devassoc

 6. For the Role name , enter devassoc-webserver and then choose Create Role .

 e x e r C I S e 2 . 4

launch an Amazon eC2 Instance as a Web Server

 In this exercise, you’ll launch an Amazon EC2 instance as a web server and connect to it.

 1. Select Services ➢ EC2 .

 2. Select Launch Instance .

 3. Select Amazon Linux 2 AMI and then choose Next .

 4. Select t2.micro and then choose Next: Confi gure Instance Details .

(continued)

72 Chapter 2 ■ Introduction to Compute and Networking

 5. On the Confi gure Instance Details page, set the instance:

 ■ Select Network ➢ devassoc .

 ■ Select Subnet ➢ Public Subnet .

 ■ Select Auto-assign Public IP ➢ Enable .

 ■ Select IAM Role ➢ devassoc-webserver .

 6. Expand Advanced Details and then paste the User Data script.

 #!/bin/bash
 yum install httpd -y
 systemctl start httpd
 systemctl enable httpd

Paste this snippet from chapter-02/server-short.txt , located in the
folder in which you downloaded the sample code for this guide.

 7. Select Next: Add Storage .

 8. Select Next: Add Tags .

 9. On the Add Tags page, choose Add Tag and then enter the following:

 Key : Name

 Value : webserver

 10. Choose Next: Confi gure Security Group .

 11. On the Confi gure Security Group page:

 ■ For Security group name , enter restricted-http-ssh .

 ■ For Description , enter HTTP and SSH from my IP address only .

 12. For the existing SSH rule, select Source ➢ My IP .

 13. Select Add Rule , and then confi gure the second rule:

 ■ For Type , select HTTP .

 ■ For Source , select My IP .

 14. Choose Review and Launch .

 15. On the Review Instance Launch page, verify the settings and then choose Launch .

 16. Under Select a key pair , select devassoc and select the box acknowledging that you
have access to the key pair.

 17. To launch your EC2 instance, choose Launch Instances .

 18. To fi nd your instance, choose View Instances .

e x e r C I S e 2 . 4 (c ont inue d)

Exercises 73

19. From the list of instances, select webserver. Wait until Instance Status for your
instance reads as running and Status Checks changes to 2/2 checks passed.

20. Copy the Public IPv4 address of the instance to a text document.

21. Paste the IP address of the webserver instance into a browser window.

A test webpage is displayed. If you do not see a page, wait 30 seconds and then
refresh the page.

22. Disable your mobile phone’s Wi-Fi and then attempt to access the IP address of the
webserver instance from your mobile phone with mobile data.

The page fails to load because the security group rule allows HTTP access from only a
particular IP address.

e x e r C I S e 2 . 5

Connect to the Amazon eC2 Instance

In this exercise, you’ll connect to the Amazon EC2 Instance using SSH.

1. Select Services ➢ EC2.

2. Select Instances.

3. Select the webserver instance from the list of instances.

4. Select Actions ➢ Connect.

5. In the Connect to Your Instance dialog box, follow the directions to establish an SSH
connection.

6. From within your SSH session, run this command to view the available metadata
fields from the Amazon EC2 metadata service:

curl 169.254.169.254/latest/meta-data/

7. Run this command to query the Amazon EC2 instance ID:

curl 169.254.169.254/latest/meta-data/instance-id

8. Call AWS Cloud API using the AWS CLI. This command translates text from English
to French and uses credentials from the AWS role you assigned to the instance. Enter
the following command as a single line:

aws translate translate-text --text "Hello world." --source-language-code
en --target-language-code fr --region us-west-2

9. To review the credentials that are being passed to the instance, query the Amazon
EC2 Metadata service:

curl 169.254.169.254/latest/meta-data/iam/security-credentials/
devassoc-webserver

74 Chapter 2 ■ Introduction to Compute and Networking

e x e r C I S e 2 . 6

Configure NAT for Instances in the private Subnet

In this exercise, you’ll create a security group for the NAT instance. NAT allows Amazon
EC2 instances in the private subnet to make web requests to the internet, to update soft-
ware packages, and to make API calls.

1. Select Services ➢ VPC.

2. From the Security section, select Security Groups.

3. Select Create Security Group and configure the properties as follows:

 ■ Set the Name tag to nat-sg.

 ■ Set the Group name to nat-sg.

 ■ Set the Description to Allow NAT instance to forward internet traffic.

 ■ Set Amazon VPC to devassoc.

4. Choose Create to save the group, and then choose Close to return to the list of secu-
rity groups.

5. Select the nat-sg security group.

6. To modify the inbound rules, select the Inbound Rules tab and select Edit rules.

7. Select Add Rule, and set the following properties for the first rule:

 ■ From Type, select HTTP (80).

 ■ For Source, enter 10.0.0.0/16.

 ■ For Description, enter Enable internet bound HTTP requests from VPC
instances.

8. Select Add Rule, and set the following properties for this rule:

 ■ From Type, select HTTPS (443).

 ■ For Source, enter 10.0.0.0/16.

 ■ For Description, enter Enable internet bound HTTPS. requests from VPC
instances.

9. Select Add Rule, and set the following properties for this rule:

 ■ From Type, select All ICMP – IPv4.

 ■ For Source, enter 10.0.0.0/16.

 ■ For Description, Enable outbound PING requests from VPC instances.

10. Choose Save rules.

Exercises 75

11. Select Services ➢ EC2.

12. Select Instances.

13. Paste the Public subnet ID into the filter box.

Two results are displayed. The result with an empty name is your NAT instance.

14. To edit the name of the NAT instance, hover over the name field and select the pencil
icon.

15. Enter the name devassoc-nat and press Enter.

16. Modify the security groups for devassoc-nat to include the nat-sg group as follows:

 ■ Select the devassoc-nat instance and select Actions.

 ■ Select Networking ➢ Change Security Groups.

 ■ Select nat-sg. You can clear the default.

 ■ Select Assign Security Group.

e x e r C I S e 2 . 7

launch an Amazon eC2 Instance into the private Subnet

In this exercise, you’ll launch an Amazon EC2 instance into the private subnet and then
verify that the security group allows HTTP from anywhere. Because this instance is in
the private subnet, it does not have a public IP address. Even though the instance can
make outbound requests to the internet through the NAT instance, it is not reachable for
inbound connections from the internet.

1. Select Services ➢ EC2.

2. Choose Launch Instance.

3. Select Amazon Linux 2 AMI.

4. Select t2.micro and then choose Next: Configure Instance Details.

5. On the Instance Details page, provide the following values:

 ■ Select Network ➢ devassoc VPC.

 ■ Select Subnet ➢ Private Subnet.

 ■ Select IAM Role ➢ devassoc-webserver.

 ■ Select Advanced Details ➢ User Data ➢ As File.

 ■ From the folder where you downloaded the samples for this guide, select Choose
File ➢ chapter-02/server-polly.txt.

(continued)

76 Chapter 2 ■ Introduction to Compute and Networking

6. Choose Next: Add Storage.

7. Choose Next: Add Tags.

8. Select Tags ➢ Add tag and set the following values:

 ■ For Key, enter Name.

 ■ For Value, enter private-instance.

9. Choose Next: Configure Security Group.

10. For Security Group, set the following values:

 ■ For Security group name, enter open-http-ssh.

 ■ For Description: enter HTTP and SSH from Anywhere.

11. For the SSH rule, select Source ➢ Anywhere.

12. Select Add Rule and then configure the second rule:

 ■ For Type, select HTTP.

 ■ For Source, select Anywhere.

13. Choose Review and Launch.

14. Choose Launch.

15. Under Select a key pair, choose devassoc and select the check box acknowledging
that you have access to the key pair.

16. Choose Launch Instances.

17. Select View Instances.

18. Select private-instance.

19. Copy the Private IP of the instance to the text document.

Notice that the instance has no public IP address.

e x e r C I S e 2 . 8

make requests to private Instance

In this exercise, you will explore connectivity to the private instance.

1. From your web browser, navigate to the private IP of the instance. Though the secu-
rity group is open to requests from anywhere, this will fail because the private IP
address is not routable over the internet.

e x e r C I S e 2 . 7 (c ont inue d)

Exercises 77

2. Select Services ➢ EC2.

3. From the list of instances, select webserver.

4. Select Connect and then follow the directions to establish an SSH connection.

5. From within the SSH session, make an HTTP request to the private server with curl.
Replace the variable private-ip-address with the private IP address of private-
instance address that you copied earlier.

curl private-ip-address

6. Download the MP3 audio from the private-instance to webserver using curl as
 follows:

curl private-ip-address/instance.mp3 --output instance.mp3

7. Make the file available for download from webserver:

sudo cp instance.mp3 /var/www/html/instance.mp3

8. In your web browser, enter the following address. Substitute public-ip-of-
webserver with the public IPv4 address of webserver, and listen to the MP3.

http://public-ip-of-webserver/instance.mp3

Though the private web server is not reachable from the internet, you have confirmed
that it is reachable to other instances within the same Amazon VPC. As part of the boot-
strapping, the private instance made AWS API calls, which require the ability to make
both web requests via the NAT gateway and credentials from an IAM role. You have
confirmed that these requests succeeded by downloading the resulting MP3 file from
private-instance and placing it on webserver.

e x e r C I S e 2 . 9

launch an AWS Cloud9 Instance

In this exercise, you’ll launch an Amazon EC2 instance that you will create in the AWS
Cloud9 service. You will connect to this Amazon EC2 instance from the AWS Cloud9
console. You will then use the AWS Cloud9 IDE to edit files, build software, and execute
commands on the terminal from your web browser.

1. To display the AWS Cloud9 dashboard, select Services ➢ Cloud9.

2. Select Create Environment.

3. For Name, enter devassoc-c9 and then select Next step.

4. Select Network settings ➢ Advanced.

5. Select Network (VPC) ➢ Amazon VPC ID (copied earlier).

(continued)

78 Chapter 2 ■ Introduction to Compute and Networking

6. Select Subnet ➢ Subnet ID for the Public VPC (copied earlier).

7. Select Next step ➢ Create environment.

8. When the AWS Cloud9 environment loads, run the following in the AWS Cloud9 ter-
minal. Make sure to replace the IP address in the example command with the address
you copied earlier for private-instance.

curl private-ip

9. From the private-instance, download the MP3 audio to devassoc-c9 using curl as
follows:

curl private-ip-address/instance.mp3 --output instance.mp3

10. To preview the file, in the navigation pane, double-click instance.mp3.

11. Open README.md in a text editor.

You now have a managed development environment in AWS that is connected to your
isolated VPC.

e x e r C I S e 2 .10

perform partial Cleanup

In this exercise, you will clean up unused instances and keep this Amazon VPC for future
use. This partial cleanup reduces costs while providing an environment to complete
future exercises. After partial cleanup, you may generate charges related to the Elastic
IP address that was allocated for devassoc-nat but is not in use while that instance is
stopped.

Complete the following tasks as part of the cleanup:

webserver: Terminate.

private-instance: Terminate.

devassoc-nat: Stop. You must start this instance again before completing any exercises
that require Amazon EC2 to launch or interact with instances in the private subnet.

devassoc-c9: No action. The AWS Cloud9 service will automatically stop and start this
instance.

1. Navigate to the Services ➢ EC2.

2. To view your Amazon EC2 instances, select Instances. Clear any filters if they are
present.

e x e r C I S e 2 . 9 (c ont inue d)

Exercises 79

3. Select webserver and private-instance.

4. Select Actions ➢ Instance-State and Terminate.

5. Clear public-webserver and private-webserver.

6. Select devassoc-nat.

7. Select Actions ➢ Instance-State and Stop.

e x e r C I S e 2 .11

(optional) Complete Cleanup

If you plan to perform future exercises in this guide, this exercise is optional.

In this exercise, you will remove all of the EC2 and VPC resources that remain after Exercise 2.10.

1. Navigate to the Amazon EC2 console, and view the list of running instances.

2. Select devassoc-nat.

3. Select Actions ➢ Instance-State and Terminate.

4. In the Terminate Instances dialog box, expand Release attached Elastic IPs and
select Release Elastic IPs.

5. Select Yes, Terminate.

6. Navigate to the AWS Cloud9 dashboard (Services ➢ Cloud9).

7. Select the devassoc-c9 environment.

8. On the Environment Details page, select Delete and follow the on-screen directions
to delete the instance.

9. To view the Amazon VPC dashboard, select Services ➢ VPC.

10. Navigate to the Elastic IPs list.

11. Select any Elastic IPs that are not associated with an instance.

12. To release the Elastic IPs, select Actions and Release Addresses.

13. Select Release.

14. Select Your VPCs.

15. Select devassoc.

16. Select Actions ➢ Delete VPC.

17. Select Delete VPC.

If the Amazon VPC deletion fails, wait up to 30 minutes after deleting the Amazon EC2
instances and then try again.

80 Chapter 2 ■ Introduction to Compute and Networking

Review Questions
1. When you launch an Amazon Elastic Compute Cloud (Amazon EC2) instance, which of the

following is the most specific type of AWS entity in which you can place it?

A. Region

B. Availability Zone

C. Edge location

D. Data center

2. You have saved SSH connection information for an Amazon Elastic Compute Cloud (Amazon
EC2) instance that you launched in a public subnet. You previously stopped the instance the
last time you used it. Now that you have started the instance, you are unable to connect to
the instance using the saved information. Which of the following could be the cause?

A. Your SSH key pair has automatically expired.

B. The public IP of the instance has changed.

C. The security group rules have expired.

D. SSH is enabled only for the first boot of an Amazon EC2 instance.

3. You are working from a new location today. You are unable to initiate a Remote Desktop
Protocol (RDP) to your Windows instance, which is located in a public subnet. What could
be the cause?

A. Your new IP address may not match the inbound security group rules.

B. Your new IP address may not match the outbound security group rules.

C. RDP is not available for Windows instances, only SSH.

D. RDP is enabled only for the first 24 hours of your instance runtime.

4. You have a backend Amazon EC2 instance providing a web service to your web server
instances. Your web servers are in a public subnet. You would like to block inbound
requests from the internet to your backend instance but still allow the instance to make
API requests over the public internet. What steps must you take? (Select TWO.)

A. Launch the instance in a private subnet and rely on a NAT gateway in a public subnet
to forward outbound internet requests.

B. Configure the security group for the instance to explicitly deny inbound requests from
the internet.

C. Configure the network access control list (network ACL) for the public subnet to
explicitly deny inbound web requests from the internet.

D. Modify the inbound security group rules for the instance to allow only inbound
requests from your web servers.

Review Questions 81

5. You have launched an Amazon Elastic Compute Cloud (Amazon EC2) instance and loaded
your application code on it. You have now discovered that the instance is missing applica-
tions on which your code depends. How can you resolve this issue?

A. Modify the instance profile to include the software dependencies.

B. Create an AWS Identity and Access Management (IAM) user, and sign in to the
instance to install the dependencies.

C. Sign in to the instance as the default user, and install any additional dependencies that
you need.

D. File an AWS Support ticket, and request to install the software on your instance.

6. How can code running on an Amazon Elastic Compute Cloud (Amazon EC2) instance
automatically discover its public IP address?

A. The public IP address is presented to the OS on the instance automatically. No extra
steps are required.

B. The instance can query another Amazon EC2 instance in the same Amazon Virtual
Private Cloud (Amazon VPC).

C. You must use a third-party service to look up the public IP.

D. The instance can make an HTTP query to the Amazon EC2 metadata service at
169.254.169.254.

7. How can you customize the software of your Amazon Elastic Compute Cloud (Amazon
EC2) instance beyond what the Amazon Machine Image (AMI) provides?

A. Provide a user data attribute at launch that contains a script or directives to install
additional packages.

B. Additional packages are installed automatically by placing them in a special Amazon
Simple Storage Service (Amazon S3) bucket in your account.

C. You do not have permissions to install new software on Amazon EC2 aside from what
is in the AMI.

D. Unlock the instance using the AWS Key Management Service (AWS KMS) and then
sign in to install new packages.

8. You have a process running on an Amazon Elastic Compute Cloud (Amazon EC2) instance
that exceeds the 2 GB of RAM allocated to the instance. This is causing the process to run
slowly. How can you resolve the issue?

A. Stop the instance, change the instance type to one with more RAM, and then start the
instance.

B. Modify the RAM allocation for the instance while it is running.

C. Take a snapshot of the data and then launch a new instance. You cannot change the
RAM allocation.

D. Send an email to AWS Support to install additional RAM on the server.

82 Chapter 2 ■ Introduction to Compute and Networking

9. You have launched an Amazon Elastic Compute Cloud (Amazon EC2) Windows instance,
and you would like to connect to it using the Remote Desktop Protocol. The instance is in
a public subnet and has a public IP address. How do you find the password to the Adminis-
trator account?

A. Decrypt the password by using the private key from the Amazon EC2 key pair that you
used to launch the instance.

B. Use the password that you provided when you launched the instance.

C. Create a new AWS Identity and Access Management (IAM) role, and use the password
for that role.

D. Create an IAM user, and use the password for that user.

10. What steps must you take to ensure that an Amazon EC2 instance can receive web requests
from customers on the internet? (Select THREE.)

A. Assign a public IP address to the instance.

B. Launch the instance in a subnet where the route table routes internet-bound traffic to
an internet gateway.

C. Launch the instance in a subnet where the route table rules send internet-bound traffic
to a NAT gateway.

D. Set the outbound rules for the security group to allow HTTP and HTTPS traffic.

E. Set the inbound rules for the security group to allow HTTP and HTTPS traffic.

11. Which of the following are true about Amazon Machine Images (AMI)? (Select TWO.)

A. AMI can be used to launch one or multiple Amazon EC2 instances.

B. AMI is automatically available in all AWS Regions.

C. All AMIs are created and maintained by AWS.

D. AMIs are available for both Windows and Linux instances.

12. Which of the following are true about Amazon Elastic Compute Cloud (Amazon EC2)
instance types? (Select TWO.)

A. All Amazon EC2 instance types include instance store for ephemeral storage.

B. All Amazon EC2 instance types can use EBS volumes for persistent storage.

C. Amazon EC2 instances cannot be resized once launched.

D. Some Amazon EC2 instances may have access to GPUs or other hardware
accelerators.

13. Which of the following actions are valid based on the Amazon Elastic Compute Cloud
(Amazon EC2) instance lifecycle? (Select TWO.)

A. Starting a previously terminated instance

B. Starting a previously stopped instance

C. Rebooting a stopped instance

D. Stopping a running instance

Review Questions 83

14. You have a development Amazon Elastic Compute Cloud (Amazon EC2) instance where
you have installed Apache Web Server and MySQL. How do you verify that the web server
application can communicate with the database given that they are both running on the
same instance?

A. Modify the security group for the instance.

B. Assign the instance a public IP address.

C. Modify the network access control list (network ACL) for the instance.

D. No extra configuration is required.

15. What type of route must exist in the associated route table for a subnet to be a public subnet?

A. A route to a VPN gateway

B. Only the local route is required.

C. A route to an internet gateway

D. A route to a NAT gateway or NAT instance

E. A route to an Amazon VPC endpoint

16. What type of route must exist in the associated route table for a subnet to be a private sub-
net that allows outbound internet access?

A. A route to a VPN gateway

B. Only the local route is required.

C. A route to an internet gateway

D. A route to a NAT gateway or NAT instance

E. A route to an Amazon Virtual Private Cloud (Amazon VPC) endpoint

17. Which feature of Amazon Virtual Private Cloud (Amazon VPC) enables you to see which
network requests are being accepted or rejected in your Amazon VPC?

A. Internet gateway

B. NAT gateway

C. Route table

D. Amazon VPC Flow Log

18. Which AWS service enables you to track the CPU utilization of an Amazon Elastic
Compute Cloud (Amazon EC2) instance?

A. AWS Config

B. AWS Lambda

C. Amazon CloudWatch

D. Amazon Virtual Private Cloud (Amazon VPC)

19. What happens to the data stored on an Amazon Elastic Block Store (Amazon EBS) volume
when you stop an Amazon Elastic Compute Cloud (Amazon EC2) instance?

A. The data is moved to Amazon Simple Storage Service (Amazon S3).

B. The data persists in the EBS volume.

C. The volume is deleted.

D. An EBS-backed instance cannot be stopped.

84 Chapter 2 ■ Introduction to Compute and Networking

20. Which programming language can you use to write the code that runs on an Amazon EC2
instance?

A. C++

B. Java

C. Ruby

D. JavaScript

E. Python

F. All of the above

21. You have launched an Amazon EC2 instance in a public subnet. The instance has a public
IP address, and you have confirmed that the Apache web server is running. However, your
internet users are unable to make web requests to the instance. How can you resolve the
issue? (Select TWO.)

A. Modify the security group to allow outbound traffic on port 80 to anywhere.

B. Modify the security group for the web server to allow inbound traffic port 80 from
anywhere.

C. Modify the security group for the web server to allow inbound traffic on port 443
from anywhere.

D. Modify the security group to allow outbound traffic from port 443 to anywhere.

22. Which of the following are the customer’s responsibility concerning Amazon EC2
instances? (Select TWO.)

A. Decommissioning storage hardware

B. Patching the guest operating system

C. Securing physical access to the host machine

D. Managing the sign-in accounts and credentials on the guest operating system

E. Maintaining the software that runs on the underlying host machine

Hello, Storage

THe AWS CerTified developer –
ASSoCiATe exAm TopiCS Covered in
THiS CHApTer mAy inClude, buT Are
noT limiTed To, THe folloWing:

Domain 2: Security

 ✓ 2.2 Implement encryption using AWS services.

 ✓ 2.3 Implement application authentication and
 authorization.

Domain 3: Development with AWS Services

 ✓ 3.2 Translate functional requirements into application
design.

 ✓ 3.3 Implement application design into application code.

 ✓ 3.4 Write code that interacts with AWS services by using
APIs, SDKs, and AWS CLI.

Domain 4: Refactoring

 ✓ 4.1 Optimize application to best use AWS services and
features.

Domain 5: Monitoring and Troubleshooting

 ✓ 5.2 Perform root cause analysis on faults found in
testing or production.

Chapter

3

AWS® Certified Developer Official Study Guide
By Nick Alteen, Jennifer Fisher, Casey Gerena, Wes Gruver, Asim Jalis,
Heiwad Osman, Marife Pagan, Santosh Patlolla and Michael Roth

 Amazon Web Services, Inc.

Introduction to AWS Storage
Cloud storage is a critical component of cloud computing, holding the information used by
applications built by developers. In this chapter, we will walk you through the portfolio of
storage services that AWS offers and decompose some phrases that you might have heard,
such as data lake.

The internet era brought about new challenges for data storage and processing, which
prompted the creation of new technologies. The latest generation of data stores are no lon-
ger multipurpose, single-box systems. Instead, they are complex, distributed systems opti-
mized for a particular type of task at a particular scale. Because no single data store is ideal
for all workloads, choosing a data store for the entire system will no longer serve you well.
Instead, you need to consider each individual workload or component within the system
and choose a data store that is right for it.

The AWS Cloud is a reliable, scalable, and secure location for your data. Cloud storage
is typically more reliable, scalable, and secure than traditional, on-premises storage systems.
AWS offers object storage, file storage, block storage, and data transfer services, which we
will explore in this chapter. Figure 3.1 shows the storage and data transfer options on AWS.

f i gu r e 3 .1 The AWS storage portfolio

AWS Storage
Gateway

AWS
Snow Family

Third-Party
Connectors

AWS Direct
Connect

S3 Transfer
Acceleration

Amazon
Kinesis

AWS
DataSync

Amazon EC2
Instance Store
(Ephemeral)

Amazon EFS Amazon S3 Amazon S3 Glacier

Block File

Data Transfer

Object

Amazon EBS
(Persistent)

Storage Fundamentals 87

This chapter covers how to provision storage using just-in-time purchasing, which helps
you avoid overprovisioning and paying for unused storage into which you expect to grow
eventually.

Storage Fundamentals
Before we explore the various AWS storage services, let’s review a few storage fundamen-
tals. As a developer, you are likely already familiar with block storage and the differences
between hot and cold storage. Cloud storage introduces some new concepts such as object
storage, and we will compare these new concepts with the traditional storage concepts with
which you are already familiar. If you have been working on the cloud already, these fun-
damentals are likely a refresher for you.

The goal of this chapter is to produce a mental model that will allow you, as a developer,
to make the right decisions for choosing and implementing the best storage options for your
applications. With the right mental model, people can usually make the best decisions for
their solutions.

The AWS storage portfolio mental model starts with the core data building blocks,
which include block, file, and object storage. For block storage, AWS has Amazon Elastic
Block Store (Amazon EBS). For file storage, AWS has Amazon Elastic File System (Amazon
EFS). For object storage, AWS has Amazon Simple Storage Service (Amazon S3) and
Amazon S3 Glacier. Figure 3.2 illustrates this set of storage building blocks.

f i gu r e 3 . 2 A complete set of storage building blocks

Data Movement Data Security
and Management

Storage Types

Hybrid Storage

Streaming Data

File Data

WAN Acceleration

Private Networks

Third-Party Applications

Physical Appliances

Data Discovery and
Protection

Block

Object Archival

File
Data Visualization

Serverless Computing

Automation

Audit Trails

Monitoring and Metrics

Access Controls

Encryption

Data Dimensions
When investigating which storage options to use for your applications, consider the differ-
ent dimensions of your data first. In other words, find the right tool for your data instead of
squeezing your data into a tool that might not be the best fit.

88 Chapter 3 ■ Hello, Storage

 So, before you start considering storage options, take time to evaluate your data and
decide under which of these dimensions your data falls. This will help you make the correct
decisions about what type of storage is best for your data.

 Think in terms of a data storage mechanism that is most suitable for a
 particular workload—not a single data store for the entire system. Choose
the right tool for the job.

 Velocity, Variety, and Volume
 The fi rst dimension to consider comprises the three Vs of big data: velocity, variety, and
volume. These concepts are applicable to more than big data. It is important to identify
these traits for any data that you are using in your applications.

Velocity Velocity is the speed at which data is being read or written, measured in reads
per second (RPS) or writes per second (WPS). The velocity can be based on batch process-
ing, periodic, near-real-time, or real-time speeds.

 Variety Variety determines how structured the data is and how many different structures
exist in the data. This can range from highly structured to loosely structured, unstructured,
or binary large object (BLOB) data.

 Highly structured data has a predefi ned schema, such as data stored in relational data-
bases, which we will discuss in Chapter 4, “Hello, Databases.” In highly structured data,
each entity of the same type has the same number and type of attributes, and the domain of
allowed values for an attribute can be further constrained. The advantage of highly struc-
tured data is its self-described nature.

 Loosely structured data has entities, which have attributes/fi elds. Aside from the fi eld
uniquely identifying an entity, however, the attributes are not required to be the same
in every entity. This data is more diffi cult to analyze and process in an automated
fashion, putting more of the burden of reasoning about the data on the consumer or
application.

 Unstructured data does not have any sense or structure. It has no entities or attributes. It
can contain useful information, but it must be extracted by the consumer of the data.

 BLOB data is useful as a whole, but there is often little benefi t in trying to extract value
from a piece or attribute of a BLOB. Therefore, the systems that store this data typically
treat it as a black box and only need to be able to store and retrieve a BLOB as a whole.

 Volume Volume is the total size of the dataset. There are two main uses for data: devel-
oping valuable insight and storage for later use. When getting valuable insights from data,
having more data is often preferable to using better models. When keeping data for later
use, be it for digital assets or backups, the more data that you can store, the less you need
to guess what data to keep and what to throw away. These two uses prompt you to collect
as much data as you can store, process, and afford to keep.

Storage Fundamentals 89

 Typical metrics that measure the ability of a data store to support volume are maximum
storage capacity and cost (such as $/GB).

 Storage Temperature
Data temperature is another useful way of looking at data to determine the right storage
for your application. It helps us understand how “lively” the data is: how much is being
written or read and how soon it needs to be available.

 Hot Hot data is being worked on actively; that is, new ingests, updates, and transforma-
tions are actively contributing to it. Both reads and writes tend to be single-item. Items tend
to be small (up to hundreds of kilobytes). Speed of access is essential. Hot data tends to be
high-velocity and low-volume.

Warm Warm data is still being actively accessed, but less frequently than hot data. Often,
items can be as small as in hot workloads but are updated and read in sets. Speed of access,
while important, is not as crucial as with hot data. Warm data is more balanced across the
velocity and volume dimensions.

Cold Cold data still needs to be accessed occasionally, but updates to this data are rare,
so reads can tolerate higher latency. Items tend to be large (tens of hundreds of megabytes
or gigabytes). Items are often written and read individually. High durability and low cost
are essential. Cold data tends to be high-volume and low-velocity.

Frozen Frozen data needs to be preserved for business continuity or for archival or regu-
latory reasons, but it is not being worked on actively. While new data is regularly added
to this data store, existing data is never updated. Reads are extremely infrequent (known
as “write once, read never”) and can tolerate very high latency. Frozen data tends to be
extremely high-volume and extremely low-velocity.

 The same data can start as hot and gradually cool down. As it does, the tolerance of read
latency increases, as does the total size of the dataset. Later in this chapter, we explore
individual AWS services and discuss which services are optimized for the dimensions that
we have discussed so far.

 Data Value
 Although we would like to extract useful information from all of the data we collect, not
all data is equally important to us. Some data has to be preserved at all costs, and other
data can be easily regenerated as needed or even lost without signifi cant impact on the busi-
ness. Depending on the value of data, we are more or less willing to invest in additional
durability.

 To optimize cost and/or performance further, segment data within each
workload by value and temperature, and consider different data storage
options for different segments.

90 Chapter 3 ■ Hello, Storage

Transient data Transient data is often short-lived. The loss of some subset of transient data
does not have signifi cant impact on the system as a whole. Examples include clickstream or
Twitter data. We often do not need high durability of this data, because we expect it to be
quickly consumed and transformed further, yielding higher-value data. If we lose a tweet or a
few clicks, this is unlikely to affect our sentiment analysis or user behavior analysis.

 Not all streaming data is transient, however. For example, for an intrusion detection
 system (IDS), every record representing network communication can be valuable because
every log record can be valuable for a monitoring/alarming system.

Reproducible data Reproducible data contains a copy of useful information that is often
created to improve performance or simplify consumption, such as adding more structure
or altering a structure to match consumption patterns. Although the loss of some or all of
this data may affect a system’s performance or availability, this will not result in data loss,
because the data can be reproduced from other data sources.

 Examples include data warehouse data, read replicas of OLTP (online transaction process-
ing) systems, and many types of caches. For this data, we may invest a bit in durability to
reduce the impact on system’s performance and availability, but only to a point.

Authoritative data Authoritative data is the source of truth. Losing this data will have
signifi cant business impact because it will be diffi cult, or even impossible, to restore or
replace it. For this data, we are willing to invest in additional durability. The greater the
value of this data, the more durability we will want.

 Critical/Regulated data Critical or regulated data is data that a business must retain at
almost any cost. This data tends to be stored for long periods of time and needs to be pro-
tected from accidental and malicious changes—not just data loss or corruption. Therefore,
in addition to durability, cost and security are equally important factors.

 One Tool Does Not Fit All
 Despite the many applications of a hammer, it cannot replace a screwdriver or a pair of pli-
ers. Likewise, there is no one-size-fi ts-all solution for data storage. Analyze your data and
understand the dimensions that we have discussed. Once you have done that, then you can
move on to reviewing the different storage options available on AWS to fi nd the right tool
to store and access your fi les.

 For the exam, know the availability, level of durability, and cost factors for
each storage option and how they compare.

 Block, Object, and File Storage
 There are three types of cloud storage: object, fi le, and block. Each offers its own unique
advantages.

Storage Fundamentals 91

Block Storage
Some enterprise applications, like databases or enterprise resource planning systems (ERP
systems), can require dedicated, low-latency storage for each host. This is analogous to
direct-attached storage (DAS) or a storage area network (SAN). Block-based cloud stor-
age solutions like Amazon EBS are provisioned with each Amazon Elastic Compute Cloud
(Amazon EC2) instance and offer the ultra-low latency required for high-performance
workloads.

Object Storage
Applications developed on the cloud often take advantage of object storage’s vast scalability
and metadata characteristics. Object storage solutions like Amazon S3 are ideal for build-
ing modern applications from scratch that require scale and flexibility and can also be used
to import existing data stores for analytics, backup, or archive.

Cloud object storage makes it possible to store virtually limitless amounts of data in its
native format.

File Storage
Many applications need to access shared files and require a file system. This type of storage
is often supported with a network-attached storage (NAS) server. File storage solutions like
Amazon EFS are ideal for use cases such as large content repositories, development envi-
ronments, media stores, or user home directories.

AWS Shared Responsibility Model and Storage
The AWS shared responsibility model is important to understand as it relates to cloud stor-
age. AWS is responsible for securing the storage services. As a developer and customer, you
are responsible for securing access to and using encryption on the artifacts you create or
objects you store.

AWS makes this model simpler for you by allowing you to inherit certain compliance
factors and controls, but you must still ensure that you are securing your data and files
on the cloud. It is a best practice always to use the principle of least privilege as part of
your responsibility for using AWS Cloud storage. For example, ensure that only those who
need access to the file have access and ensure that read and write access are separated and
controlled.

Confidentiality, Integrity, Availability Model
The confidentiality, integrity, availability model (CIA model) forms the fundamentals of
information security, and you can apply the principles of the CIA model to AWS storage.

Confidentiality can be equated to the privacy level of your data. It refers to levels of
encryption or access policies for your storage or individual files. With this principle, you
will limit access to prevent accidental information disclosure by restricting permissions and
enabling encryption.

92 Chapter 3 ■ Hello, Storage

Integrity refers to whether your data is trustworthy and accurate. For example, can you
trust that the fi le you generated has not been changed when it is audited later?

 Restrict permission of who can modify data and enable backup and
versioning.

Availability refers to the availability of a service on AWS for storage, where an authorized
party can gain reliable access to the resource.

 Restrict permission of who can delete data, enable multi-factor authen-
tication (MFA) for Amazon S3 delete operation, and enable backup and
versioning.

 Figure 3.3 shows the CIA model.

 f i gu r e 3 . 3 The CIA model

1
AVAILABILITY

INFORMATION
SECURITY

2
INTEGRITY

3
CONFIDENTIALITY

 AWS storage services provide many features for maintaining the desired level of con-
fi dentiality, integrity, and availability. Each of these features is discussed under its corre-
sponding storage-option section in this chapter.

 AWS Block Storage Services
 Let’s begin with the storage to which you are most likely already accustomed as a devel-
oper; that is, block storage.

AWS Block Storage Services 93

Amazon Elastic Block Store
Amazon EBS presents your data to your Amazon EC2 instance as a disk volume, providing
the lowest-latency access to your data from single Amazon EC2 instances.

Amazon EBS provides durable and persistent block storage volumes for use with
Amazon EC2 instances. Each Amazon EBS volume is automatically replicated within its
Availability Zone to protect your information from component failure, offering high avail-
ability and durability. Amazon EBS volumes offer the consistent and low-latency perfor-
mance needed to run your workloads. With Amazon EBS, you can scale your usage up or
down within minutes, while paying only for what you provision.

Typical use cases for Amazon EBS include the following:

 ■ Boot volumes on Amazon EC2 instances

 ■ Relational and NoSQL databases

 ■ Stream and log processing applications

 ■ Data warehousing applications.

 ■ Big data analytics engines (like the Hadoop/HDFS (Hadoop Distributed File System)
ecosystem and Amazon EMR clusters)

Amazon EBS is designed to achieve the following:

 ■ Availability of 99.999 percent

 ■ Durability of replication within a single availability zone

 ■ Annual failure rate (AFR) of between 0.1 and 0.2 percent

Amazon EBS volumes are 20 times more reliable than typical commodity disk drives,
which fail with an AFR of around 4 percent.

Amazon EBS Volumes
Amazon EBS volumes persist independently from the running life of an Amazon EC2
instance. After a volume is attached to an instance, use it like any other physical hard drive.

Amazon EBS volumes are flexible. For current-generation volumes attached to current-
generation instance types, you can dynamically increase size, modify provisioned input/
output operations per second (IOPS) capacity, and change the volume type on live
production volumes without service interruptions.

Amazon EBS provides the following volume types, which differ in performance charac-
teristics and price so that you can tailor your storage performance and cost to the needs of
your applications.

SSD-backed volumes Solid-state drive (SSD)–backed volumes are optimized for transac-
tional workloads involving frequent read/write operations with small I/O size, where the
dominant performance attribute is IOPS.

HDD-backed volumes Hard disk drive (HDD)–backed volumes are optimized for large
streaming workloads where throughput (measured in MiB/s) is a better performance mea-
sure than IOPS.

94 Chapter 3 ■ Hello, Storage

SSD vs. HDD Comparison
Table 3.1 shows a comparison of Amazon EBS HDD-backed and SSD-backed volumes.

TA b le 3 .1 Volume Comparison

SSD HDD

General
Purpose

Provisioned
IOPS

Throughput-
Optimized Cold

Max volume size 16 TiB

Max IOPS/volume 10,000 32,000 500 250

Max throughput/volume 160 MiB/s 500 MiB/s 250 MiB/s

Table 3.2 shows the most common use cases for the different types of Amazon EBS
volumes.

TA b le 3 . 2 EBS Volume Use Cases

SSD HDD

General Purpose Provisioned IOPS Throughput-Optimized Cold

 ■ Recommended for
most workloads

 ■ System boot
volumes

 ■ Virtual desktops
 ■ Low-latency

interactive
 ■ Apps
 ■ Development and

test environments

 ■ I/O-intensive
workloads

 ■ Relational DBs
 ■ NoSQL DBs

 ■ Streaming workloads
requiring consistent,
fast throughput at a
low price

 ■ Big data
 ■ Data warehouses
 ■ Log processing
 ■ Cannot be a boot

volume

 ■ Throughput-
oriented storage
for large volumes
of data that is
infrequently
accessed

 ■ Scenarios where
the lowest storage
cost is important

 ■ Cannot be a boot
volume

Elastic Volumes
Elastic Volumes is a feature of Amazon EBS that allows you to increase capacity dynami-
cally, tune performance, and change the type of volume live. This can be done with no
downtime or performance impact and with no changes to your application. Create a

AWS Block Storage Services 95

volume with the capacity and performance needed when you are ready to deploy your
application, knowing that you have the ability to modify your volume configuration in the
future and saving hours of planning cycles and preventing overprovisioning.

Amazon EBS Snapshots
You can protect your data by creating point-in-time snapshots of Amazon EBS volumes,
which are backed up to Amazon S3 for long-term durability. The volume does not need to
be attached to a running instance to take a snapshot.

As you continue to write data to a volume, periodically create a snapshot of the volume
to use as a baseline for new volumes. These snapshots can be used to create multiple new
Amazon EBS volumes or move volumes across Availability Zones.

When you create a new volume from a snapshot, it is an exact copy of the original vol-
ume at the time the snapshot was taken.

If you are taking snapshots at regular intervals, such as once per day, you may be con-
cerned about the cost of the storage. Snapshots are incremental backups, meaning that only
the blocks on the volume that have changed after your most recent snapshot are saved,
making this a cost-effective way to back up your block data. For example, if you have a vol-
ume with 100 GiB of data, but only 5 GiB of data have changed since your last snapshot,
only the 5 GiB of modified data is written to Amazon S3.

If you need to delete a snapshot, how do you know which snapshot to delete? Amazon
EBS handles this for you. Even though snapshots are saved incrementally, the snapshot
deletion process is designed so that you need to retain only the most recent snapshot to
restore the volume. Amazon EBS will determine which dependent snapshots can be deleted
to ensure that all other snapshots continue working.

Amazon EBS Optimization
Recall that Amazon EBS volumes are network-attached and not directly attached to
the host like instance stores. On instances without support for Amazon EBS–optimized
throughput, network traffic can contend with traffic between your instance and your
Amazon EBS volumes. On Amazon EBS–optimized instances, the two types of traffic
are kept separate. Some instance configurations incur an extra cost for using Amazon
EBS–optimized, while others are always Amazon EBS–optimized at no extra cost.

Amazon EBS Encryption
For simplified data encryption, create encrypted Amazon EBS volumes with the Amazon
EBS encryption feature. All Amazon EBS volume types support encryption, and you
can use encrypted Amazon EBS volumes to meet a wide range of data-at-rest encryption
requirements for regulated/audited data and applications.

Amazon EBS encryption uses 256-bit Advanced Encryption Standard (AES-256)
algorithms and an Amazon-managed key infrastructure called AWS Key Management
Service (AWS KMS). The encryption occurs on the server that hosts the Amazon EC2
instance, providing encryption of data in transit from the Amazon EC2 instance to
Amazon EBS storage.

96 Chapter 3 ■ Hello, Storage

You can encrypt using an AWS KMS–generated key, or you can choose to select a
 customer master key (CMK) that you create separately using AWS KMS.

You can also encrypt your files prior to placing them on the volume. Snapshots of
encrypted Amazon EBS volumes are automatically encrypted. Amazon EBS volumes that
are restored from encrypted snapshots are also automatically encrypted.

Amazon EBS Performance
To achieve optimal performance from your Amazon EBS volumes in a variety of scenarios,
use the following best practices:

Use Amazon EBS-optimized instances The dedicated network throughput that you get
when you request Amazon EBS–optimized support will make volume performance more
predictable and consistent, and your Amazon EBS volume network traffic will not have to
contend with your other instance traffic because they are kept separate.

Understand how performance is calculated When you measure the performance of your
Amazon EBS volumes, it is important to understand the units of measure involved and how
performance is calculated.

Understand your workload There is a relationship between the maximum performance of
your Amazon EBS volumes, the size and number of I/O operations, and the time it takes for
each action to complete. Each of these factors affects the others, and different applications
are more sensitive to one factor or another.

On a given volume configuration, certain I/O characteristics drive the performance behav-
ior for your Amazon EBS volumes. SSD-backed volumes, General-Purpose SSD, and
Provisioned IOPS SSD deliver consistent performance whether an I/O operation is random
or sequential. HDD-backed volumes, Throughput-Optimized HDD, and Cold HDD
deliver optimal performance only when I/O operations are large and sequential.

To understand how SSD and HDD volumes will perform in your application, it is impor-
tant to understand the connection between demand on the volume, the quantity of
IOPS available to it, the time it takes for an I/O operation to complete, and the volume’s
throughput limits.

Be aware of the performance penalty when initializing volumes from snapshots New
Amazon EBS volumes receive their maximum performance the moment that they are
available and do not require initialization (formerly known as pre-warming).

Storage blocks on volumes that were restored from snapshots, however, must be initialized
(pulled down from Amazon S3 and written to the volume) before you can access the block.
This preliminary action takes time and can cause a significant increase in the latency of an
I/O operation the first time each block is accessed. Performance is restored after the data is
accessed once.

For most applications, amortizing this cost over the lifetime of the volume is acceptable. For
some applications, however, this performance hit is not acceptable. If that is the case, avoid
a performance hit by accessing each block prior to putting the volume into production.
This process is called initialization.

AWS Block Storage Services 97

Factors that can degrade HDD performance When you create a snapshot of a
Throughput-Optimized HDD or Cold HDD volume, performance may drop as far as the
volume’s baseline value while the snapshot is in progress. This behavior is specific only to
these volume types.

Other factors that can limit performance include the following:

 ■ Driving more throughput than the instance can support

 ■ The performance penalty encountered when initializing volumes restored from a
snapshot

 ■ Excessive amounts of small, random I/O on the volume

Increase read-ahead for high-throughput, read-heavy workloads Some workloads are
read-heavy and access the block device through the operating system page cache (for exam-
ple, from a file system). In this case, to achieve the maximum throughput, we recommend
that you configure the read-ahead setting to 1 MiB. This is a per-block-device setting that
should be applied only to your HDD volumes.

Use RAID 0 to maximize utilization of instance resources Some instance types can drive
more I/O throughput than what you can provision for a single Amazon EBS volume. You
can join multiple volumes of certain instance types together in a RAID 0 configuration to
use the available bandwidth for these instances.

Track performance with Amazon CloudWatch Amazon CloudWatch, a monitoring and
management service, provides performance metrics and status checks for your Amazon
EBS volumes.

Amazon EBS Troubleshooting
If you are using an Amazon EBS volume as a boot volume, your instance is no longer acces-
sible, and you cannot use SSH or Remote Desktop Protocol (RDP) to access that boot vol-
ume. There are some steps that you can take, however, to access the volume.

If you have an Amazon EC2 instance based on an Amazon Machine Image (AMI), you
may just choose to terminate the instance and create a new one.

If you do need access to that Amazon EBS boot volume, perform the following steps to
make it accessible:

1. Create a new Amazon EC2 instance with its own boot volume (a micro instance is
great for this purpose).

2. Detach the root Amazon EBS volume from the troubled instance.

3. Attach the root Amazon EBS volume from the troubled instance to your new Amazon
EC2 instance as a secondary volume.

4. Connect to the new Amazon EC2 instance, and access the files on the secondary volume.

Instance Store
Amazon EC2 instance store is another type of block storage available to your Amazon EC2
instances. It provides temporary block-level storage, and the storage is located on disks

98 Chapter 3 ■ Hello, Storage

that are physically attached to the host computer (unlike Amazon EBS volumes, which are
network-attached).

 If your data does not need to be resilient to reboots , restarts , or auto
recovery , then your data may be a candidate for using instance store, but
you should exercise caution.

 Instance Store Volumes
Instance store should not be used for persistent storage needs. It is a type of ephemeral
(short-lived) storage that does not persist if the instance fails or is terminated.

 Because instance store is on the host of your Amazon EC2 instance, it will provide
the lowest-latency storage to your instance other than RAM. Instance store volumes can
be used when incurring large amounts of I/O for your application at the lowest possible
latency. You need to ensure that you have another source of truth of your data, however,
and that the only copy is not placed on instance store. For data that needs to be durable, we
recommend using Amazon EBS volumes instead.

 Not all instance types come with available instance store volume(s), and the size and
type of volumes vary by instance type. When you launch an instance, the instance store is
available at no additional cost, depending on the particular instance type. However, you
must enable these volumes when you launch an Amazon EC2 instance, as you cannot add
instance store volumes to an Amazon EC2 instance once it has been launched.

 After you launch an instance, the instance store volumes are available to the instance,
but you cannot access them until they are mounted. Refer to the AWS documentation
for Amazon EBS to learn more about mounting these volumes on different operating
systems.

 Many customers use a combination of instance store and Amazon EBS volumes with
their instances. For example, you may choose to place your scratch data, tempdb , or other
temporary fi les on instance store while your root volume is on Amazon EBS.

 Do not use instance store for any production data.

 Instance Store–Backed Amazon EC2 Instances
 With Amazon EC2, you can use both instance store–backed storage volumes and Amazon
EBS–backed storage volumes with your instances, meaning you can have your instance
boot off instance store; however, you would want this confi gured so that you are using an
AMI and that new instances will be created if one fails. This is not recommended for your
primary instances where it would cause an issue for users if the instance fails. This confi gu-
ration can save money on storage costs instead of using Amazon EBS as your boot volume
in cases where your system is confi gured to be resilient to instances re-launching. It is criti-
cal to understand your application and infrastructure needs before choosing to use instance
store-backed Amazon EC2 instances, so choose carefully.

AWS Object Storage Services 99

Instance store–backed Amazon EC2 instances cannot be stopped and cannot take
advantage of the auto recovery feature for Amazon EC2 instances.

 Some AWS customers build instances on the fl y that are completely resilient to reboot,
relaunch, or failure and use instance store as their root volumes. This requires important
due diligence regarding your application and infrastructure to ensure that this type of sce-
nario would be right for you.

 AWS Object Storage Services
 Now we are going to dive into object storage. An object is a piece of data like a document,
image, or video that is stored with some metadata in a fl at structure. Object storage provides
that data to applications via application programming interfaces (APIs) over the internet.

 Amazon Simple Storage Service
 Building a web application, which delivers content to users by retrieving data via making
API calls over the internet, is not a diffi cult task with Amazon S3. Amazon Simple Storage
Service (Amazon S3) is storage for the internet. It is a simple storage service that offers
software developers a highly scalable, reliable, and low-latency data storage infrastructure
at low cost. AWS has seen enormous growth with Amazon S3, and AWS currently has cus-
tomers who store terabytes and exabytes of data.

 Amazon S3 is featured in many AWS certifications because it is a core
enabling service for many applications and use cases.

 To begin developing with Amazon S3, it is important to understand a few basic concepts.

 Buckets
 A bucket is a container for objects stored in Amazon S3. Every object is contained in a
bucket. You can think of a bucket in traditional terminology similar to a drive or volume.

 Limitations

 The following are limitations of which you should be aware when using Amazon S3
buckets:

 ■ Do not use buckets as folders, because there is a maximum limit of 100 buckets per
account.

 ■ You cannot create a bucket within another bucket.

 ■ A bucket is owned by the AWS account that created it, and bucket ownership is not
transferable.

 ■ A bucket must be empty before you can delete it.

100 Chapter 3 ■ Hello, Storage

 ■ After a bucket is deleted, that name becomes available to reuse, but the name might not
be available for you to reuse for various reasons, such as someone else taking the name
after you release it when deleting the bucket. If you expect to use same bucket name,
do not delete the bucket.

 You can only create up to 100 buckets per account. Do not use buckets as
folders or design your application in a way that could result in more than
100 buckets as your application or data grows.

 Universal Namespace

 A bucket name must be unique across all existing bucket names in Amazon S3 across all of
AWS—not just within your account or within your chosen AWS Region. You must comply
with Domain Name System (DNS) naming conventions when choosing a bucket name.

 The rules for DNS-compliant bucket names are as follows:

 ■ Bucket names must be at least 3 and no more than 63 characters long.

 ■ A bucket name must consist of a series of one or more labels, with adjacent labels sepa-
rated by a single period (.).

 ■ A bucket name must contain lowercase letters, numbers, and hyphens.

 ■ Each label must start and end with a lowercase letter or number.

 ■ Bucket names must not be formatted like IP addresses (for example, 192.168.5.4).

 ■ AWS recommends that you do not use periods (.) in bucket names. When using virtual
hosted-style buckets with Secure Sockets Layer (SSL), the SSL wildcard certificate only
matches buckets that do not contain periods. To work around this, use HTTP or write
your own certificate verification logic.

 Amazon S3 bucket names must be universally unique.

 Table 3.3 shows examples of invalid bucket names .

 TA b le 3 . 3 Invalid Bucket Names

Bucket Name Reason

.myawsbucket The bucket name cannot start with a period (.).

 myawsbucket. The bucket name cannot end with a period (.).

my..examplebucket There can be only one period between labels.

AWS Object Storage Services 101

The following code snippet is an example of creating a bucket using Java:

private static String bucketName = "*** bucket name ***";
public static void main(String[] args) throws IOException {
AmazonS3 s3client = new AmazonS3Client(new ProfileCredentialsProvider());
s3client.setRegion(Region.getRegion(Regions.US_WEST_1));
if(!(s3client.doesBucketExist(bucketName))){
 // Note that CreateBucketRequest does not specify region. So bucket is
 // created in the region specified in the client.
 s3client.createBucket(new CreateBucketRequest(bucketName));
 }

// Get location.
String bucketLocation = s3client.getBucketLocation(new GetBucketLocationRequest
(bucketName));
System.out.println("bucket location = " + bucketLocation);

Versioning

Versioning is a means of keeping multiple variants of an object in the same bucket. You can
use versioning to preserve, retrieve, and restore every version of every object stored in your
Amazon S3 bucket, including recovering deleted objects. With versioning, you can easily
recover from both unintended user actions and application failures.

There are several reasons that developers will turn on versioning of files in Amazon S3,
including the following:

 ■ Protecting from accidental deletion

 ■ Recovering an earlier version

 ■ Retrieving deleted objects

Versioning is turned off by default. When you turn on versioning, Amazon S3 will cre-
ate new versions of your object every time you overwrite a particular object key. Every time
you update an object with the same key, Amazon S3 will maintain a new version of it.

In Figure 3.4, you can see that we have uploaded the same image multiple times, and all
of the previous versions of those files have been maintained.

f i gu r e 3 . 4 Amazon S3 versioning

Eagle.png

Eagle.png

Penguin.pngPenguin.png

Dog.png

Dog.png

102 Chapter 3 ■ Hello, Storage

 As those additional writes apply to a bucket, you can retrieve any of the particular
objects that you need using GET on the object key name and the particular version. Amazon
S3 versioning tracks the changes over time .

 Amazon S3 versioning also protects against unintended deletes. If you issue a delete
command against an object in a versioned bucket, AWS places a delete marker on top of
that object, which means that if you perform a GET on it, you will receive an error as if the
object does not exist. However, an administrator, or anyone else with the necessary permis-
sions, could remove the delete marker and access the data.

 When a delete request is issued against a versioned bucket on a particular object,
Amazon S3 still retains the data, but it removes access for users to retrieve that data.

 Versioning-enabled buckets let you recover objects from accidental deletion or over-
write. Your bucket’s versioning confi guration can also be MFA Delete–enabled for an addi-
tional layer of security. MFA Delete is discussed later in this chapter.

 If you overwrite an object, it results in a new object version in the bucket. You can
always restore from any previous versions.

 In one bucket, for example, you can have two objects with the same key, but different
version IDs, such as photo.gif (version 111111) and photo.gif (version 121212). This is
illustrated in Figure 3.5 .

 f i gu r e 3 .5 Amazon S3 object version IDs

Key = photo.gif
ID = 121212

Key = photo.gif
ID = 111111

Versioning Enabled

 Later in this chapter, we will cover lifecycle policies . You can use versioning in combina-
tion with lifecycle policies to implement them if the object is the current or previous ver-
sion. If you are concerned about building up many versions and using space for a particular
object, confi gure a lifecycle policy that will delete the old version of the object after a cer-
tain period of time.

 It is easy to set up a lifecycle policy to control the amount of data that’s
being retained when you use versioning on a bucket.

 If you need to discontinue versioning on a bucket, copy all of your objects to a new
bucket that has versioning disabled and use that bucket going forward.

 Once you enable versioning on a bucket, it can never return to an
unversioned state. You can, however, suspend versioning on that bucket.

AWS Object Storage Services 103

 It is important to be aware of the cost implications of the bucket that is versioning-enabled.
When calculating cost for your bucket, you must calculate as though every version is a com-
pletely separate object that takes up the same space as the object itself. As you can probably
guess, this option might be cost prohibitive for things like large media fi les or performing
many updates on objects.

 Region

 Amazon S3 creates buckets in a region that you specify. You can choose any AWS Region
that is geographically close to you to optimize latency, minimize costs, or address regulatory
requirements.

 Objects belonging to a bucket that you create in a specific AWS Region
never leave that region unless you explicitly transfer them to another
region.

 Operations on Buckets

 There are a number of different operations (API calls) that you can perform on Amazon S3
buckets. We will summarize a few of the most basic operations in this section. For more
comprehensive information on all of the different operations that you can perform, refer to
the Amazon S3 API Reference document available in the AWS Documentation repository.
In this section, we show you how to create a bucket, list buckets, and delete a bucket.

 CreATe A buCkeT

 This sample Python code shows how to create a bucket:

 import boto3

 s3 = boto3.client('s3')
 s3.create_bucket(Bucket='my-bucket')

 liST buCkeTS

 This sample Python code demonstrates getting a list of all of the bucket names available:

 import boto3

 # Create an S3 client
 s3 = boto3.client('s3')

 # Call S3 to list current buckets
 response = s3.list_buckets()

 # Get a list of all bucket names from the response
 buckets = [bucket['Name'] for bucket in response['Buckets']]

 # Print out the bucket list
 print("Bucket List: %s" % buckets)

104 Chapter 3 ■ Hello, Storage

deleTe A buCkeT

The following sample Java code shows you how to delete a bucket. Buckets must be empty
before you can delete them, unless you use a force parameter.

import java.io.IOException;

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.DeleteObjectRequest;

public class DeleteObjectNonVersionedBucket {

 public static void main(String[] args) throws IOException {
 String clientRegion = "*** Client region ***";
 String bucketName = "*** Bucket name ***";
 String keyName = "*** Key name ****";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 s3Client.deleteObject(new DeleteObjectRequest(bucketName, keyName));
 }
 catch(AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 }
 catch(SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

AWS Object Storage Services 105

AWS CommAnd line inTerfACe

The following is a sample AWS Command Line Interface (AWS CLI) command that will
delete a bucket and will use the ––force parameter to remove a nonempty bucket. This
command deletes all objects first and then deletes the bucket.

$ aws s3 rb s3://bucket-name ––force

Objects
You can store an unlimited number of objects within Amazon S3, but an object can only
be between 1 byte to 5 TB in size. If you have objects larger than 5 TB, use a file splitter
and upload the file in chunks to Amazon S3. Then reassemble them if you download the file
parts for later use.

The largest object that can be uploaded in a single PUT is 5 GB. For objects larger than
100 MB, you should consider using multipart upload (discussed later in this chapter). For
any objects larger than 5 GB, you must use multipart upload.

Object Facets

An object consists of the following facets:

Key The key is the name that you assign to an object, which may include a simulated
folder structure. Each key must be unique within a bucket (unless the bucket has versioning
turned on).

Amazon S3 URLs can be thought of as a basic data map between “bucket + key + version”
and the web service endpoint. For example, in the URL http://doc.s3.amazonaws.com/
2006-03-01/AmazonS3.wsdl, doc is the name of the bucket and 2006-03-01/AmazonS3.wsdl
is the key.

Version ID Within a bucket, a key and version ID uniquely identify an object. If version-
ing is turned off, you have only a single version. If versioning is turned on, you may have
multiple versions of a stored object.

Value The value is the actual content that you are storing. An object value can be any
sequence of bytes, and objects can range in size from 1 byte up to 5 TB.

Metadata Metadata is a set of name-value pairs with which you can store information
regarding the object. You can assign metadata, referred to as user-defined metadata, to
your objects in Amazon S3. Amazon S3 also assigns system metadata to these objects,
which it uses for managing objects.

Subresources Amazon S3 uses the subresource mechanism to store additional object-spe-
cific information. Because subresources are subordinates to objects, they are always associ-
ated with some other entity such as an object or a bucket. The subresources associated with
Amazon S3 objects can include the following:

Access control list (ACL) A list of grants identifying the grantees and the permissions
granted.

Torrent Returns the torrent file associated with the specific object.

106 Chapter 3 ■ Hello, Storage

Access Control Information You can control access to the objects you store in Amazon
S3. Amazon S3 supports both resource-based access control , such as an ACL and bucket
policies , and user-based access control .

 Object Tagging

 Object tagging enables you to categorize storage. Each tag is a key-value pair. Consider the
following tagging examples.

 Suppose an object contains protected health information (PHI) data. You can tag the
object using the following key-value pair:

 PHI=True

or

 Classification=PHI

 While it is acceptable to use tags to label objects containing confidential
data (such as personally identifiable information (PII) or PHI), the tags
themselves should not contain any confidential information.

 Suppose that you store project fi les in your Amazon S3 bucket. You can tag these objects
with a key called Project and a value, as shown here:

 Project=Blue

 You can add multiple tags to a single object, such as the following:

 Project=SalesForecast2018
 Classification=confidential

 You can tag new objects when you upload them, or you can add them to existing objects.
 Note the following limitations when working with tagging:

 ■ You can associate 10 tags with an object, and each tag associated with an object must
have unique tag keys.

 ■ A tag key can be up to 128 Unicode characters in length, and tag values can be up to
256 Unicode characters in length.

 Keys and values are case sensitive.
 Developers commonly categorize their fi les in a folder-like structure in the key name

(remember, Amazon S3 has a fl at fi le structure), such as the following:

 photos/photo1.jpg
 project/projectx/document.pdf
 project/projecty/document2.pdf

AWS Object Storage Services 107

 This allows you to have only one-dimensional categorization, meaning that everything
under a prefi x is one category.

 With tagging, you now have another dimension. If your photo1 is in project x category,
tag the object accordingly. In addition to data classifi cation, tagging offers the following
benefi ts:

 ■ Object tags enable fine-grained access control of permissions. For example, you could
grant an AWS Identity and Access Management (IAM) user permissions to read-only
objects with specific tags.

 ■ Object tags enable fine-grained object lifecycle management in which you can specify a
tag-based filter, in addition to key name prefix, in a lifecycle rule.

 ■ When using Amazon S3 analytics, you can configure filters to group objects together
for analysis by object tags, by key name prefix, or by both prefix and tags.

 ■ You can also customize Amazon CloudWatch metrics to display information by specific
tag filters. The following sections provide details.

 Cross-Origin Resource Sharing
Cross-Origin Resource Sharing (CORS) defi nes a way for client web applications that
are loaded in one domain to interact with resources in a different domain. With CORS
support in Amazon S3, you can build client-side web applications with Amazon S3 and
selectively allow cross-origin access to your Amazon S3 resources while avoiding the need
to use a proxy.

 Cross-origin request Scenario

 Suppose that you are hosting a website in an Amazon S3 bucket named website on
Amazon S3. Your users load the website endpoint: http://website.s3-website-us-
east-1.amazonaws.com .

 Your website will use JavaScript on the web pages that are stored in this bucket to be
able to make authenticated GET and PUT requests against the same bucket by using the
Amazon S3 API endpoint for the bucket: website.s3.amazonaws.com .

 A browser would normally block JavaScript from allowing those requests, but with
CORS, you can confi gure your bucket to enable cross-origin requests explicitly from
website.s3-website-us-east-1.amazonaws.com .

 Suppose that you host a web font from your Amazon S3 bucket. Browsers
require a CORS check (also referred as a preflight check) for loading web
fonts, so you would configure the bucket that is hosting the web font to
allow any origin to make these requests.

108 Chapter 3 ■ Hello, Storage

 There are no coding exercises as part of the exam, but these case studies
can help you visualize how to use Amazon S3 and CORS.

 Operations on Objects
 There are a number of different operations (API calls) that you can perform on Amazon S3
buckets. We will summarize a few of the most basic operations in this section. For more
comprehensive information on all of the different operations that you can perform, refer to
the Amazon S3 API Reference document available in the AWS Documentation repository.

 WriTe An obJeCT

 This sample Java code shows how to add an object to a bucket:

 import boto3

 # Create an S3 client
 s3 = boto3.client('s3')

 filename = 'file.txt'
 bucket_name = 'my-bucket'

 # Uploads the given file using a managed uploader, which will split up large
 # files automatically and upload parts in parallel.
 s3.upload_file(filename, bucket_name, filename)

 reAding obJeCTS

 The following Java code example demonstrates getting a stream on the object data of a par-
ticular object and processing the response:

 AmazonS3 s3Client = new AmazonS3Client(new ProfileCredentialsProvider());
 S3Object object = s3Client.getObject(
 new GetObjectRequest(bucketName, key));
 InputStream objectData = object.getObjectContent();
 // Process the objectData stream.
 objectData.close();

 deleTing obJeCTS

 You can delete one or more objects directly from Amazon S3. You have the following
options when deleting an object:

Delete a Single Object Amazon S3 provides the DELETE API to delete one object in a single
HTTP request.

 Delete Multiple Objects Amazon S3 also provides the Multi-Object Delete API to delete
up to 1,000 objects in a single HTTP request.

AWS Object Storage Services 109

The following Java sample demonstrates deleting an object by providing the bucket name
and key name:

AmazonS3 s3client = new AmazonS3Client(new ProfileCredentialsProvider());
s3client.deleteObject(new DeleteObjectRequest(bucketName, keyName));

This next Java sample demonstrates deleting a versioned object by providing a bucket
name, object key, and a version ID:

AmazonS3 s3client = new AmazonS3Client(new ProfileCredentialsProvider());
s3client.deleteObject(new DeleteVersionRequest(bucketName, keyName,
versionId));

List Keys The following Java code example lists object keys in a bucket:

private static String bucketName = "***bucket name***";
AmazonS3 s3client = new AmazonS3Client(new ProfileCredentialsProvider());
System.out.println("Listing objects");
 final ListObjectsV2Request req = new ListObjectsV2Request().
withBucketName(bucketName).withMaxKeys(2);
 ListObjectsV2Result result;
 do {
 result = s3client.listObjectsV2(req);

 for (S3ObjectSummary objectSummary :
 result.getObjectSummaries()) {
 System.out.println(" - " + objectSummary.getKey() + " " +
 "(size = " + objectSummary.getSize() +
 ")");
 }
System.out.println("Next Continuation Token : " +
result.getNextContinuationToken());

req.setContinuationToken(result.getNextContinuationToken());
 } while(result.isTruncated() == true);

Storage Classes
There are several different storage classes from which to choose when using Amazon S3.
Your choice will depend on your level of need for durability, availability, and performance
for your application.

Amazon S3 Standard

Amazon S3 Standard offers high-durability, high-availability, and performance-
object storage for frequently accessed data. Because it delivers low latency and high

110 Chapter 3 ■ Hello, Storage

throughput, Amazon S3 Standard is ideal for a wide variety of use cases, including the
following:

 ■ Cloud applications

 ■ Dynamic websites

 ■ Content distribution

 ■ Mobile and gaming applications

 ■ Big data analytics

Amazon S3 Standard is designed to achieve durability of 99.999999999 percent of objects
(designed to sustain the loss of data in two facilities) and availability of 99.99 percent over a
given year (which is backed by the Amazon S3 Service Level Agreement).

Essentially, the data in Amazon S3 is spread out over multiple facilities within a region.
You can lose access to two facilities and still have access to your files.

Reduced Redundancy Storage

Reduced Redundancy Storage (RRS) (or Reduced_Redundancy) is an Amazon S3 storage
option that enables customers to store noncritical, reproducible data at lower levels of
redundancy than Amazon S3 Standard storage. It provides a highly available solution for
distributing or sharing content that is durably stored elsewhere or for objects that can easily
be regenerated, such as thumbnails or transcoded media.

The RRS option stores objects on multiple devices across multiple facilities, providing
400 times the durability of a typical disk drive, but it does not replicate objects as many
times as Amazon S3 Standard storage.

RRS is designed to achieve availability of 99.99 percent (same as Amazon S3 Standard)
and durability of 99.99 percent (designed to sustain the loss of data in a single facility).

Amazon S3 Standard-Infrequent Access

Amazon S3 Standard-Infrequent Access (Standard_IA) is an Amazon S3 storage class for
data that is accessed less frequently but requires rapid access when needed. It offers the
same high durability, throughput, and low latency of Amazon S3 Standard, but it has a
lower per-gigabyte storage price and per-gigabyte retrieval fee.

The ideal use cases for using Standard_IA include the following:

 ■ Long-term storage

 ■ Backups

 ■ Data stores for disaster recovery

Standard_IA is set at the object level and can exist in the same bucket as Amazon S3
Standard, allowing you to use lifecycle policies to transition objects automatically between
storage classes without any application changes.

Standard_IA is designed to achieve availability of 99.9 percent (but low retrieval time)
and durability of 99.999999999 percent of objects over a given year (same as Amazon S3
Standard).

AWS Object Storage Services 111

Amazon S3 One Zone-Infrequent Access

Amazon S3 One Zone-Infrequent Access (OneZone_IA) is similar to Amazon S3
Standard-IA. The difference is that the data is stored only in a single Availability Zone
instead of a minimum of three Availability Zones. Because of this, storing data in OneZone_IA
costs 20 percent less than storing it in Standard_IA. Because of this approach, however,
any data stored in this storage class will be permanently lost in the event of an Availability
Zone destruction.

Amazon Simple Storage Service Glacier

Amazon Simple Storage Service Glacier (Amazon S3 Glacier) is a secure, durable, and
extremely low-cost storage service for data archiving that offers the same high durability as
Amazon S3. Unlike Amazon S3 Standard’s immediate retrieval times, Amazon S3 Glacier’s
retrieval times run from a few minutes to several hours.

To keep costs low, Amazon S3 Glacier provides three archive access speeds, ranging
from minutes to hours. This allows you to choose an option that will meet your recovery
time objective (RTO) for backups in your disaster recovery plan.

Amazon S3 Glacier can also be used to secure archives that need to be kept due to a com-
pliance policy. For example, you may need to keep certain records for seven years before
deletion and only need access during an audit. Amazon S3 Glacier allows redundancy in
your files when audits do occur, but at an extremely low cost in exchange for slower access.

vAulTS

Amazon S3 Glacier uses vaults as containers to store archives. You can view a list of your
vaults in the AWS Management Console and use the AWS software development kits
(SDKs) to perform a variety of vault operations, such as the following:

 ■ Create vault

 ■ Delete vault

 ■ Lock vault

 ■ List vault metadata

 ■ Retrieve vault inventory

 ■ Tag vaults for filtering

 ■ Configure vault notifications

You can also set access policies for each vault to grant or deny specific activities to users.
You can have up to 1,000 vaults per AWS account.

Amazon S3 Glacier provides a management console to create and delete vaults. All other
interactions with Amazon S3 Glacier, however, require that you use the AWS CLI or write
code.

vAulT loCk

Amazon S3 Glacier Vault Lock allows you to deploy and enforce compliance controls easily
on individual Amazon S3 Glacier vaults via a lockable policy. You can specify controls such as
Write Once Read Many (WORM) in a Vault Lock policy and lock the policy from future
edits. Once locked, the policy becomes immutable, and Amazon S3 Glacier will enforce the
prescribed controls to help achieve your compliance objectives.

112 Chapter 3 ■ Hello, Storage

 Once you initiate a lock, you have 24 hours to validate your lock policy to ensure that
it is working as you intended. Until that 24 hours is up, you can abort the lock and make
changes. After 24 hours, that Vault Lock is permanent, and you will not be able to change it.

 ArCHiveS

 An archive is any object, such as a photo, video, or document that you store in a vault. It
is a base unit of storage in Amazon S3 Glacier. Each archive has a unique ID and optional
description. When you upload an archive, Amazon S3 Glacier returns a response that
includes an archive ID. This archive ID is unique in the region in which the archive is
stored. You can retrieve an archive using its ID, but not its description.

 Amazon S3 Glacier provides a management console to create and delete
vaults. However, all other interactions with Amazon S3 Glacier require that
you use the AWS CLI or write code.

 To upload archives into your vaults, you must either use the AWS CLI or write code to
make requests, using either the REST API directly or the AWS SDKs.

 mAinTAining ClienT-Side ArCHive meTAdATA

 Except for the optional archive description, Amazon S3 Glacier does not support any addi-
tional metadata for the archives. When you upload an archive, Amazon S3 Glacier assigns
an ID—an opaque sequence of characters—from which you cannot infer any meaning
about the archive. Metadata about the archives can be maintained on the client side. The
metadata can include identifying archive information such as the archive name.

 If you use Amazon S3, when you upload an object to a bucket, you
can assign the object an object key such as MyDocument.txt or
SomePhoto.jpg . In Amazon S3 Glacier, you cannot assign a key name to
the archives you upload.

 If you maintain client-side archive metadata, note that Amazon S3 Glacier maintains
a vault inventory that includes archive IDs and any descriptions that you provided during
the archive upload. We recommend that you occasionally download the vault inventory to
reconcile any issues in the client-side database that you maintain for the archive metadata.
Amazon S3 Glacier takes vault inventory approximately once a day. When you request a
vault inventory, Amazon S3 Glacier returns the last inventory it prepared, which is a point-
in-time snapshot.

 uSing THe AWS SdkS WiTH AmAZon S3 glACier

 AWS provides SDKs for you to develop applications for Amazon S3 Glacier in various pro-
gramming languages.

 The AWS SDKs for Java and .NET offer both high-level and low-level wrapper libraries.
The SDK libraries wrap the underlying Amazon S3 Glacier API, simplifying your program-
ming tasks. The low-level wrapper libraries map closely to the underlying REST API sup-
ported by Amazon S3 Glacier. To simplify application development further, these SDKs also

AWS Object Storage Services 113

offer a higher-level abstraction for some of the operations in the high-level API. For exam-
ple, when uploading an archive using the low-level API, if you need to provide a checksum of
the payload, the high-level API computes the checksum for you.

 enCrypTion

 All data in Amazon S3 Glacier will be encrypted on the server side using key management
and key protection, which Amazon S3 Glacier handles using AES-256 encryption. If you
want, you can manage your own keys and encrypt the data prior to uploading.

 reSToring obJeCTS from AmAZon S3 glACier

 Objects in the Amazon S3 Glacier storage class are not immediately accessible and cannot
be retrieved via copy/paste once they have been moved to Amazon S3 Glacier.

 Remember that Amazon S3 Glacier charges a retrieval fee for retrieving objects. When
you restore an archive, you pay for both the archive and the restored copy. Because there is
a storage cost for the copy, restore objects only for the duration that you need them. If you
need a permanent copy of the object, create a copy of it in your Amazon S3 bucket.

 ArCHive reTrievAl opTionS

 There are several different options for restoring archived objects from Amazon S3 Glacier
to Amazon S3, as shown in Table 3.4 .

 TA b le 3 . 4 Amazon S3 Glacier Archive Retrieval Options

Retrieval Option Retrieval Time Note

Expedited retrieval 1–5 minutes

On-Demand Processed immediately the vast majority of the
time. During high demand, may fail to process,
and you will be required to repeat the request.

Provisioned Guaranteed to process immediately. After
purchasing provisioned capacity, all of your
retrievals are processed in this manner.

Standard retrieval 3–5 hours

Bulk retrieval 5–12 hours Lowest-cost option

 Do not use Amazon S3 Glacier for backups if your RTO is shorter than the
lowest Amazon S3 Glacier retrieval time for your chosen retrieval option.
For example, if your RTO requires data retrieval of two hours in a disaster
recovery scenario, then Amazon S3 Glacier standard retrieval will not meet
your RTO.

114 Chapter 3 ■ Hello, Storage

Storage Class Comparison

Table 3.5 shows a comparison of the Amazon S3 storage classes. This is an important table
for the certification exam. Many storage decision questions on the exam center on the level
of durability, availability, and cost. The table’s comparisons can help you make the right
choice for a question, in addition to understanding trade-offs when choosing a data store
for an application.

TA b le 3 .5 Amazon S3 Storage Class Comparison

 Standard Standard_IA OneZone_IA
Amazon
S3 Glacier

Designed for durability 99.999999999%*

Designed for availability 99.99% 99.9% 99.%% N/A

Availability SLAs 99.9% 99% N/A

Availability zones ≥3 1 ≥3

Minimum capacity charge
per object

N/A 128 KB* N/A

Minimum storage duration
charge

N/A 30 days 90 days

Retrieval fee N/A Per GB retrieved*

First byte latency milliseconds Minutes
or hours*

Storage type Object

Lifecycle transitions Yes

* Because One Zone_IA stores data in a single Availability Zone, data stored in this storage class will be lost
in the event of Availability Zone destruction. Standard_IA has a minimum object size of 128 KB. Smaller
objects will be charged for 128 KB of storage. Amazon S3 Glacier allows you to select from multiple retrieval
tiers based upon your needs.

Data Consistency Model
When deciding whether to choose Amazon S3 or Amazon EBS for your application, one
important aspect to consider is the consistency model of the storage option. Amazon EBS

AWS Object Storage Services 115

provides read-after-write consistency for all operations, whereas Amazon S3 provides read-
after-write consistency only for PUT s of new objects.

 Amazon S3 offers eventual consistency for overwrite PUT s and DELETE s in all regions,
and updates to a single key are atomic. For example, if you PUT an object to update an
existing object and immediately attempt to read that object, you may read either the old
data or the new data.

 For PUT operations with new objects not yet in Amazon S3, you will experience read-
after-write consistency. For PUT updates when you are overwriting an existing fi le or DELETE
operations, you will experience eventual consistency.

 Amazon S3 does not currently support object locking. If two PUT requests
are simultaneously made to the same key, the request with the latest time
stamp wins. If this is an issue, you will be required to build an object lock-
ing mechanism into your application.

 You may be wondering why Amazon S3 was designed with this style of consistency. The
consistency, availability, and partition tolerance theorem (CAP theorem) states that you
can highly achieve only two out of the three dimensions for a particular storage design. The
CAP theorem is shown in Figure 3.6 .

 f i gu r e 3 .6 CAP theorem

Consistency

Availability

C + A C + P

A + P

Partition
Tolerance

(Durability)

 Think of partition tolerance in this equation as the storage durability. Amazon S3 was
designed for high availability and high durability (multiple copies across multiple facilities),
so the design trade-off is the consistency. When you PUT an object, you are not only putting
the object into one location but into three, meaning that there is either a slightly increased
latency on the read-after-write consistency of a PUT or eventual consistency on the PUT

116 Chapter 3 ■ Hello, Storage

update or DELETE operations while Amazon S3 reconciles all copies. You do not know, for
instance, which facility a file is coming from when you GET an object. If you had recently
written an object, it may have propagated to only two facilities, so when you try to read the
object right after your PUT, you may receive the old object or the new object.

Concurrent Applications

As a developer, it is critical to consider the way your application works and the consistency
needs of your files. If your application requires read-after-write consistency on all opera-
tions, then Amazon S3 is not going to be the right choice for that application. If you are
working with concurrent applications, it is important to know how your application per-
forms PUT, GET, and DELETE operations concurrently to know whether eventual consistency
will not be the right choice for your application.

In Figure 3.7, Amazon S3, both W1 (write 1) and W2 (write 2) complete before the start
of R1 (read 1) and R2 (read 2). For a consistent read, R1 and R2 both return color = ruby.
For an eventually consistent read, R1 and R2 might return color = red, color = ruby,
or no results, depending on the amount of time that has elapsed.

f i gu r e 3 .7 Consistency example 1

writes
W1

color = red

R1
Consistent: W2

Eventual: W1, W2, or No Results

Timeline

Domain = MyDomain, Item = StandardFez

Client 1

reads

writes

reads

W2
color = ruby

R2
Consistent: W2

Eventual: W1, W2, or No Results

Client 2

In Figure 3.8, W2 does not complete before the start of R1. Therefore, R1 might return
color = ruby or color = garnet for either a consistent read or an eventually consistent
read. Depending on the amount of time that has elapsed, an eventually consistent read
might also return no results.

AWS Object Storage Services 117

f i gu r e 3 . 8 Consistency example 2

writes
W1

color = ruby

R1
Consistent: W1 or W2

Eventual: W1, W2, or No Results

Timeline

Domain = MyDomain, Item = StandardFez

Client 1

reads

writes

reads

W2
color = garnet

R2
Consistent: W2

Eventual: W1, W2, or No Results

Client 2

For a consistent read, R2 returns color = garnet. For an eventually consistent read, R2
might return color = ruby, color = garnet, or no results depending on the amount of
time that has elapsed.

In Figure 3.9, client 2 performs W2 before Amazon S3 returns a success for W1, so the
outcome of the final value is unknown (color = garnet or color = brick). Any subse-
quent reads (consistent read or eventually consistent) might return either value. Depending
on the amount of time that has elapsed, an eventually consistent read might also return no
results.

f i gu r e 3 . 9 Consistency example 3

writes
W1

color = garnet

R1
Consistent: W1 or W2

Eventual: W1, W2, or No Results

Timeline

Domain = MyDomain, Item = StandardFez

Client 1

reads

writes

reads

W2
color = brick

R2
Consistent: W1 or W2

Eventual: W1, W2, or No Results

Client 2

118 Chapter 3 ■ Hello, Storage

 If you need a strongly consistent data store, choose a different data store
than Amazon S3 or code consistency checks into your application.

 Presigned URLs
 A presigned URL is a way to grant access to an object. One way that developers use pre-
signed URLs is to allow users to upload or download objects without granting them direct
access to Amazon S3 or the account.

 For example, if you need to send a document hosted in an Amazon S3 bucket to an
external reviewer who is outside of your organization, you do not want to grant them
access using IAM to your bucket or objects. Instead, generate a presigned URL to the
object and send that to the user to download your fi le.

 Another example is if you need someone external to your organization to upload a fi le.
Maybe a media company is designing the graphics for the website you are developing. You
can create a presigned URL for them to upload their artifacts directly to Amazon S3 with-
out granting them access to your Amazon S3 bucket or account.

 Anyone with valid security credentials can create a presigned URL. For you to upload an
object successfully, however, the presigned URL must be created by someone who has per-
mission to perform the operation upon which the presigned URL is based.

 The following Java code example demonstrates generating a presigned URL:

 AmazonS3 s3Client = new AmazonS3Client(new ProfileCredentialsProvider());

 java.util.Date expiration = new java.util.Date();
long msec = expiration.getTime();
 msec += 1000 * 60 * 60 ; // Add 1 hour.
 expiration.setTime(msec);

 GeneratePresignedUrlRequest generatePresignedUrlRequest = new
GeneratePresignedUrlRequest(bucketName, objectKey);
 generatePresignedUrlRequest.setMethod(HttpMethod.PUT);
 generatePresignedUrlRequest.setExpiration(expiration);

 URL s = s3client.generatePresignedUrl(generatePresignedUrlRequest);

// Use the pre-signed URL to upload an object.

 Amazon S3 presigned URLs cannot be generated within the AWS Manage-
ment Console, but they can be generated using the AWS CLI or AWS SDKs.

 Encryption
Data protection refers to protecting data while in transit (as it travels to and from Amazon
S3) and at rest (while it is stored on Amazon S3 infrastructure). As a best practice, all sensi-
tive data stored in Amazon S3 should be encrypted, both at rest and in transit.

AWS Object Storage Services 119

You can protect data in transit by using Amazon S3 SSL API endpoints, which ensures
that all data sent to and from Amazon S3 is encrypted using the HTTPS protocol while in
transit.

For data at rest in Amazon S3, you can encrypt it using different options of Server-Side
Encryption (SSE). Your objects in Amazon S3 are encrypted at the object level as they are
written to disk in the data centers and then decrypted for you when you access the objects
using AES-256.

You can also use client-side encryption, with which you encrypt the objects before
uploading to Amazon S3 and then decrypt them after you have downloaded them. Some
customers, for some workloads, will use a combination of both server-side and client-side
encryption for extra protection.

Envelope Encryption Concepts

Before examining the different types of encryption available, we will review envelope
encryption, which several AWS services use to provide a balance between performance and
security.

The following steps describe how envelope encryption works:

1. A data key is generated by the AWS service at the time you request your data to be
encrypted, as shown in Figure 3.10.

f i gu r e 3 .10 Generating a data key

Key
Generator

Data Key

2. The data key generated in step 1 is used to encrypt your data, as shown in Figure 3.11.

f i gu r e 3 .11 Encrypting the data

Plaintext
Data

DATA

Encrypted
Data

Data Key

3. The data key is then encrypted with a key-encrypting key unique to the service storing
your data, as shown in Figure 3.12.

f i gu r e 3 .12 Encrypted data key

Existing Key
Encrypting Key

Encrypted Data
Key

Data Key

120 Chapter 3 ■ Hello, Storage

 4. The encrypted data key and the encrypted data are then stored by the AWS storage
service (such as Amazon S3 or Amazon EBS) on your behalf. This is shown in
 Figure 3.13 .

 f i gu r e 3 .13 Encrypted data and key storage

Encrypted Data
Key

Encrypted
Data

AWS Storage
Services

 When you need access to your plain-text data, this process is reversed. The encrypted
data key is decrypted using the key-encrypting key, and the data key is then used to decrypt
your data.

 The important point to remember regarding envelope encryption is that
the key-encrypting keys used to encrypt data keys are stored and managed
separately from the data and the data keys.

 Server-Side Encryption (SSE)

 You have three, mutually exclusive options for how you choose to manage your encryption
keys when using SSE with Amazon S3.

SSE-S3 (Amazon S3 managed keys) You can set an API fl ag or check a box in the AWS
Management Console to have data encrypted before it is written to disk in Amazon S3.
Each object is encrypted with a unique data key. As an additional safeguard, this key is
encrypted with a periodically-rotated master key managed by Amazon S3. AES-256 is used
for both object and master keys. This feature is offered at no additional cost beyond what
you pay for using Amazon S3.

 SSE-C (Customer-provided keys) You can use your own encryption key while upload-
ing an object to Amazon S3. This encryption key is used by Amazon S3 to encrypt your
data using AES-256. After the object is encrypted, the encryption key you supplied is
deleted from the Amazon S3 system that used it to encrypt your data. When you retrieve
this object from Amazon S3, you must provide the same encryption key in your request.
Amazon S3 verifi es that the encryption key matches, decrypts the object, and returns the
object to you. This feature is also offered at no additional cost beyond what you pay for
using Amazon S3.

 SSE-KMS (AWS KMS managed encryption keys) You can encrypt your data in Amazon
S3 by defi ning an AWS KMS master key within your account to encrypt the unique object
key (referred to as a data key) that will ultimately encrypt your object. When you upload
your object, a request is sent to AWS KMS to create an object key. AWS KMS generates this
object key and encrypts it using the master key that you specifi ed earlier. Then, AWS KMS

AWS Object Storage Services 121

returns this encrypted object key along with the plaintext object key to Amazon S3. The
Amazon S3 web server encrypts your object using the plaintext object key and stores the
now encrypted object (with the encrypted object key) and deletes the plaintext object key
from memory.

 To retrieve this encrypted object, Amazon S3 sends the encrypted object key to AWS KMS,
which then decrypts the object key using the correct master key and returns the decrypted
(plaintext) object key to Amazon S3. With the plaintext object key, Amazon S3 decrypts
the encrypted object and returns it to you. Unlike SSE-S3 and SSE-C, using SSE-KMS does
incur an additional charge. Refer to the AWS KMS pricing page on the AWS website for
more information.

 For maximum simplicity and ease of use, use SSE with AWS managed
keys (SSE-S3 or SSE-KMS). Also, know the difference between SSE-S3,
SSE-KMS, and SSE-C for SSE.

 Client-Side Encryption

Client-side encryption refers to encrypting your data before sending it to Amazon S3. You
have two options for using data encryption keys.

 ClienT-Side mASTer key

 The fi rst option is to use a client-side master key of your own. When uploading an object,
you provide a client-side master key to the Amazon S3 encryption client (for example,
 AmazonS3EncryptionClient when using the AWS SDK for Java). The client uses this mas-
ter key only to encrypt the data encryption key that it generates randomly. When down-
loading an object, the client fi rst downloads the encrypted object from Amazon S3 along
with the metadata. Using the material description in the metadata, the client fi rst deter-
mines which master key to use to decrypt the encrypted data key. Then the client uses that
master key to decrypt the data key and uses it to decrypt the object. The client-side master
key that you provide can be either a symmetric key or a public/private key pair.

 The process works as follows:

 1. The Amazon S3 encryption client locally generates a one-time-use symmetric key
(also known as a data encryption key or data key) and uses this data key to encrypt
the data of a single Amazon S3 object (for each object, the client generates a separate
data key).

 2. The client encrypts the data encryption key using the master key that you provide.

 3. The client uploads the encrypted data key and its material description as part of
the object metadata. The material description helps the client later determine which
client-side master key to use for decryption (when you download the object, the client
decrypts it).

 4. The client then uploads the encrypted data to Amazon S3 and also saves the encrypted
data key as object metadata (x-amz-meta-x-amz-key) in Amazon S3 by default.

122 Chapter 3 ■ Hello, Storage

AWS kmS-mAnAged CuSTomer mASTer key (Cmk)

The second option is to use an AWS KMS managed customer master key (CMK). This process is
similar to the process described earlier for using KMS-SSE, except that it is used for data at rest
instead of data in transit. There is an Amazon S3 encryption client in the AWS SDK for Java.

using an AWS kmS managed Cmk (AWS Sdk for Java)

import java.io.ByteArrayInputStream;
import java.util.Arrays;

import junit.framework.Assert;

import org.apache.commons.io.IOUtils;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Region;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3EncryptionClient;
import com.amazonaws.services.s3.model.CryptoConfiguration;
import com.amazonaws.services.s3.model.KMSEncryptionMaterialsProvider;
import com.amazonaws.services.s3.model.ObjectMetadata;
import com.amazonaws.services.s3.model.PutObjectRequest;
import com.amazonaws.services.s3.model.S3Object;

public class testKMSkeyUploadObject {

 private static AmazonS3EncryptionClient encryptionClient;

 public static void main(String[] args) throws Exception {
 String bucketName = "***bucket name***";
 String objectKey = "ExampleKMSEncryptedObject";
 String kms_cmk_id = "***AWS KMS customer master key ID***";

 KMSEncryptionMaterialsProvider materialProvider = new
KMSEncryptionMaterialsProvider(kms_cmk_id);

 encryptionClient = new AmazonS3EncryptionClient(new ProfileCredentials
Provider(), materialProvider,
 new CryptoConfiguration().withKmsRegion(Regions.US_EAST_1))
 .withRegion(Region.getRegion(Regions.US_EAST_1));

 // Upload object using the encryption client.

 byte[] plaintext = "Hello World, S3 Client-side Encryption Using
Asymmetric Master Key!"
 .getBytes();

AWS Object Storage Services 123

System .out. println ("plaintext's length: " + plaintext.length);
 encryptionClient.putObject(new PutObjectRequest (bucketName, objectKey,
 new ByteArrayInputStream (plaintext), new ObjectMetadata ()));

// Download the object.
S3Object downloadedObject = encryptionClient.getObject(bucketName,

 objectKey);
 byte[] decrypted = IOUtils .toByteArray(downloadedObject
 .getObjectContent());

// Verify same data.
Assert .assertTrue(Arrays .equals(plaintext, decrypted));

 }
 }

 Know the difference between CMK and client-side master keys for
client-side encryption.

 Access Control
 By default, all Amazon S3 resources—buckets, objects, and related sub-resources (for
example, lifecycle confi guration and website confi guration)—are private. Only the resource
owner, an account that created it, can access the resource. The resource owner can option-
ally grant access permissions to others by writing an access policy.

 Amazon S3 offers access policy options broadly categorized as resource-based policies
and user policies. Access policies that you attach to your resources (buckets and objects) are
referred to as resource-based policies . For example, bucket policies and ACLs are resource-
based policies. You can also attach access policies to users in your account. These are called
 user policies . You can choose to use resource-based policies, user policies, or some combi-
nation of both to manage permissions to your Amazon S3 resources. The following sections
provide general guidelines for managing permissions.

 Using Bucket Policies and User Policies

 Bucket policy and user policy are two of the access policy options available for you to grant
permissions to your Amazon S3 resources. Both use a JSON-based access policy language,
as do all AWS services that use policies.

 A bucket policy is attached only to Amazon S3 buckets, and it specifi es what actions
are allowed or denied for whichever principals on the bucket to which the bucket policy is
attached (for instance, allow user Alice to PUT but not DELETE objects in the bucket).

 A user policy is attached to IAM users to perform or not perform actions on your AWS
resources. For example, you may choose to grant an IAM user in your account access to

124 Chapter 3 ■ Hello, Storage

one of your buckets and allow the user to add, update, and delete objects. You can grant
them access with a user policy.

 Now we will discuss the differences between IAM policies and Amazon S3 bucket
policies. Both are used for access control, and they are both written in JSON using the
AWS access policy language. However, unlike Amazon S3 bucket policies, IAM poli-
cies specify what actions are allowed or denied on what AWS resources (such as, allow
ec2:TerminateInstance on the Amazon EC2 instance with instance_id=i8b3620ec). You
attach IAM policies to IAM users, groups, or roles, which are then subject to the permis-
sions that you have defi ned. Instead of attaching policies to the users, groups, or roles,
bucket policies are attached to a specifi c resource, such as an Amazon S3 bucket.

 Managing Access with Access Control Lists

Access with access control lists (ACLs) are resource-based access policies that you can use
to manage access to your buckets and objects, including granting basic read/write permis-
sions to other accounts.

 There are limits to managing permissions using ACLs. For example, you can grant
permissions only to other accounts; you cannot grant permissions to users in your
account. You cannot grant conditional permissions, nor can you explicitly deny permis-
sions using ACLs.

 ACLs are suitable only for specifi c scenarios (for example, if a bucket owner allows
other accounts to upload objects), and permissions to these objects can be managed only
using an object ACL by the account that owns the object.

 You can only grant access to other accounts using ACLs—not users in your
own account.

 Defense in Depth—Amazon S3 Security

 Amazon S3 provides comprehensive security and compliance capabilities that meet the
most stringent regulatory requirements, and it gives you fl exibility in the way that you man-
age data for cost optimization, access control, and compliance. With this fl exibility, how-
ever, comes the responsibility of ensuring that your content is secure.

 You can use an approach known as defense in depth in Amazon S3 to secure your data.
This approach uses multiple layers of security to ensure redundancy if one of the multiple
layers of security fails.

 Figure 3.14 represents defense in depth visually. It contains several Amazon S3 objects
(A) in a single Amazon S3 bucket (B). You can encrypt these objects on the server side or
the client side, and you can also confi gure the bucket policy such that objects are accessible
only through Amazon CloudFront, which you can accomplish through an origin access
identity (C). You can then confi gure Amazon CloudFront to deliver content only over
HTTPS in addition to using your own domain name (D).

AWS Object Storage Services 125

f i gu r e 3 .14 Defense in depth on Amazon S3

Configure CloudFront to deliver content
over HTTPS using the custom domain
name with an SSL certificate.

D.

C.

B.

A.

Amazon CloudFront (a content delivery network)

Amazon S3 bucket

Encrypted objects

Configure origin access identity to prevent
Amazon S3 objects from being directly accessed
publicly from an Amazon S3 URL.

Configure access permissions to the bucket
with a bucket policy.

Server-side encryption via:
1. Amazon S3 managed keys (SSE-S3)
2. AWS KMS managed keys (SSE-KMS)
3. Customer-provided keys (SSE-C)

Client-side encryption via:
1. AWS KMS managed keys
2. Customer-supplied client-side master keys

To meet defense in depth requirements on Amazon S3:

 ■ Data must be encrypted at rest and during transit.

 ■ Data must be accessible only by a limited set of public IP addresses.

 ■ Data must not be publicly accessible directly from an Amazon S3 URL.

 ■ A domain name is required to consume the content.

You can apply policies to Amazon S3 buckets so that only users with appropriate permis-
sions are allowed to access the buckets. Anonymous users (with public-read/public-read-write
permissions) and authenticated users without the appropriate permissions are prevented from
accessing the buckets.

You can also secure access to objects in Amazon S3 buckets. The objects in Amazon S3
buckets can be encrypted at rest and during transit to provide end-to-end security from the
source (in this case, Amazon S3) to your users.

Query String Authentication
You can provide authentication information using query string parameters. Using query
parameters to authenticate requests is useful when expressing a request entirely in a URL.
This method is also referred to as presigning a URL.

With presigned URLs, you can grant temporary access to your Amazon S3 resources.
For example, you can embed a presigned URL on your website, or alternatively use it in a
command line client (such as Curl), to download objects.

126 Chapter 3 ■ Hello, Storage

 The following is an example presigned URL:

 https://s3.amazonaws.com/examplebucket/test.txt
 ?X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential= <your-access-key-id> /20130721/us-east-1/s3/aws4_request
 &X-Amz-Date=20130721T201207Z
 &X-Amz-Expires=86400
 &X-Amz-SignedHeaders=host
 &X-Amz-Signature= <signature-value>

 In the example URL, note the following:

 ■ The line feeds are added for readability.

 ■ The X-Amz-Credential value in the URL shows the / character only for readability. In
practice, it should be encoded as %2F .

 Hosting a Static Website
 If your website contains static content and optionally client-side scripts, then you can host
your static website directly in Amazon S3 without the use of web-hosting servers.

 To host a static website, you confi gure an Amazon S3 bucket for website hosting
and upload your website content to the bucket. The website is then available at the AWS
Region–specifi c website endpoint of the bucket in one of the following formats:

 <bucket-name>.s3-website-<AWS-region>.amazonaws.com
 <bucket-name>.s3-website.<AWS-region>.amazonaws.com

 Instead of accessing the website by using an Amazon S3 website endpoint, use your own
domain (for instance, example.com) to serve your content. The following steps allow you to
confi gure your own domain:

 1. Register your domain with the registrar of your choice. You can use Amazon Route 53
to register your domain name or any other third-party domain registrar.

 2. Create your bucket in Amazon S3 and upload your static website content.

 3. Point your domain to your Amazon S3 bucket using either of the following as your
DNS provider:

 ■ Amazon Route 53

 ■ Your third-party domain name registrar

 Amazon S3 does not support server-side scripting or dynamic content. We discuss other
AWS options for that throughout this study guide.

 Static websites can be hosted in Amazon S3.

AWS Object Storage Services 127

MFA Delete
MFA is another way to control deletes on your objects in Amazon S3. It does so by adding
another layer of protection against unintentional or malicious deletes, requiring an autho-
rized request against Amazon S3 to delete the object. MFA also requires a unique code
from a token or an authentication device (virtual or hardware). These devices provide a
unique code that will then allow you to delete the object. Figure 3.15 shows what would be
required for a user to execute a delete operation on an object when MFA is enabled.

f i gu r e 3 .15 MFA Delete

Requires two forms of authentication:

Your security credentials Unique code from an approved
authentication device

(what you know) (what you have)

Cross-Region Replication
Cross-region replication (CRR) is a bucket-level configuration that enables automatic,
asynchronous copying of objects across buckets in different AWS Regions. We refer to these
buckets as the source bucket and destination bucket. These buckets can be owned by differ-
ent accounts.

To activate this feature, add a replication configuration to your source bucket to direct
Amazon S3 to replicate objects according to the configuration. In the replication configura-
tion, provide information including the following:

 ■ The destination bucket

 ■ The objects that need to be replicated

 ■ Optionally, the destination storage class (otherwise the source storage class will be used)

The replicas that are created in the destination bucket will have these same characteris-
tics as the source objects:

 ■ Key names

 ■ Metadata

 ■ Storage class (unless otherwise specified)

 ■ Object ACL

All data is encrypted in transit across AWS Regions using SSL.

128 Chapter 3 ■ Hello, Storage

 You can replicate objects from a source bucket to only one destination bucket. After
Amazon S3 replicates an object, the object cannot be replicated again. For example, even
after you change the destination bucket in an existing replication confi guration, Amazon
S3 will not replicate it again.

 After Amazon S3 replicates an object using CRR, the object cannot be rep-
licated again (such as to another destination bucket).

 Requirements for CRR include the following:

 ■ Versioning is enabled for both the source and destination buckets.

 ■ Source and destination buckets must be in different AWS Regions.

 ■ Amazon S3 must be granted appropriate permissions to replicate files.

 VPC Endpoints
 A virtual private cloud (VPC) endpoint enables you to connect your VPC privately to
Amazon S3 without requiring an internet gateway, network address translation (NAT)
device, virtual private network (VPN) connection, or AWS Direct Connect connection.
Instances in your VPC do not require public IP addresses to communicate with the
resources in the service. Traffi c between your VPC and Amazon S3 does not leave
the Amazon network.

 Amazon S3 uses a gateway type of VPC endpoint. The gateway is a target for a speci-
fi ed route in your route table, used for traffi c destined for a supported AWS service. These
endpoints are easy to confi gure, are highly reliable, and provide a secure connection to
Amazon S3 that does not require a gateway or NAT instance.

 Amazon EC2 instances running in private subnets of a VPC can have controlled access
to Amazon S3 buckets, objects, and API functions that are in the same region as the VPC.
You can use an Amazon S3 bucket policy to indicate which VPCs and which VPC end-
points have access to your Amazon S3 buckets.

 Using the AWS SDKs, AWS CLI, and AWS Explorers
 You can use the AWS SDKs when developing applications with Amazon S3. The AWS
SDKs simplify your programming tasks by wrapping the underlying REST API. The
AWS Mobile SDKs and the AWS Amplify JavaScript library are also available for build-
ing connected mobile and web applications using AWS. In addition to AWS SDKs, AWS
explorers are available for Visual Studio and Eclipse for Java Integrated Development
Environment (IDE). In this case, the SDKs and AWS explorers are available bundled
together as AWS Toolkits. You can also use the AWS CLI to manage Amazon S3 buck-
ets and objects.

 AWS has deprecated SOAP support over HTTP, but it is still available over HTTPS.
New Amazon S3 features will not be supported over SOAP. We recommend that you use

AWS Object Storage Services 129

either the REST API or the AWS SDKs for any new development and migrate any existing
SOAP calls when you are able.

Making Requests
Every interaction with Amazon S3 is either authenticated or anonymous. Authentication is
the process of verifying the identity of the requester trying to access an AWS product (you are
who you say you are, and you are allowed to do what you are asking to do). Authenticated
requests must include a signature value that authenticates the request sender, generated in
part from the requester’s AWS access keys. If you are using the AWS SDK, the libraries com-
pute the signature from the keys that you provide. If you make direct REST API calls in your
application, however, you must write code to compute the signature and add it to the request.

Stateless and Serverless Applications
Amazon S3 provides developers with secure, durable, and highly scalable object storage
that can be used to decouple storage for use in serverless applications. Developers can also
use Amazon S3 for storing and sharing state in stateless applications.

Developers on AWS are regularly moving shared file storage to Amazon S3 for state-
less applications. This is a common method for decoupling your compute and storage and
increasing the ability to scale your application by decoupling that storage. We will discuss
stateless and serverless applications throughout this study guide.

Data Lake
Traditional data storage can no longer provide the agility and flexibility required to handle
the volume, velocity, and variety of data used by today’s applications. Because of this, many
organizations are shifting to a data lake architecture.

A data lake is an architectural approach that allows you to store massive amounts of
data in a central location for consumption by multiple applications. Because data can be
stored as is, there is no need to convert it to a predefined schema, and you no longer need to
know what questions to ask of your data beforehand.

Amazon S3 is a common component of a data lake solution on the cloud, and it can
complement your other storage solutions. If you move to a data lake, you are essentially
separating compute and storage, meaning that you are going to build and scale your stor-
age and compute separately. You can take storage that you currently have on premises or in
your data center and instead use Amazon S3, which then allows you to scale and build your
compute in any desired configuration, regardless of your storage.

That design pattern is different from most applications available today, where the stor-
age is tied to the compute. When you separate those two features and instead use a data
lake, you achieve an agility that allows you to invent new types of applications while you
are managing your storage as an independent entity.

In addition, Amazon S3 lets you grow and scale in a virtually unlimited fashion. You do
not have to take specific actions to expand your storage capacity—it grows automatically
with your data.

In the data lake diagram shown in Figure 3.16, you will see how to use Amazon S3 as
a highly available and durable central storage repository. From there, a virtually unlimited

130 Chapter 3 ■ Hello, Storage

number of services and applications, both on premises and in the cloud, can take advantage
of using Amazon S3 as a data lake.

f i gu r e 3 .16 Data lakes

Data Firehose Direct Connect

AWS Glue Macie DynamoDB

Capture, Access, and Search Metadata
Catalog & Search

Give your users easy & secure access
Access & User Interface

Use predictive and prescriptive
analytics to gain better understanding

Processing & Analytics

Secure, Cost Effective
Storage in S3

Data Lake

Use entitlements to ensure data is secure and users identities are verified
Protect & Secure

S3

Get your data into S3
quickly and securely

Data Ingestion

Amazon ES API Gateway

Athena Amazon
QuickSight

Amazon
EMR

Amazon
Redshift

IAM Amacon Cognito

Snowball

Security Token
Service

CloudWatch CloudTrail KMS

DMS

Customers often set up a data lake as part of their migration to the cloud so that they
can access their data from new applications on the cloud, migrated applications to the
cloud, and applications that have not yet been migrated to the cloud.

Performance
There are a number of actions that Amazon S3 takes by default to help you achieve high
levels of performance. Amazon S3 automatically scales to thousands of requests per second
per prefix based on your steady state traffic. Amazon S3 will automatically partition your
prefixes within hours, adjusting to increases in request rates.

Consideration for Workloads

To optimize the use of Amazon S3 mixed or GET-intensive workloads, you must become
familiar with best practices for performance optimization.

Mixed request types If your requests are typically a mix of GET, PUT, DELETE, and GET
Bucket (list objects), choosing appropriate key names for your objects ensures better perfor-
mance by providing low-latency access to the Amazon S3 index.

GET-intensive workloads If the bulk of your workload consists of GET requests, you may
want to use Amazon CloudFront, a content delivery service (discussed later in this chapter).

AWS Object Storage Services 131

 Tips for Object Key Naming

 The way that you name your keys in Amazon S3 can affect the data access patterns, which
may directly impact the performance of your application.

 It is a best practice at AWS to design for performance from the start. Even though
you may be developing a new application, that application is likely to grow over time. If you
anticipate your application growing to more than approximately 1,000 requests per second
(including both PUT s and GET s on your object), you will want to consider using a three- or
four-character hash in your key names.

 If you anticipate your application receiving fewer than 1,000 requests per second and
you don’t see a lot of traffi c in your storage, then you do not need to implement this best
practice. Your application will still benefi t from Amazon S3’s default performance.

 In the past, customers would also add entropy in their key names. Because
of recent Amazon S3 performance enhancements, most customers no lon-
ger need to worry about introducing entropy in key names.

 example 1: Random Hash

 examplebucket/ 232a -2017-26-05-15-00-00/cust1234234/photo1.jpg
 examplebucket/ 7b54 -2017-26-05-15-00-00/cust3857422/photo2.jpg
 examplebucket/ 921c -2017-26-05-15-00-00/cust1248473/photo2.jpg

 A random hash should come before patterns, such as dates and
sequential IDs.

 Using a naming hash can improve the performance of heavy-traffi c applications. Object
keys are stored in an index in all regions. If you’re constantly writing the same key prefi x
over and over again (for example, a key with the current year), all of your objects will be
close to each other within the same partition in the index. When your application experi-
ences an increase in traffi c, it will be trying to read from the same section of the index,
resulting in decreased performance as Amazon S3 tries to spread out your data to achieve
higher levels of throughput.

 Always first ensure that your application can accommodate a
naming hash.

 By putting the hash at the beginning of your key name, you are adding randomness. You
could hash the key name and place it at the beginning of your object right after the bucket
name. This will ensure that your data will be spread across different partitions and allow
you to grow to a higher level of throughput without experiencing a re-indexing slowdown
if you go above peak traffi c volumes.

132 Chapter 3 ■ Hello, Storage

example 2: Naming Hash

examplebucket/animations/232a-2017-26-05-15-00/cust1234234/animation1.obj
examplebucket/videos/ba65-2017-26-05-15-00/cust8474937/video2.mpg
examplebucket/photos/8761-2017-26-05-15-00/cust1248473/photo3.jpg

In this second example, imagine that you are storing a lot of animations, videos, and
photos in Amazon S3. If you know that you are going to have a lot of traffic to those indi-
vidual prefixes, you can add your hash after the prefix. That allows you to write prefixes
into your lifecycle policies or perform list API calls against a particular prefix. You are still
getting the performance benefit by adding the hash to your key name, but now you can also
use the prefix as necessary.

This example allows you to balance the need to list your objects and organize them
against the need to spread your data across different partitions for performance.

Amazon S3 Transfer Acceleration

Amazon S3 Transfer Acceleration is a feature that optimizes throughput when transferring
larger objects across larger geographic distances. Amazon S3 Transfer Acceleration uses
Amazon CloudFront edge locations to assist you in uploading your objects more quickly in
cases where you are closer to an edge location than to the region to which you are transfer-
ring your files.

Instead of using the public internet to upload objects from Southeast Asia, across the
globe to Northern Virginia, take advantage of the global Amazon content delivery network
(CDN). AWS has edge locations around the world, and you upload your data to the edge
location closest to your location. This way, you are traveling across the AWS network back-
bone to your destination region, instead of across the public internet. This option might
give you a significant performance improvement and better network consistency than the
public internet.

To implement Amazon S3 Transfer Acceleration, you do not need to make any changes
to your application. It is enabled by performing the following steps:

1. Enable Transfer Acceleration on a bucket that conforms to DNS naming requirements
and does not contain periods (.).

2. Transfer data to and from the acceleration-enabled bucket by using one of the
s3-accelerate endpoint domain names.

There is a small fee for using Transfer Acceleration. If your speed using Transfer
Acceleration is no faster than it would have been going over the public internet, however,
there is no additional charge.

The further you are from a particular region, the more benefit you will derive from
transferring your files more quickly by uploading to a closer edge location. Figure 3.17
shows how accessing an edge location can reduce the latency for your users, as opposed to
accessing content from a region that is farther away.

AWS Object Storage Services 133

f i gu r e 3 .17 Using an AWS edge location

Multipart Uploads

When uploading a large object to Amazon S3 in a single-threaded manner, it can take a
significant amount of time to complete. The multipart upload API enables you to upload
large objects in parts to speed up your upload by doing so in parallel.

To use multipart upload, you first break the object into smaller parts, parallelize the
upload, and then submit a manifest file telling Amazon S3 that all parts of the object have
been uploaded. Amazon S3 will then assemble all of those individual pieces to a single
Amazon S3 object.

Multipart upload can be used for objects ranging from 5 MB to 5 TB in size.

Range GETs

Range GETs are similar to multipart uploads, but in reverse. If you are downloading a
large object and tracking the offsets, use range GETs to download the object as multiple
parts instead of a single part. You can then download those parts in parallel and potentially
see an improvement in performance.

Amazon CloudFront

Using a CDN like Amazon CloudFront, you may achieve lower latency and higher-
throughput performance. You also will not experience as many requests to Amazon S3
because your content will be cached at the edge location. Your users will also experience
the performance improvement of having cached storage through Amazon CloudFront
versus going back to Amazon S3 for each new GET on an object.

TCP Window Scaling

Transmission Control Protocol (TCP) window scaling allows you to improve network
throughput performance between your operating system, application layer, and Amazon
S3 by supporting window sizes larger than 64 KB. Although it can improve performance,

134 Chapter 3 ■ Hello, Storage

it can be challenging to set up correctly, so refer to the AWS Documentation repository
for details.

 TCP Selective Acknowledgment

TCP selective acknowledgment is designed to improve recovery time after a large number
of packet losses. It is supported by most newer operating systems, but it might have to be
enabled. Refer to the Amazon S3 Developer Guide for more information.

 Pricing
 With Amazon S3, you pay only for what you use. There is no minimum fee, and there is no
charge for data transfer into Amazon S3.

 You pay for the following:

 ■ The storage that you use

 ■ The API calls that you make (PUT , COPY , POST , LIST , GET)

 ■ Data transfer out of Amazon S3

 Data transfer out pricing is tiered, so the more you use, the lower your cost per gigabyte.
Refer to the AWS website for the latest pricing.

 Amazon S3 pricing differs from the pricing of Amazon EBS volumes in
that if you create an Amazon EBS volume and store nothing on it, you are
still paying for the storage space of the volume that you have allocated.
With Amazon S3, you pay for the storage space that is being used—not
allocated.

 Object Lifecycle Management
 To manage your objects so that they are stored cost effectively throughout their lifecycle,
use a lifecycle confi guration . A lifecycle confi guration is a set of rules that defi nes actions
that Amazon S3 applies to a group of objects.

 There are two types of actions:

 Transition actions Transition actions defi ne when objects transition to another stor-
age class. For example, you might choose to transition objects to the STANDARD_IA
 storage class 30 days after you created them or archive objects to the GLACIER storage
class one year after creating them.

 Expiration actions Expiration actions defi ne when objects expire. Amazon S3 deletes
expired objects on your behalf.

AWS Object Storage Services 135

When Should You Use Lifecycle Configuration?
You should use lifecycle configuration rules for objects that have a well-defined lifecycle.
The following are some examples:

 ■ If you upload periodic logs to a bucket, your application might need them for a week or
a month. After that, you may delete them.

 ■ Some documents are frequently accessed for a limited period of time. After that, they
are infrequently accessed. At some point, you might not need real-time access to them,
but your organization or regulations might require you to archive them for a specific
period. After that, you may delete them.

 ■ You can upload some data to Amazon S3 primarily for archival purposes. For example,
archiving digital media, financial, and healthcare records; raw genomics sequence data,
long-term database backups; and data that must be retained for regulatory compliance.

With lifecycle configuration rules, you can tell Amazon S3 to transition objects to less
expensive storage classes or archive or delete them.

Configuring a Lifecycle
A lifecycle configuration (an XML file) comprises a set of rules with predefined actions that
you need Amazon S3 to perform on objects during their lifetime. Amazon S3 provides a
set of API operations for managing lifecycle configuration on a bucket, and it is stored by
Amazon S3 as a lifecycle subresource that is attached to your bucket.

You can also configure the lifecycle by using the Amazon S3 console, the AWS SDKs, or
the REST API.

The following lifecycle configuration specifies a rule that applies to objects with key
name prefix logs/. The rule specifies the following actions:

 ■ Two transition actions

 ■ Transition objects to the STANDARD_IA storage class 30 days after creation

 ■ Transition objects to the GLACIER storage class 90 days after creation

 ■ One expiration action that directs Amazon S3 to delete objects a year after creation

<LifecycleConfiguration>
 <Rule>
 <ID>example-id</ID>
 <Filter>
 <Prefix>logs/</Prefix>
 </Filter>
 <Status>Enabled</Status>
 <Transition>
 <Days>30</Days>
 <StorageClass>STANDARD_IA</StorageClass>
 </Transition>

136 Chapter 3 ■ Hello, Storage

 <Transition>
 <Days>90</Days>
 <StorageClass>GLACIER</StorageClass>
 </Transition>
 <Expiration>
 <Days>365</Days>
 </Expiration>
 </Rule>
</LifecycleConfiguration>

Figure 3.18 shows a set of Amazon S3 lifecycle policies in place. These policies move files
automatically from one storage class to another as they age out at certain points in time.

f i gu r e 3 .18 Amazon S3 lifecycle policies

Amazon S3
Standard

30 Days

Amazon S3 lifecycle policies allow you to delete or move objects based on age.

Preview2.mp4

Amazon S3
Standard -
Infrequent

Access

60 Days

Preview2.mp4

Amazon S3
Glacier

Delete

365 Days

Preview2.mp4

AWS File Storage Services
AWS offers Amazon Elastic File System (Amazon EFS) for file storage to enable you to
share access to files that reside on the cloud.

Amazon Elastic File System
Amazon Elastic File System (Amazon EFS) provides scalable file storage and a standard
file system interface for use with Amazon EC2. You can create an Amazon EFS file sys-
tem, configure your instances to mount the file system, and then use an Amazon EFS
file system as a common data source for workloads and application running on multiple
instances.

Amazon EFS can be mounted to multiple Amazon EC2 instances simultaneously, where
it can continue to expand up to petabytes while providing low latency and high throughput.

AWS File Storage Services 137

 Consider using Amazon EFS instead of Amazon S3 or Amazon EBS if you have an appli-
cation (Amazon EC2 or on premises) or a use case that requires a fi le system and any of the
following:

 ■ Multi-attach

 ■ GB/s throughput

 ■ Multi-AZ availability/durability

 ■ Automatic scaling (growing/shrinking of storage)

 Customers use Amazon EFS for the following use cases today:

 ■ Web serving

 ■ Database backups

 ■ Container storage

 ■ Home directories

 ■ Content management

 ■ Analytics

 ■ Media and entertainment workflows

 ■ Workflow management

 ■ Shared state management

 Amazon EFS is not supported on Windows instances.

 Creating your Amazon EFS File System

 File System

 The Amazon EFS fi le system is the primary resource in Amazon EFS, and it is where you
store your fi les and directories. You can create up to 125 fi le systems per account.

 Mount Target

 To access your fi le system from within a VPC, create mount targets in the VPC. A mount
target is a Network File System (NFS) endpoint within your VPC that includes an IP
address and a DNS name, both of which you use in your mount command. A mount target
is highly available, and it is illustrated in Figure 3.19 .

 Accessing an Amazon EFS File System
 There are several different ways that you can access an Amazon EFS fi le system, including
using Amazon EC2 and AWS Direct Connect.

138 Chapter 3 ■ Hello, Storage

f i gu r e 3 .19 Mount target

AVAILABILITY ZONE 1

AVAILABILITY ZONE 2

AVAILABILITY ZONE 3

REGION
VPC

Mount
target

EC2

EC2

Using Amazon Elastic Compute Cloud

To access a file system from an Amazon Elastic Compute Cloud (Amazon EC2) instance,
you must mount the file system by using the standard Linux mount command, as shown
in Figure 3.20. The file system will then appear as a local set of directories and files. An
NFS v4.1 client is standard on Amazon Linux AMI distributions.

f i gu r e 3 . 20 Mounting the file system

In your command, specify the file system type (nfs4), the version (4.1), the file system
DNS name or IP address, and the user’s target directory.

A file system belongs to a region, and your Amazon EFS file system spans all
Availability Zones in that region. Once you have mounted your file system, data can be
accessed from any Availability Zone in the region within your VPC while maintaining
full consistency. Figure 3.21 shows how you communicate with Amazon EC2 instances
within a VPC.

Using AWS Direct Connect

You can also mount your on-premises servers to Amazon EFS in your Amazon VPC using
AWS Direct Connect. With AWS Direct Connect, you can mount your on-premises serv-
ers to Amazon EFS using the same mount command used to mount in Amazon EC2.
Figure 3.22 shows how to use AWS Direct Connect with Amazon EFS.

AWS File Storage Services 139

f i gu r e 3 . 21 Using Amazon EFS

AVAILABILITY ZONE 1

AVAILABILITY ZONE 2

AVAILABILITY ZONE 3

REGION
VPC

EC2

EC2
Amazon EFS
File System

How does it all fit together?

f i gu r e 3 . 22 Using AWS Direct Connect with Amazon EFS

AWS Direct Connect Amazon EFS in your Amazon VPCOn-premises servers

Customers can use Amazon EFS combined with AWS Direct Connect for migration,
bursting, or backup and disaster recovery.

Syncing Files Using AWS DataSync
Now that you have a functioning Amazon EFS file system, you can use AWS DataSync
to synchronize files from an existing file system to Amazon EFS. AWS DataSync can syn-
chronize your file data and also file system metadata such as ownership, time stamps, and
access permissions.

To do this, download and deploy a sync agent from the Amazon EFS console as either a
virtual machine (VM) image or an AMI.

Next, create a sync tack and configure your source and destination file systems. Then
start your task to begin syncing the files and monitor the progress of the file sync using
Amazon CloudWatch.

140 Chapter 3 ■ Hello, Storage

Performance
Amazon EFS is designed for a wide spectrum of performance needs, including the
following:

 ■ High throughput and parallel I/O

 ■ Low latency and serial I/O

To support those two sets of workloads, Amazon EFS offers two different performance
modes, as described here:

General purpose (default) General-purpose mode is the default mode, and it is used for
latency-sensitive applications and general-purpose workloads, offering the lowest latencies
for file operations. While there is a trade-off of limiting operations to 7,000 per second,
general-purpose mode is the best choice for most workloads.

Max I/O If you are running large-scale and data-heavy applications, then choose the
max I/O performance option, which provides you with a virtually unlimited ability to scale
out throughput and IOPS, but with a trade-off of slightly higher latencies. Use max I/O
when you have 10 or more instances accessing your file system concurrently, as shown in
Table 3.6.

TA b le 3 .6 I/O Performance Options

Mode What’s It For? Advantages Trade-Offs When to Use

General
purpose
(default)

Latency-sensitive
applications and
general-purpose
workloads

Lowest latencies
for file operations

Limit of 7,000
ops/sec

Best choice for most
workloads

Max I/O Large-scale
and data-heavy
applications

Virtually unlimited
ability to scale out
throughput/ IOPS

Slightly higher
latencies

Consider if 10 (or
more) instances are
accessing your file
system concurrently

If you are not sure which mode is best for your usage pattern, use the PercentIOLimit
Amazon CloudWatch metric to determine whether you are constrained by general-purpose
mode. If you are regularly hitting the 7,000 IOPS limit in general-purpose mode, then you
will likely benefit from max I/O performance mode.

As discussed with the CAP theorem earlier in this study guide, there are differences in
both performance and trade-off decisions when you’re designing systems that use Amazon
EFS and Amazon EBS. The distributed architecture of Amazon EFS results in a small
increase in latency for each operation, as the data that you are storing gets pushed across
multiple servers in multiple Availability Zones. Amazon EBS can provide lower latency

AWS File Storage Services 141

than Amazon EFS, but at the cost of some durability. With Amazon EBS, you provision
the size of the device, and if you reach its maximum limit, you must increase its size or add
more volumes, whereas Amazon EFS scales automatically. Table 3.7 shows the various per-
formance and other characteristics for Amazon EFS as related to Amazon EBS Provisioned
IOPS.

TA b le 3 .7 Amazon EBS Performance Relative to Amazon EFS

 Amazon EFS
Amazon EBS
Provisioned IOPS

Performance Per-operation
latency

Low, consistent Lowest, consistent

Throughput scale Multiple GBs per second Single GB per second

Characteristics Data availability/
durability

Stored redundantly across
multiple Availability Zones

Stored redundantly in
a single Availability
Zone

Access 1 to 1000s of EC2 instances,
from multiple Availability
Zones, concurrently

Single Amazon EC2
instance in a single
Availability Zone

Use cases Big Data and analytics,
media processing workflows,
content management, web
serving, home directories

Boot volumes,
transactional and
NoSQL databases,
data warehousing, ETL

Security
You can implement security in multiple layers with Amazon EFS by controlling the following:

 ■ Network traffic to and from file systems (mount targets) using the following:

 ■ VPC security groups

 ■ Network ACLs

 ■ File and directory access by using POSIX permissions

 ■ Administrative access (API access) to file systems by using IAM. Amazon EFS
 supports:

 ■ Action-level permissions

 ■ Resource-level permissions

142 Chapter 3 ■ Hello, Storage

 Familiarize yourself with the Amazon EFS product, details, and FAQ
pages. Some exam questions may be answered by components from
those pages.

 Storage Comparisons
 This section provides valuable charts that can serve as a quick reference if you are tasked
with choosing a storage system for a particular project or application.

 Use Case Comparison
 Table 3.8 will help you understand the main properties and use cases for each of the cloud
storage products on AWS.

 TA b le 3 . 8 AWS Cloud Storage Products

If You Need: Consider Using:

Persistent local storage for Amazon EC2, relational and NoSQL
databases, data warehousing, enterprise applications, big data
processing, or backup and recovery

Amazon EBS

A file system interface and file system access semantics to make data
available to one or more Amazon EC2 instances for content serving,
enterprise applications, media processing workflows, big data storage,
or backup and recovery

Amazon EFS

A scalable, durable platform to make data accessible from any
internet location for user-generated content, active archive, serverless
computing, Big Data storage, or backup and recovery

Amazon S3

Highly affordable, long-term storage that can replace tape for archive
and regulatory compliance

Amazon S3
Glacier

A hybrid storage cloud augmenting your on-premises environment with
AWS cloud storage for bursting, tiering, or migration

AWS Storage
Gateway

A portfolio of services to help simplify and accelerate moving data of all
types and sizes into and out of the AWS Cloud

AWS Cloud
Data Migration
Services

Storage Comparisons 143

 Storage Temperature Comparison
 Table 3.9 shows a comparison of instance store, Amazon EBS, Amazon S3, and Amazon S3
Glacier.

 Understanding Table 3.9 will help you make decisions about latency, size,
durability, and cost during the exam.

 TA b le 3 . 9 Storage Comparison

Instance Store Amazon EBS Amazon S3 Amazon S3 Glacier

Average latency ms ms, sec, min

 (~ size)

hrs

Data volume 4 GB to 48 TB 1 GiB to 1 TiB No limit

Item size Block storage 5 TB max 40 TB max

Request rate Very high Low to very
high

 (no limit)

 Very low

 (no limit)

Cost/GB per
month

Amazon EC2
instance cost

¢¢ ¢

Durability Low High Very high Very high

Temperature Hot <——————————————————————> Cold

 Comparison of Amazon EBS and Instance Store
 Before considering Amazon EC2 instance store as a storage option, make sure that your
data does not meet any of these criteria:

 ■ Must persist through instance stops, terminations, or hardware failures

 ■ Needs to be encrypted at the full volume level

 ■ Needs to be backed up with Amazon EBS snapshots

 ■ Needs to be removed from instances and reattached to another

 If your data meets any of the previous four criteria, use an Amazon EBS volume.
Otherwise, compare instance store and Amazon EBS for storage.

144 Chapter 3 ■ Hello, Storage

Because instance store is directly attached to the host computer, it will have lower
latency than an Amazon EBS volume attached to the Amazon EC2 instance. Instance store
is provided at no additional cost beyond the price of the Amazon EC2 instance you choose
(if the instance has instance store[s] available), whereas Amazon EBS volumes incur an
additional cost.

Comparison of Amazon S3, Amazon EBS,
and Amazon EFS
Table 3.10 is a useful in helping you to compare performance and storage characteristics for
Amazon’s highest-performing file, object, and block cloud storage offerings. This compari-
son will also be helpful when choosing the right data store for the applications that you are
developing. It is also important for the exam.

TA b le 3 .10 Storage Service Comparison (EFS, S3, and EBS)

File
Amazon EFS

Object
Amazon S3

Block
Amazon EBS

Performance Per-operation
latency

Low, consistent Low, for mixed
request types,
and integration
with CloudFront

Low,
consistent

Throughput
scale

Multiple GB per second Single GB per
second

Characteristics Data
Availability/
Durability

Stored redundantly across multiple
Availability Zones

Stored
redundantly
in a single
Availability
Zone

Access One to thousands of
Amazon EC2 instances
or on-premises
servers, from multiple
Availability Zones,
concurrently

One to millions
of connections
over the web

Single Amazon
EC2 instance
in a single
Availability
Zone

Use Cases Web serving and
content management,
enterprise applications,
media and
entertainment, home
directories, database
backups, developer
tools, container
storage, Big Data
analytics

Web serving
and content
management,
media and
entertainment,
backups, Big
Data analytics,
data lake

Boot volumes,
transactional
and NoSQL
databases,
data
warehousing,
ETL

Cloud Data Migration 145

 Cloud Data Migration
 Data is the cornerstone of successful cloud application deployments. Your evaluation and
planning process may highlight the physical limitations inherent to migrating data from
on-premises locations into the cloud. To assist you with that process, AWS offers a suite of
tools to help you move data via networks, roads, and technology partners in and out of the
cloud through offl ine, online, or streaming models.

 The daunting realities of data transport apply to most projects: Knowing how to move
to the cloud with minimal disruption, cost, and time, and knowing what is the most effi -
cient way to move your data.

 To determine the best-case scenario for effi ciently moving your data, use this formula:

 Number of Days = (Total Bytes)/(Megabits per second * 125 * 1000 * Network
Utilization * 60 seconds * 60 minutes * 24 hours)

 For example, if you have a T1 connection (1.544 Mbps) and 1 TB (1024 × 1024 × 1024 ×
1024 bytes) to move in or out of AWS, the theoretical minimum time that it would take to
load over your network connection at 80 percent network utilization is 82 days.

 Instead of using up bandwidth and taking a long time to migrate, many AWS customers
are choosing one of the data migration options that are discussed next.

 Multiple-choice questions that ask you to choose two or three true answers
require that all of your answers be correct. There is no partial credit for
getting a fraction correct. Pay extra attention to those questions when
doing your review.

 AWS Storage Gateway
AWS Storage Gateway is a hybrid cloud storage service that enables your on-premises
applications to use AWS cloud storage seamlessly. You can use this service for the
following:

 ■ Backup and archiving

 ■ Disaster recovery

 ■ Cloud bursting

 ■ Storage tiering

 ■ Migration

 Your applications connect to the service through a gateway appliance using standard
storage protocols, such as NFS and internet Small Computer System Interface (iSCSI). The
gateway connects to AWS storage services, such as Amazon S3, Amazon S3 Glacier, and
Amazon EBS, providing storage for fi les, volumes, and virtual tapes in AWS.

146 Chapter 3 ■ Hello, Storage

File Gateway
A file gateway supports a file interface into Amazon S3, and it combines a cloud service
with a virtual software appliance that is deployed into your on-premises environment as a
VM. You can think of file gateway as an NFS mount on Amazon S3, allowing you to access
your data directly in Amazon S3 from on premises as a file share.

Volume Gateway
A volume gateway provides cloud-based storage volumes that you can mount as iSCSI
devices from your on-premises application servers. A volume gateway supports cached
mode and stored volume mode configurations.

Note that the volume gateway represents the family of gateways that support block-
based volumes, previously referred to as gateway-cached volumes and gateway-stored
volumes.

Cached Mode

In the cached volume mode, your data is stored in Amazon S3, and a cache of the frequently
accessed data is maintained locally by the gateway. This enables you to achieve cost savings
on primary storage and minimize the need to scale your storage on premises while retaining
low-latency access to your most used data.

Stored Volume Mode

In the stored volume mode, data is stored on your local storage with volumes backed up
asynchronously as Amazon EBS snapshots stored in Amazon S3. This provides durable off-
site backups.

Tape Gateway
A tape gateway can be used for backup to migrate off of physical tapes and onto a cost-
effective and durable archive backup such as Amazon S3 Glacier. For a tape gateway, you
store and archive your data on virtual tapes in AWS. A tape gateway eliminates some of the
challenges associated with owning and operating an on-premises physical tape infrastruc-
ture. It can also be used for migrating data off of tapes, which are nearing end of life, into a
more durable type of storage that still acts like tape.

AWS Import/Export
AWS Import/Export accelerates moving large amounts of data into and out of the AWS
Cloud using portable storage devices for transport. It transfers your data directly onto
and off of storage devices using Amazon’s high-speed internal network and bypassing the
internet.

For significant datasets, AWS Import/Export is often faster than internet transfer
and more cost-effective than upgrading your connectivity. You load your data onto your

Cloud Data Migration 147

devices and then create a job in the AWS Management Console to schedule shipping of
your devices.

You are responsible for providing your own storage devices and the shipping charges to
AWS.

It supports (in a limited number of regions) the following:

 ■ Importing and exporting of data in Amazon S3 buckets

 ■ Importing data into Amazon EBS snapshots

You cannot export directly from Amazon S3 Glacier. You must first restore your objects
to Amazon S3 before exporting using AWS Import/Export.

AWS Snowball
AWS Snowball is a petabyte-scale data transport solution that uses physical storage
appliances, bypassing the internet, to transfer large amounts of data into and out of
Amazon S3.

AWS Snowball addresses common challenges with large-scale data transfers, including
the following:

 ■ High network costs

 ■ Long transfer times

 ■ Security concerns

Figure 3.23 shows a physical AWS Snowball device.

f i gu r e 3 . 23 AWS Snowball

148 Chapter 3 ■ Hello, Storage

When you transfer your data with AWS Snowball, you do not need to write any code or
purchase any hardware. To transfer data using AWS Snowball, perform the following steps:

1. Create a job in the AWS Management Console. The AWS Snowball appliance is
shipped to you automatically.

2. When the appliance arrives, attach it to your local network.

3. Download and run the AWS Snowball client to establish a connection.

4. Use the client to select the file directories that you need to transfer to the appliance.
The client will then encrypt and transfer the files to the appliance at high speed.

5. Once the transfer is complete and the appliance is ready to be returned, the E Ink ship-
ping label automatically updates and you can track the job status via Amazon Simple
Notification Service (Amazon SNS), text messages, or directly in the console.

Table 3.11 shows some common AWS Snowball use cases.

TA b le 3 .11 AWS Snowball Use Cases

Use Case Description

Cloud migration If you have large quantities of data that you need to
migrate into AWS, AWS Snowball is often much faster
and more cost-effective than transferring that data over
the internet.

Disaster recovery In the event that you need to retrieve a large quantity
of data stored in Amazon S3 quickly, AWS Snowball
appliances can help retrieve the data much quicker than
high-speed internet.

Data center decommission There are many steps involved in decommissioning a
data center to make sure that valuable data is not lost.
Snowball can help ensure that your data is securely and
cost-effectively transferred to AWS during this process.

Content distribution Use Snowball appliances if you regularly receive or need
to share large amounts of data with clients, customers,
or business associates. Snowball appliances can be sent
directly from AWS to client or customer locations.

AWS Snowball Edge
AWS Snowball Edge is a 100-TB data transfer service with on-board storage and compute
power for select AWS capabilities. In addition to transferring data to AWS, AWS Snowball
Edge can undertake local processing and edge computing workloads. Figure 3.24 shows a
physical AWS Snowball Edge device.

Cloud Data Migration 149

f i gu r e 3 . 24 AWS Snowball Edge

Features of AWS Snowball Edge include the following:

 ■ An endpoint on the device that is compatible with Amazon S3

 ■ A file interface with NFS support

 ■ A cluster mode where multiple AWS Snowball Edge devices can act as a single, scalable
storage pool with increased durability

 ■ The ability to run AWS Lambda powered by AWS IoT Greengrass functions as data is
copied to the device

 ■ Encryption taking place on the appliance itself

The transport of data is done by shipping the data in the appliances through a regional car-
rier. The appliance differs from the standard AWS Snowball because it can bring the power of
the AWS Cloud to your local environment, with local storage and compute functionality.

There are three types of jobs that can be performed with Snowball Edge appliances:

 ■ Import jobs into Amazon S3

 ■ Export jobs from Amazon S3

 ■ Local compute and storage-only jobs

Use AWS Snowball Edge when you need the following:

 ■ Local storage and compute in an environment that might or might not have an internet
connection

 ■ To transfer large amounts of data into and out of Amazon S3, bypassing the internet

150 Chapter 3 ■ Hello, Storage

Table 3.12 shows the different use cases for the different AWS Snowball devices.

TA b le 3 .12 AWS Snowball Device Use Cases

Use Case AWS Snowball AWS Snowball Edge

Import data into Amazon S3 ✓ ✓

Copy data directly from HDFS ✓

Export from Amazon S3 ✓ ✓

Durable local storage ✓

Use in a cluster of devices ✓

Use with AWS IoT Greengrass ✓

Transfer files through NFS with a GUI ✓

AWS Snowmobile
AWS Snowmobile is an exabyte-scale data transfer service used to move extremely large
amounts of data from on premises to AWS. You can transfer up to 100 PB per AWS
Snowmobile, a 45-foot long ruggedized shipping container pulled by a semi-trailer truck.

AWS Snowmobile makes it easy to move massive volumes of data to the cloud, includ-
ing video libraries, image repositories, or even a complete data center migration. In 2017,
one AWS customer moved 8,700 tapes with 54 million files to Amazon S3 using AWS
Snowmobile. Figure 3.25 shows an AWS Snowmobile shipping container being pulled by a
semi-trailer truck.

f i gu r e 3 . 25 AWS Snowmobile

Cloud Data Migration 151

How do you choose between AWS Snowmobile and AWS Snowball? To migrate large
datasets of 10 PB or more in a single location, you should use AWS Snowmobile. For datasets
that are less than 10 PB or distributed in multiple locations, you should use AWS Snowball.

Amazon Kinesis Data Firehose
Amazon Kinesis Data Firehose lets you prepare and load real-time data streams into data
stores and analytics tools. Although it has much broader uses for loading data continuously
for data streaming and analytics, it can be used as a one-time tool for data migration into
the cloud.

Amazon Kinesis Data Firehose can capture, transform, and load streaming data into
Amazon S3 and Amazon Redshift, which will be discussed further in Chapter 4, “Hello,
Databases.” With Amazon Kinesis Data Firehose, you can avoid writing applications or
managing resources. When you configure your data producers to send data to Amazon
Kinesis Data Firehose, as shown in Figure 3.26, it automatically delivers the data to the
destination that you specified. This is an efficient option to transform and deliver data from
on premises to the cloud.

f i gu r e 3 . 26 Amazon Kinesis Data Firehose

Input Amazon Kinesis Data Firehose Data stores

Capture and send data to
Kinesis Data Firehose

Prepares and loads the data continuously to
the destinations you choose

Durably store the data
for analytics

Amazon S3

Amazon Redshift

Amazon Elasticsearch
Service

Splunk

Destinations include the following:

 ■ Amazon S3

 ■ Amazon Redshift

 ■ Amazon Elasticsearch Service

 ■ Splunk

Key Concepts
As you get started with Amazon Kinesis Data Firehose, you will benefit from understand-
ing the concepts described next.

152 Chapter 3 ■ Hello, Storage

Kinesis Data Delivery Stream

You use Amazon Kinesis Data Firehose by creating an Amazon Kinesis data delivery
stream and then sending data to it.

Record

A record is the data that your producer sends to a Kinesis data delivery stream, with a
maximum size of 1,000 KB.

Data Producer

Data producers send records to Amazon Kinesis data delivery streams. For example,
your web server could be configured as a data producer that sends log data to an Amazon
Kinesis delivery stream.

Buffer Size and Buffer Interval

Amazon Kinesis Data Firehose buffers incoming data to a certain size or for a certain
period of time before delivering it to destinations. Buffer size is in megabytes, and buffer
interval is in seconds.

Data Flow
You can stream data to your Amazon S3 bucket, as shown in Figure 3.27. If data transfor-
mation is enabled, you can optionally back up source data to another Amazon S3 bucket.

f i gu r e 3 . 27 Streaming to Amazon S3

Destination
Amazon S3 bucket

Backup Amazon S3 bucket

Firehose
delivery stream Transformed

records

Transformation failure

Data source

Source records

Source records

AWS Direct Connect
Using AWS Direct Connect, you can establish private connectivity between AWS and your
data center, office, or colocation environment, which in many cases can reduce your net-
work costs, increase bandwidth throughput, and provide a more consistent network experi-
ence than internet-based connections.

Cloud Data Migration 153

These benefits can then be applied to storage migration. Transferring large datasets
over the internet can be time-consuming and expensive. When you use the cloud, you
may find that transferring large datasets can be slow because your business-critical net-
work traffic is contending for bandwidth with your other internet usage. To decrease the
amount of time required to transfer your data, increase the bandwidth to your internet
service provider. Be aware that this frequently requires a costly contract renewal and
minimum commitment.

More details on using AWS Direct Connect will be provided in Chapter 4.

VPN Connection
You can connect your Amazon VPC to remote networks by using a VPN connection.
Table 3.13 shows some of the connectivity options available to you.

TA b le 3 .13 Amazon VPC Connectivity Options

VPN Connectivity Option Description

AWS managed VPN Create an IP Security (IPsec) VPN connection
between your VPC and your remote network. On
the AWS side of the VPN connection, a virtual
private gateway provides two VPN endpoints
(tunnels) for automatic failover. You configure
your customer gateway on the remote side of
the VPN connection.

AWS VPN CloudHub If you have more than one remote network
(for example, multiple branch offices), create
multiple AWS managed VPN connections
via your virtual private gateway to enable
communication between these networks.

Third-party software VPN appliance Create a VPN connection to your remote
network by using an Amazon EC2 instance in
your VPC that’s running a third-party software
VPN appliance. AWS does not provide or
maintain third-party software VPN appliances;
however, you can choose from a range of
products provided by partners and open-source
communities.

You can also use AWS Direct Connect to create a dedicated private connection from a
remote network to your VPC. You can combine this connection with an AWS managed
VPN connection to create an IPsec-encrypted connection.

You will learn more about VPN connections in subsequent chapters.

154 Chapter 3 ■ Hello, Storage

Summary
AWS cloud computing provides a reliable, scalable, and secure place for your data. Cloud
storage is a critical component of cloud computing, holding the information used by appli-
cations. Big Data analytics, data warehouses, Internet of Things, databases, and backup and
archive applications all rely on some form of data storage architecture. Cloud storage is
typically more reliable, scalable, and secure than traditional on-premises storage systems.

AWS offers a complete range of cloud storage services to support both application and archi-
val compliance requirements. You may choose from object, file, and block storage services and
cloud data migration options to start designing the foundation of your cloud IT environment.

Amazon EBS provides highly available, consistent, low-latency, persistent local block
storage for Amazon EC2. It helps you to tune applications with the right storage capacity,
performance, and cost.

Amazon EFS provides a simple, scalable file system interface and file system access
semantics to make data available to one or more EC2 instances as block storage. Amazon
EFS grows and shrinks capacity automatically, and it provides high throughput with con-
sistent low latencies. Amazon EFS is designed for high availability and durability, and it
provides performance for a broad spectrum of workloads and applications.

Amazon S3 is a form of object storage that provides a scalable, durable platform to
make data accessible from any internet location, and it allows you to store and access any
type of data over the internet. Amazon S3 is secure, 99.999999999 percent durable, and
scales past tens of trillions of objects.

Amazon S3 Glacier provides extremely low-cost and highly durable object storage for
long-term backup and archiving of any type of data. Amazon S3 Glacier is a solution for
customers who want low-cost storage for infrequently accessed data. It can replace tape,
and assist with compliance in highly regulated organizations.

Amazon offers a full portfolio of cloud data migration services to help simplify and accel-
erate moving data of all types and sizes into and out of the AWS Cloud. These include AWS
Storage Gateway, AWS Import/Export Disk, AWS Snowball, AWS Snowball Edge, AWS
Snowmobile, Amazon Kinesis Data Firehose, AWS Direct Connect, and a VPN connection.

Understanding when to use the right tool for your data storage and data migration
options is a key component of the exam, including data dimension, block versus object ver-
sus file storage, data structure, and storage temperature. Be ready to compare and contrast
the durability, availability, latency, means of access, and cost of different storage options
for a given use case.

Exam Essentials
Know the different data dimensions. Consider the different data dimensions when choos-
ing which storage option and storage class will be most appropriate for your data. This
includes velocity, variety, volume, storage temperature (hot, warm, cold, frozen), data
value, transient, reproducible, authoritative, and critical/regulated data.

Exam Essentials 155

Know the difference between block, object, and file storage. Block storage is commonly
dedicated, low-latency storage for each host and is provisioned with each instance. Object
storage is developed for the cloud, has vast scalability, is accessed over the Web, and is not
directly attached to an instance. File storage enables accessing shared files as a file system.

Know the AWS shared responsibility model and how it applies to storage. AWS is respon-
sible for securing the storage services. You are responsible for securing access to the arti-
facts that you create or objects that you store.

Know what Amazon EBS is and for what it is commonly used. Amazon EBS provides per-
sistent block storage volumes for use with Amazon EC2 instances. It is designed for appli-
cation workloads that benefit from fine tuning for performance, cost, and capacity. Typical
use cases include Big Data analytics engines, relational and NoSQL databases, stream and
log processing applications, and data warehousing applications. Amazon EBS volumes also
serve as root volumes for Amazon EC2 instances.

Know what Amazon EC2 instance store is and what it is commonly used for. An instance
store provides temporary block-level storage for your instance. It is located on disks that
are physically attached to the host computer. Instance store is ideal for temporary storage
of information that changes frequently, such as buffers, caches, scratch data, and other
temporary content, or for data that is replicated across a fleet of instances, such as a load-
balanced pool of web servers. In some cases, you can use instance-store backed volumes.
Do not use instance store (also known as ephemeral storage) for either production data or
data that must be kept durable.

Know what Amazon S3 is and what it is commonly used for. Amazon S3 is object stor-
age built to store and retrieve any amount of data from anywhere. It is secure, durable,
and highly scalable cloud storage using a simple web services interface. Amazon S3 is
commonly used for backup and archiving, content storage and distribution, Big Data
analytics, static website hosting, cloud-native application hosting, and disaster recovery,
and as a data lake.

Know the basic concepts of Amazon S3. Amazon S3 stores data as objects within
resources called buckets. You can store as many objects as desired within a bucket,
and write, read, and delete objects in your bucket. Objects contain data and metadata and
are identified by a user-defined key in a flat file structure. Interfaces to Amazon S3 include a
native REST interface, SDKs for many languages, the AWS CLI, and the AWS Management
Console.

Know how to create a bucket, how to upload, download, and delete objects, how to make
objects public, and how to open an object URL.

Understand how security works in Amazon S3. By default, new buckets are private and
nothing is publicly accessible. When you add an object to a bucket, it is private by default.

Know how much data you can store in Amazon S3. The total volume of data and number
of objects that you can store in Amazon S3 are unlimited. Individual Amazon S3 objects
can range in size from a minimum of 0 bytes to a maximum of 5 TB. The largest object

156 Chapter 3 ■ Hello, Storage

that can be uploaded in a single PUT is 5 GB. For objects larger than 100 MB, consider
using the Multipart Upload capability.

Know the Amazon S3 service limit for buckets per account. One hundred buckets are
allowed per account.

Understand the durability and availability of Amazon S3. Amazon S3 standard storage
is designed for 11 nines of durability and four nines of availability of objects over a given
year. Other storage classes differ. Reduced Redundancy Storage (RRS) storage class is less
durable than Standard, and it is intended for noncritical, reproducible data.

Know the data consistency model of Amazon S3. Amazon S3 is eventually consistent, but
it offers read-after-write consistency (read after write consistency for PUT of new objects
and eventual consistency for overwrite PUT and DELETE).

Know the Amazon S3 storage classes and use cases for each. Standard is used to store
general-purpose data that needs high durability, high performance, and low latency access.
Standard_IA is used for data that is less frequently accessed but that needs the same
performance and availability when accessed. OneZone_IA is similar to Standard_IA, but
it is stored only in a single Availability Zone, costing 20 percent less. However, data stored
with OneZone_IA will be permanently lost in the event of an Availability Zone destruc-
tion. Reduced_Redundancy offers lower durability at lower cost for easily-reproducible
data. Amazon S3 Glacier is used to store rarely accessed archival data at an extremely
low cost, when three- to five-hour retrieval time is acceptable under the standard retrieval
option. There are other retrieval options for higher and lower cost at shorter and longer
retrieval times, including expedited retrieval (on-demand or provisioned, 1–5 minutes) and
bulk retrieval (5–12 hours).

Every object within a bucket can be designated to a different storage class.

Know how to enable static web hosting on Amazon S3. The steps to enable static web
hosting on Amazon S3 require you to do the following:

 ■ Create a bucket with the website hostname.

 ■ Upload your static content and make it public.

 ■ Enable static website hosting on the bucket.

 ■ Indicate the index and error page objects.

Know how to encrypt your data on Amazon S3. For server-side encryption, use SSE-SE
(Amazon S3 Managed Keys), SSE-C (Customer-Provided Keys), and SSE-KMS (KMS-
Managed Keys). For client-side encryption, choose from a client-side master key or an AWS
KMS managed customer master key.

Know how to protect your data on Amazon S3. Know the different options for protect-
ing your data in flight and in transit. Encrypt data in flight using HTTPS and at rest using
server-side or client-side encryption. Enable versioning to keep multiple versions of an
object in a bucket. Enable MFA Delete to protect against accidental deletion. Use ACLs,

Exam Essentials 157

Amazon S3 bucket policies, and IAM policies for access control. Use presigned URLs for
time-limited download access. Use cross-region replication to replicate data to another
region automatically.

Know how to use lifecycle configuration rules. Lifecycle rules can be used to manage
your objects so that they are stored cost-effectively throughout their lifecycle. There are
two types of actions. Transition actions define when an object transitions to another stor-
age class. Expiration actions define when objects expire and will be deleted on your behalf.

Know what Amazon EFS is and what it is commonly used for. Amazon EFS provides
simple, scalable, elastic file storage for use with AWS services and on-premises resources.
Amazon EFS is easy to use and offers a simple interface that allows you to create and con-
figure file systems quickly and easily. Amazon EFS is built to scale elastically on demand
without disrupting applications, growing and shrinking automatically as you add and
remove files, so your applications have the storage that they need, when they need it.
Amazon EFS is designed for high availability and durability. Amazon EFS can be mounted
to multiple Amazon EC2 instances at the same time.

Know the basics of Amazon S3 Glacier as a stand-alone service. Data is stored in
encrypted archives that can be as large as 40 TB. Archives typically contain TAR and ZIP
files. Vaults are containers for archives, and vaults can be locked for compliance.

Know which storage option to choose based on storage temperature. For hot to warm
storage, use Amazon EC2 instance store, Amazon EBS, or Amazon S3. For cold storage,
choose Amazon S3 Glacier.

Know which storage option to choose based on latency. Amazon EC2 instance store
and Amazon EBS are designed for millisecond latency. Amazon S3 depends on size, anywhere
from milliseconds to seconds to minutes. Amazon S3 Glacier is minutes to hours depending
on retrieval option.

Know which storage option to choose based on data volume. Amazon EC2 instance store
can be from 4 GB to 48 TB. Amazon EBS can be from 1 GiB to 16 TiB. Amazon S3 and
Amazon S3 Glacier have no limit.

Know which storage option to choose based on item size. Amazon EC2 instance store
and Amazon EBS depend on the size of the block storage and operating system limits.
Amazon S3 has a 5 TB max size per object, but objects may be split. Amazon S3 Glacier
has a 40 TB maximum.

Know when you should use Amazon EBS, Amazon EFS, Amazon S3, Amazon S3 Glacier,
or AWS Storage Gateway for your data. For persistent local storage for Amazon EC2,
use Amazon EBS. For a file system interface and file system access semantics to make data
available to one or more Amazon EC2 instances, use Amazon EFS. For a scalable, durable
platform to make data accessible from any internet location, use Amazon S3. For highly
affordable, long-term cold storage, use Amazon S3 Glacier. For a hybrid storage cloud
augmenting your on-premises environment with Amazon cloud storage, use AWS Storage
Gateway.

158 Chapter 3 ■ Hello, Storage

Know when to choose Amazon EBS or Amazon EC2 instance store. Amazon EBS is most
often the default option. However, Amazon EC2 instance store may be an option if your
data does not meet any of the following criteria:

 ■ Must persist through instance stops, terminations, or hardware failures

 ■ Needs to be encrypted at the full volume level

 ■ Needs to be backed up with EBS snapshots

 ■ Needs to be removed from one instance and reattached to another

Know the different cloud data migration options. There are a number of options for
migrating your data to the AWS Cloud, or having a hybrid data solution between AWS
and your data center or on premises. These include (but are not limited to) AWS Storage
Gateway, AWS Import/Export, AWS Snowball, AWS Snowball Edge, AWS Snowmobile,
Amazon Kinesis Data Firehose, AWS Direct Connect, and AWS VPN connections. Know
when to choose one over the other based on time, cost, or volume.

Know what AWS Storage Gateway is and how it is used for cloud data migration. AWS
Storage Gateway is a hybrid cloud storage service that enables your on-premises applica-
tions to use AWS cloud storage seamlessly. Use this for data migration by means of a gate-
way that connects to AWS storage services, such as Amazon S3, Amazon S3 Glacier, and
Amazon EBS.

Know what AWS Import/Export Disk is and how it is used for cloud data migration.
AWS Import/Export Disk accelerates moving large amounts of data into and out of the AWS
Cloud using portable storage devices for transport. It transfers your data directly onto
and off of storage devices using Amazon’s high-speed internal network and bypassing the
internet. For significant data sets, it is often much faster than transferring the data via
the internet. You provide the hardware.

Know what AWS Snowball is and how it is used for cloud data migration. Snowball is a
petabyte-scale data transport solution that uses devices designed to be secure to transfer
large amounts of data into and out of the AWS Cloud. Using Snowball addresses common
challenges with large-scale data transfers including high network costs, long transfer times,
and security concerns. You can transfer data at as little as one-fifth the cost of transferring
data via high-speed internet. AWS provides the hardware.

Know what AWS Snowball Edge is and how it is used for cloud data migration. AWS
Snowball Edge is a 100-TB data transfer device with on-board storage and compute capa-
bilities. Use it to move large amounts of data into and out of AWS, as a temporary storage
tier for large local datasets, or to support local workloads in remote or offline locations.
AWS Snowball Edge is a fast and inexpensive way to transfer large amounts of data when
migrating to AWS.

Know what AWS Snowmobile is and how it is used for cloud data migration. AWS
Snowmobile is an exabyte-scale data transfer service used to move extremely large amounts
of data to AWS. You can transfer up to 100 PB per Snowmobile, a 45-foot long ruggedized
shipping container pulled by a semi-trailer truck. Snowmobile makes it easy to move mas-
sive volumes of data to the cloud, even a complete data center migration.

Resources to Review 159

Know what Amazon Kinesis Data Firehose is and how it is used for cloud data migration.
Amazon Kinesis Data Firehose is the easiest way to load streaming data reliably into data
stores and analytics tools. It can capture, transform, and load streaming data into Amazon
S3, Amazon Redshift, Amazon Elasticsearch Service, and Splunk. Kinesis Data Firehose
can be used to transform and migrate data from on premises into the cloud.

Know what AWS Direct Connect is and how it is used for cloud data migration. Use AWS
Direct Connect to establish private connectivity between AWS and your data center, office,
or colocation environment, which in many cases can reduce your network costs, increase
bandwidth throughput, and provide a more consistent network experience than internet-
based connections.

Know what a VPN connection is and how it is used for cloud data migration. Connect
your Amazon VPC to remote networks by using a VPN connection to increase privacy
while migrating your data.

Know which tool to use for migrating storage to the AWS Cloud based on data size, time-
line, and cost. There are two ways to migrate data: online and offline.

Online Use AWS Direct Connect to connect your data center privately and directly to an
AWS Region. Use AWS Snowball to transport petabytes of data physically in batches to
the cloud. Use Snowball Edge to build hybrid storage that preserves existing on-premises
investment and adds AWS services. Use AWS Snowmobile to migrate exabytes of data in
batches to the cloud. Use Amazon S3 Transfer Acceleration to work with Amazon S3 over
long geographic distances.

Offline Use AWS Storage Gateway to integrate existing on-premises resources with the
cloud. Use AWS Snowball Edge to transport petabytes of data physically in an appliance
with on-board storage and compute capabilities. Use Amazon Kinesis Data Firehose to
collect and ingest multiple streaming data sources or perform ETL on data while migrat-
ing to the AWS Cloud.

Resources to Review
Cloud Storage with AWS:

https://aws.amazon.com/products/storage/

AWS Storage Optimization (Whitepaper):

https://docs.aws.amazon.com/aws-technical-content/latest/
cost-optimization-storage-optimization/cost-optimization-storage-
optimization.pdf

AWS Storage Services Overview (Whitepaper):

https://aws.amazon.com/whitepapers/storage-options-aws-cloud/

Overview of AWS Security—Storage Services (Whitepaper):

https://d1.awsstatic.com/whitepapers/Security/Security_Storage_
Services_Whitepaper.pdf

160 Chapter 3 ■ Hello, Storage

Writing IAM Policies—How to Grant Access to an Amazon S3 Bucket
(AWS Security Blog):

https://aws.amazon.com/blogs/security/writing-iam-policies-how-to-
grant-access-to-an-amazon-s3-bucket/

Leveraging the Breadth of Storage Services and the Ecosystem at AWS—Unlock the
Full Potential of Public Cloud IaaS:

https://d0.awsstatic.com/analyst-reports/US41693416.pdf

Cloud Data Migration Services:

https://aws.amazon.com/cloud-data-migration/

AWS Migration (Whitepaper):

https://d1.awsstatic.com/whitepapers/Migration/aws-migration-
whitepaper.pdf

AWS Storage Gateway (Whitepaper):

https://d1.awsstatic.com/whitepapers/aws-storage-gateway-file-gateway-
for-hybrid-architectures.pdf

Hosting Static Websites on AWS (Whitepaper):

https://d1.awsstatic.com/whitepapers/Building%20Static%20Websites%20
on%20AWS.pdf

Encrypting Data at Rest (Whitepaper):

https://d0.awsstatic.com/whitepapers/AWS_Securing_Data_at_Rest_with_
Encryption.pdf

Building Big Data Storage Solutions (Data Lakes) for Maximum Flexibility
(Whitepaper):

https://docs.aws.amazon.com/aws-technical-content/latest/building-data-
lakes/building-data-lakes-on-aws.pdf

What Is Cloud Object Storage?

https://aws.amazon.com/what-is-cloud-object-storage/

Amazon Simple Storage Service—Getting Started Guide:

http://docs.aws.amazon.com/AmazonS3/latest/gsg/

Amazon Simple Storage Service—Developer Guide:

https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html

VPC Endpoints:

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints
.html

Amazon S3 Glacier—Developer Guide:

https://docs.aws.amazon.com/amazonglacier/latest/dev/introduction.html

Resources to Review 161

Amazon Elastic File System—User Guide:

https://docs.aws.amazon.com/efs/latest/ug/

Deep Dive on Elastic File System—2017 AWS Online Tech Talks (Video):

https://youtu.be/NhI0g8vI5M0

AWS re:Invent 2017: Deep Dive on Amazon Elastic File System (Amazon EFS)
(STG307) (Video):

https://www.youtube.com/watch?v=VffbHp34UzQ

Amazon Elastic Block Store—Linux:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html

Amazon Elastic Block Store—Windows:

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/AmazonEBS.html

Amazon EC2 Instance Storage:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html

AWS Storage Gateway—User Guide:

https://docs.aws.amazon.com/storagegateway/latest/userguide/
WhatIsStorageGateway.html

AWS Import/Export Disk:

https://aws.amazon.com/snowball/disk/

AWS Snowball—User Guide:

http://docs.aws.amazon.com/snowball/latest/ug/whatissnowball.html

AWS Snowball Edge—Developer Guide:

http://docs.aws.amazon.com/snowball/latest/developer-guide/whatisedge
.html

AWS Snowmobile:

https://aws.amazon.com/snowmobile/

Amazon Kinesis Data Firehose—Developer Guide:

https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html

AWS Direct Connect—User Guide:

http://docs.aws.amazon.com/directconnect/latest/UserGuide/

VPN Connections:

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections
.html

How to Use Bucket Policies and Apply Defense-in-Depth to Help Secure Your
Amazon S3 Data:

https://aws.amazon.com/blogs/security/how-to-use-bucket-policies-and-
apply-defense-in-depth-to-help-secure-your-amazon-s3-data/

162 Chapter 3 ■ Hello, Storage

IAM Policies and Bucket Policies and ACLs! Oh, My! (Controlling Access to S3
Resources):

https://aws.amazon.com/blogs/security/iam-policies-and-bucket-policies-
and-acls-oh-my-controlling-access-to-s3-resources/

AWS re:Invent Storage State of the Union (Video):

https://www.youtube.com/watch?v=U-flt95opTw

AWS re:Invent Best Practices for Amazon S3 (STG302) (Video):

https://www.youtube.com/watch?v=UKuL1K3oWuo

What Is a Data Lake?

https://aws.amazon.com/big-data/data-lake-on-aws/

Amazon S3 Service Level Agreement:

https://aws.amazon.com/s3/sla/

Protecting Data Using Server-Side Encryption with Amazon S3-Managed Encryption
Keys (SSE-S3):

https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption
.html

Picking the Right Data Store for Your Workload:

https://aws.amazon.com/blogs/startups/picking-the-right-data-store-for-
your-workload/

Demystifying Storage on AWS (Video):

https://www.youtube.com/watch?v=6UWmN2RbsnY

Exercises
For assistance in completing the following exercises, refer to the Amazon Simple Storage
Service Developer Guide:

https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html

We assume that you have performed the Exercises in Chapter 1 and Chapter 2 to set up
your development environment in AWS Cloud9, or have done so on your own system with
the AWS SDK.

For instructions on creating and testing a working sample, see Testing the Amazon S3
Java Code Examples here:

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingTheMPJavaAPI
.html#TestingJavaSamples

Exercises 163

e x e r C i S e 3 .1

Create an Amazon Simple Storage Service (Amazon S3) bucket

In this exercise, you will create an Amazon S3 bucket using the AWS SDK for Java. You
will use this bucket in the exercises that follow.

For assistance in completing this exercise, copying this code, or for code in other languages,
see the following documentation:

https://docs.aws.amazon.com/AmazonS3/latest/dev/create-bucket-get-
location-example.html

1. Enter the following code in your preferred development environment for Java:

import java.io.IOException;

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.CreateBucketRequest;
import com.amazonaws.services.s3.model.GetBucketLocationRequest;

public class CreateBucket {

 public static void main(String[] args) throws IOException {
 String clientRegion = "*** Client region ***";
 String bucketName = "*** Bucket name ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 if (!s3Client.doesBucketExistV2(bucketName)) {
 // Because the CreateBucketRequest object doesn't specify a

region, the
 // bucket is created in the region specified in the client.
 s3Client.createBucket(new CreateBucketRequest(bucketName));

(continued)

164 Chapter 3 ■ Hello, Storage

 // Verify that the bucket was created by retrieving it and
checking its location.

 String bucketLocation = s3Client.getBucketLocation(new
GetBucketLocationRequest(bucketName));

 System.out.println("Bucket location: " + bucketLocation);
 }
 }
 catch(AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't

process
 // it and returned an error response.
 e.printStackTrace();
 }
 catch(SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

2. Replace the static variable values for clientRegion and bucketName. Note that
bucket names must be unique across all of AWS. Make a note of these two values;
you will use the same region and bucket name for the exercises that follow in this
chapter.

3. Execute the code. Your bucket gets created with the name you specified in the region
you specified. A successful result shows the following output:

Bucket Location: [bucketLocation]

e x e r C i S e 3 . 2

upload an object to a bucket

Now that you have a bucket, you can add objects to it. In this example, you will create
two objects. The first object has a text string as data, and the second object is a file. This
example creates the first object by specifying the bucket name, object key, and text data
directly in a call to AmazonS3Client.putObject(). The example creates a second object
by using a PutObjectRequest that specifies the bucket name, object key, and file path.
The PutObjectRequest also specifies the ContentType header and title metadata.

e x e r C i S e 3 .1 (c ont inue d)

Exercises 165

For assistance in completing this exercise, copying this code, or for code in other lan-
guages, see the following documentation:

https://docs.aws.amazon.com/AmazonS3/latest/dev/UploadObjSingleOpJava
.html

1. Enter the following code in your preferred development environment for Java:

import java.io.File;
import java.io.IOException;

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.ObjectMetadata;
import com.amazonaws.services.s3.model.PutObjectRequest;

public class UploadObject {

 public static void main(String[] args) throws IOException {
 String clientRegion = "*** Client region ***";
 String bucketName = "*** Bucket name ***";
 String stringObjKeyName = "*** String object key name ***";
 String fileObjKeyName = "*** File object key name ***";
 String fileName = "*** Path to file to upload ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withRegion(clientRegion)
 .withCredentials(new ProfileCredentialsProvider())
 .build();

 // Upload a text string as a new object.
 s3Client.putObject(bucketName, stringObjKeyName, "Uploaded

String Object");

 // Upload a file as a new object with ContentType and title
specified.

(continued)

166 Chapter 3 ■ Hello, Storage

 PutObjectRequest request = new PutObjectRequest(bucketName,
fileObjKeyName, new File(fileName));

 ObjectMetadata metadata = new ObjectMetadata();
 metadata.setContentType("plain/text");
 metadata.addUserMetadata("x-amz-meta-title", "someTitle");
 request.setMetadata(metadata);
 s3Client.putObject(request);
 }
 catch(AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't

process
 // it, so it returned an error response.
 e.printStackTrace();
 }
 catch(SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

2. Replace the static variable values for clientRegion and bucketName used in the pre-
vious exercise.

3. Replace the value for stringObjKeyName with the name of the key that you intend to
create in your Amazon S3 bucket, which will upload a text string as a new object.

4. Replace the Uploaded String Object text with the text being placed inside the
object that you are generating.

5. Replace the someTitle text in the code with your own metadata title for the object
that you are uploading.

6. Create a local file on your machine and then replace the value for fileName with the
full path and filename of the file that you created.

7. Replace the fileObjKeyName with the key name that you want for the file that you will
be uploading. A file can be uploaded with a different name than the filename that’s
used locally.

8. Execute the code. Your bucket gets created with the name that you specified in the
region that you specified. A successful result without errors will create two objects in
your bucket.

e x e r C i S e 3 . 2 (c ont inue d)

Exercises 167

e x e r C i S e 3 . 3

emptying and deleting a bucket

Now that you have finished with the Amazon S3 exercises, you will want to clean up your
environment by deleting all the files and the bucket you created. It is easy to delete an
empty bucket. However, in some situations, you may need to delete or empty a bucket
that contains objects. In this exercise, we show you how to delete objects and then delete
the bucket.

For assistance in completing this exercise, copying this code, or for code in other lan-
guages, see the following documentation:

https://docs.aws.amazon.com/AmazonS3/latest/dev/delete-or-empty-bucket.html

https://docs.aws.amazon.com/AmazonS3/latest/dev/delete-or-empty-bucket
.html#delete-bucket-sdk-java

1. Enter the following code in your preferred development environment for Java:

import java.util.Iterator;

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.ListVersionsRequest;
import com.amazonaws.services.s3.model.ObjectListing;
import com.amazonaws.services.s3.model.S3ObjectSummary;
import com.amazonaws.services.s3.model.S3VersionSummary;
import com.amazonaws.services.s3.model.VersionListing;

public class DeleteBucket {

 public static void main(String[] args) {
 String clientRegion = "*** Client region ***";
 String bucketName = "*** Bucket name ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

(continued)

168 Chapter 3 ■ Hello, Storage

 // Delete all objects from the bucket. This is sufficient
 // for unversioned buckets. For versioned buckets, when you

attempt to delete objects, Amazon S3 inserts
 // delete markers for all objects, but doesn't delete the object

versions.
 // To delete objects from versioned buckets, delete all of the

object versions before deleting
 // the bucket (see below for an example).
 ObjectListing objectListing = s3Client.listObjects(bucketName);
 while (true) {
 Iterator<S3ObjectSummary> objIter = objectListing.

getObjectSummaries().iterator();
 while (objIter.hasNext()) {
 s3Client.deleteObject(bucketName, objIter.next().

getKey());
 }

 // If the bucket contains many objects, the listObjects()
call

 // might not return all of the objects in the first listing.
Check to

 // see whether the listing was truncated. If so, retrieve
the next page of objects

 // and delete them.
 if (objectListing.isTruncated()) {
 objectListing = s3Client.listNextBatchOfObjects

(objectListing);
 } else {
 break;
 }
 }

 // Delete all object versions (required for versioned buckets).
 VersionListing versionList = s3Client.listVersions(new

ListVersionsRequest().withBucketName(bucketName));
 while (true) {
 Iterator<S3VersionSummary> versionIter = versionList.

getVersionSummaries().iterator();
 while (versionIter.hasNext()) {
 S3VersionSummary vs = versionIter.next();
 s3Client.deleteVersion(bucketName, vs.getKey(),

vs.getVersionId());
 }

e x e r C i S e 3 . 3 (c ont inue d)

Exercises 169

 if (versionList.isTruncated()) {
 versionList = s3Client.listNextBatchOfVersions

(versionList);
 } else {
 break;
 }
 }

 // After all objects and object versions are deleted, delete the
bucket.

 s3Client.deleteBucket(bucketName);
 }
 catch(AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't

process
 // it, so it returned an error response.
 e.printStackTrace();
 }
 catch(SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client

couldn't
 // parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

2. Replace the static variable values for clientRegion and bucketName with the values
that you used in the previous steps.

3. Execute the code.

4. When execution is complete without errors, both of your objects and your bucket will
have been deleted.

170 Chapter 3 ■ Hello, Storage

Review Questions
1. You are developing an application that will run across dozens of instances. It uses some

components from a legacy application that requires some configuration files to be copied
from a central location and be held on a volume local to each of the instances. You
plan to modify your application with a new component in the future that will hold this
configuration in Amazon DynamoDB. However, in the interim, which storage option
should you use that will provide the lowest cost and the lowest latency for your application
to access the configuration files?

A. Amazon S3

B. Amazon EBS

C. Amazon EFS

D. Amazon EC2 instance store

2. In what ways does Amazon Simple Storage Service (Amazon S3) object storage differ from
block and file storage? (Select TWO.)

A. Amazon S3 stores data in fixed size blocks.

B. Objects are identified by a numbered address.

C. Object can be any size.

D. Objects contain both data and metadata.

E. Objects are stored in buckets.

3. You are restoring an Amazon Elastic Block Store (Amazon EBS) volume from a snapshot.
How long will it take before the data is available?

A. It depends on the provisioned size of the volume.

B. The data will be available immediately.

C. It depends on the amount of data stored on the volume.

D. It depends on whether the attached instance is an Amazon EBS–optimized instance.

4. What are some of the key characteristics of Amazon Simple Storage Service (Amazon S3)?
(Select THREE.)

A. All objects have a URL.

B. Amazon S3 can store unlimited amounts of data.

C. Buckets can be mounted to the file system of multiple Amazon EC2 instances.

D. Amazon S3 uses a Representational State Transfer (REST) application program
interface (API).

E. You must pre-allocate the storage in a bucket.

Review Questions 171

5. Amazon S3 Glacier is well-suited to data that is which of the following? (Select TWO.)

A. Infrequently or rarely accessed

B. Must be immediately available when needed

C. Is available after a three- to five-hour restore period

D. Is frequently erased within 30 days

6. You have valuable media files hosted on AWS and want them to be served only to authen-
ticated users of your web application. You are concerned that your content could be stolen
and distributed for free. How can you protect your content?

A. Use static web hosting.

B. Generate presigned URLs for content in the web application.

C. Use AWS Identity and Access Management (IAM) policies to restrict access.

D. Use logging to track your content.

7. Which of the following are features of Amazon Elastic Block Store (Amazon EBS)?
(Select TWO.)

A. Data stored on Amazon EBS is automatically replicated within an Availability Zone.

B. Amazon EBS data is automatically backed up to tape.

C. Amazon EBS volumes can be encrypted transparently to workloads on the attached
instance.

D. Data on an Amazon EBS volume is lost when the attached instance is stopped.

8. Which option should you choose for Amazon EFS when tens, hundreds, or thousands of
Amazon EC2 instances will be accessing the file system concurrently?

A. General-Purpose performance mode

B. RAID 0

C. Max I/O performance mode

D. Change to a larger instance

9. Which of the following must be performed to host a static website in an Amazon Simple
Storage Service (Amazon S3) bucket? (Select THREE.)

A. Configure the bucket for static hosting, and specify an index and error document.

B. Create a bucket with the same name as the website.

C. Enable File Transfer Protocol (FTP) on the bucket.

D. Make the objects in the bucket world-readable.

E. Enable HTTP on the bucket.

172 Chapter 3 ■ Hello, Storage

10. You have a workload that requires 1 TB of durable block storage at 1,500 IOPS during
normal use. Every night there is an extract, transform, load (ETL) task that requires 3,000
IOPS for 15 minutes. What is the most appropriate volume type for this workload?

A. Use a Provisioned IOPS SSD volume at 3,000 IOPS.

B. Use an instance store.

C. Use a general-purpose SSD volume.

D. Use a magnetic volume.

11. Which statements about Amazon S3 Glacier are true? (Select THREE.)

A. It stores data in objects that live in buckets.

B. Archives are identified by user-specified key names.

C. Archives take 3–5 hours to restore.

D. Vaults can be locked.

E. It can be used as a standalone service and as an Amazon S3 storage class.

12. You are developing an application that will be running on several hundred Amazon EC2
instances. The application on each instance will be required to reach out through a file
system protocol concurrently to a file system holding the files. Which storage option should
you choose?

A. Amazon EFS

B. Amazon EBS

C. Amazon EC2 instance store

D. Amazon S3

13. You need to take a snapshot of an Amazon Elastic Block Store (Amazon EBS) volume. How
long will the volume be unavailable?

A. It depends on the provisioned size of the volume.

B. The volume will be available immediately.

C. It depends on the amount of data stored on the volume.

D. It depends on whether the attached instance is an Amazon EBS–optimized instance.

14. Amazon Simple Storage Service (S3) bucket policies can restrict access to an Amazon S3
bucket and objects by which of the following? (Select THREE.)

A. Company name

B. IP address range

C. AWS account

D. Country of origin

E. Objects with a specific prefix

Review Questions 173

15. Which of the following are not appropriate use cases for Amazon Simple Storage Service
(Amazon S3)? (Select TWO.)

A. Storing static web content or hosting a static website

B. Storing a file system mounted to an Amazon Elastic Compute Cloud (Amazon EC2) instance

C. Storing backups for a relational database

D. Primary storage for a database

E. Storing logs for analytics

16. Which features enable you to manage access to Amazon Simple Storage Service (Amazon S3)
buckets or objects? (Select THREE.)

A. Enable static website hosting on the bucket.

B. Create a presigned URL for an object.

C. Use an Amazon S3 Access Control List (ACL) on a bucket or object.

D. Use a lifecycle policy.

E. Use an Amazon S3 bucket policy.

17. Your application stores critical data in Amazon Simple Storage Service (Amazon S3),
which must be protected against inadvertent or intentional deletion. How can this data be
protected? (Select TWO.)

A. Use cross-region replication to copy data to another bucket automatically.

B. Set a vault lock.

C. Enable versioning on the bucket.

D. Use a lifecycle policy to migrate data to Amazon S3 Glacier.

E. Enable MFA Delete on the bucket.

18. You have a set of users that have been granted access to your Amazon S3 bucket. For
compliance purposes, you need to keep track of all files accessed in that bucket. To have a
record of who accessed your Amazon Simple Storage Service (Amazon S3) data and from
where, what should you do?

A. Enable versioning on the bucket.

B. Enable website hosting on the bucket.

C. Enable server access logging on the bucket.

D. Create an AWS Identity and Access Management (IAM) bucket policy.

E. Enable Amazon CloudWatch logs.

19. What are some reasons to enable cross-region replication on an Amazon Simple Storage
Service (Amazon S3) bucket? (Select THREE.)

A. Your compliance requirements dictate that you store data at an even further distance
than Availability Zones, which are tens of miles apart.

B. Minimize latency when your customers are in two geographic regions.

C. You need a backup of your data in case of accidental deletion.

D. You have compute clusters in two different AWS Regions that analyze the same set of objects.

E. Your data requires at least five nines of durability.

174 Chapter 3 ■ Hello, Storage

20. Your company requires that all data sent to external storage be encrypted before being sent.
You will be sending company data to Amazon S3. Which Amazon Simple Storage Service
(Amazon S3) encryption solution will meet this requirement?

A. Server-Side Encryption with AWS managed keys (SSE-S3)

B. Server-Side Encryption with customer-provided keys (SSE-C)

C. Client-side encryption with customer-managed keys

D. Server-side encryption with AWS Key Management Service (AWS KMS) keys (SSE-KMS)

21. How is data stored in Amazon Simple Storage Service (Amazon S3) for high durability?

A. Data is automatically replicated to other regions.

B. Data is automatically replicated within a region.

C. Data is replicated only if versioning is enabled on the bucket.

D. Data is automatically backed up on tape and restored if needed.

Hello, Databases

THe AWS CerTifieD Developer –
ASSoCiATe exAm TopiCS CovereD in
THiS CHApTer mAy inCluDe, buT Are
noT limiTeD To, THe folloWing:

Domain 2: Security

 ✓ 2.1 Make authenticated calls to AWS services.

 ✓ 2.2 Implement encryption using AWS services.

Domain 3: Development with AWS Services

 ✓ 3.2 Translate functional requirements into application
design.

 ✓ 3.3 Write code that interacts with AWS services by using
APIs, SDKs, and AWS CLI.

Domain 4: Refactoring

 ✓ 4.1 Optimize application to best use AWS services and
features.

Domain 5: Monitoring and Troubleshooting

 ✓ 5.2 Perform root cause analysis on faults found in
testing or production.

Chapter

4

AWS® Certified Developer Official Study Guide
By Nick Alteen, Jennifer Fisher, Casey Gerena, Wes Gruver, Asim Jalis,
Heiwad Osman, Marife Pagan, Santosh Patlolla and Michael Roth

 Amazon Web Services, Inc.

Introduction to Databases
In addition to the storage options discussed in the previous chapters, AWS offers a broad
range of databases purposely built for your specific application use cases. You can also set
up your own database platform on the Amazon Elastic Compute Cloud (Amazon EC2).
You can easily migrate your existing databases with the AWS Database Migration Service
(AWS DMS) in a cost-effective manner.

AWS Cloud offerings include the following databases:

Managed relational databases—For transactional applications

Nonrelational databases—For internet-scale applications

Data warehouse databases—For analytics

In-memory data store databases—For caching and real-time workloads

Time-series databases—For efficiently collecting, synthesizing, and deriving insights
from time-series data

Ledger databases—For when you need a centralized, trusted authority to maintain a
scalable, complete, and cryptographically verifiable record of transactions

Graph databases—For building applications with highly connected data

Depending on your use case, you can choose from an AWS database that closely aligns
with your needs. Table 4.1 describes each database service that AWS offers and indicates
the database type.

TA b le 4 .1 AWS Database Service Mapping to Database Type

Product Type Description

Amazon Aurora Relational database A MySQL- and PostgreSQL-compatible
relational database built for the cloud
that combines the performance and
availability of traditional enterprise
databases with the simplicity and cost-
effectiveness of open source databases.

Introduction to Databases 177

Product Type Description

Amazon Relational
Database Service
(Amazon RDS)

Relational database A managed relational database for
MySQL, PostgreSQL, Oracle, SQL Server,
and MariaDB. Easy to set up, operate, and
scale a relational database in the cloud
quickly.

Amazon DynamoDB NoSQL database A serverless, managed NoSQL database
that delivers consistent single-digit
millisecond latency at any scale. Pay only
for the throughput and storage you use.

Amazon Redshift Data warehouse A fast, fully managed, petabyte-scale
data warehouse at one-tenth the cost of
traditional solutions. Simple and cost-
effective solution to analyze data by using
standard SQL and your existing business
intelligence (BI) tools.

Amazon ElastiCache In-memory data store To deploy, operate, and scale an
in-memory data store based on
Memcached or Redis in the cloud.

Amazon Neptune Graph database A fast, reliable, fully managed graph
database to store and manage highly
connected datasets.

Amazon Document DB
(with MongoDB
compatibility)

Nonrelational
database

A fast, scalable, highly available, and fully
managed document database service that
supports MongoDB workloads.

Amazon Timestream Time series database A fast, scalable, fully managed time series
database service for IoT and operational
applications that makes it easy to store
and analyze trillions of events per day at
one-tenth the cost of relational databases.

Amazon Quantum
Ledger Database
(Amazon QLDB)

Ledger database A fully managed ledger database that
provides a transparent, immutable, and
cryptographically verifiable transaction
log owned by a central trusted authority.

AWS Database
Migration Service
(AWS DMS)

Database migration Help migrate your databases to AWS
easily and inexpensively with minimal
downtime.

178 Chapter 4 ■ Hello, Databases

Now that you know the purpose of these database services and what they can do, review
the type of applications that can be used for each AWS database service. Refer to the appli-
cation type mappings shown in Table 4.2.

TA b le 4 . 2 Application Mapping to AWS Database Service

Applications Product

Transactional applications, such as ERP, CRM, and ecommerce
to log transactions and store structured data.

Aurora or Amazon
RDS

Internet-scale applications, such as hospitality, dating, and ride
sharing, to serve content and store structured and unstructured
data.

DynamoDB
or Amazon
DocumentDB

Analytic applications for operational reporting and querying
terabyte- to exabyte-scale data.

Amazon Redshift

Real-time application use cases that require submillisecond
latency such as gaming leaderboards, chat, messaging,
streaming, and Internet of Things (IoT).

ElastiCache

Applications with use cases that require navigation of highly
connected data such as social news feeds, recommendations,
and fraud detection.

Neptune

Applications that collect data at millions of inserts per second in a
time-series fashion, for example clickstream data and IoT devices.

Timestream

Applications that require an accurate history of their application
data; for example, tracking the history of credits and debits
in banking transactions or verifying the audit trails created in
relational databases.

Amazon QLDB

Relational Databases
Many developers have had to interact with relational databases in their applications. This
section describes first what a relational database is. Then, it covers how you can run a
relational database in the AWS Cloud with Amazon RDS or on Amazon EC2.

A relational database is a collection of data items with predefined relationships between
them. These items are organized as a set of tables with columns and rows. Tables store
information about the objects to be represented in the database. Each column in a table

Relational Databases 179

holds certain data, and a field stores the actual value of an attribute. The rows in the table
represent a collection of related values of one object or entity. Each row in a table contains
a unique identifier called a primary key, and rows among multiple tables can be linked by
using foreign keys. You can access data in many different ways without reorganizing the
database tables.

Characteristics of Relational Databases
Relational databases include four important characteristics: Structured Query Language,
data integrity, transactions, and atomic, consistent, isolated, and durable compliance.

Structured Query Language
Structured query language (SQL) is the primary interface that you use to communicate
with relational databases. The standard American National Standards Institute (ANSI)
SQL is supported by all popular relational database engines. Some of these engines have
extensions to ANSI SQL to support functionality that is specific to that engine. You use
SQL to add, update, or delete data rows; to retrieve subsets of data for transaction process-
ing and analytics applications; and to manage all aspects of the database.

Data Integrity
Data integrity is the overall completeness, accuracy, and consistency of data. Relational
databases use a set of constraints to enforce data integrity in the database. These include
primary keys, foreign keys, NOT NULL constraints, unique constraint, default con-
straints, and check constraints. These integrity constraints help enforce business rules in
the tables to ensure the accuracy and reliability of the data. In addition, most relational
databases enable you to embed custom code triggers that execute based on an action on
the database.

Transactions
A database transaction is one or more SQL statements that execute as a sequence of operations
to form a single logical unit of work. Transactions provide an all-or-nothing proposition, mean-
ing that the entire transaction must complete as a single unit and be written to the database,
or none of the individual components of the transaction will continue. In relational database
terminology, a transaction results in a COMMIT or a ROLLBACK. Each transaction is treated in a
coherent and reliable way, independent of other transactions.

ACID Compliance
All database transactions must be atomic, consistent, isolated, and durable (ACID)–
compliant or be atomic, consistent, isolated, and durable to ensure data integrity.

Atomicity Atomicity requires that the transaction as a whole executes successfully, or if a
part of the transaction fails, then the entire transaction is invalid.

180 Chapter 4 ■ Hello, Databases

Consistency Consistency mandates that the data written to the database as part of the
transaction must adhere to all defined rules and restrictions, including constraints, cascades,
and triggers.

Isolation Isolation is critical to achieving concurrency control, and it makes sure that
each transaction is independent unto itself.

Durability Durability requires that all of the changes made to the database be permanent
when a transaction is successfully completed.

Managed vs. Unmanaged Databases
Managed database services on AWS, such as Amazon RDS, enable you to offload the
administrative burdens of operating and scaling distributed databases to AWS so that you
don’t have to worry about the following tasks:

 ■ Hardware provisioning

 ■ Setup and configuration

 ■ Throughput capacity planning

 ■ Replication

 ■ Software patching

 ■ Cluster scaling

AWS provides a number of database alternatives for developers. As a managed data-
base, Amazon RDS enables you to run a fully featured relational database while off-
loading database administration. By contrast, you can run unmanaged databases on
Amazon EC2, which gives you more flexibility on the types of databases that you can
deploy and configure; however, you are responsible for the administration of the
unmanaged databases.

Amazon Relational Database Service
With Amazon Relational Database Service (Amazon RDS), you can set up, operate, and
scale a relational database in the AWS Cloud. It provides cost-efficient, resizable capacity
for open-standard relational database engines. Amazon RDS is easy to administer, and you
do not need to install the database software. Amazon RDS manages time-consuming data-
base administration tasks, which frees you up to focus on your applications and business.
For example, Amazon RDS automatically patches the database software and backs up
your database. The Amazon RDS managed relational database service works with the
popular database engines depicted in Figure 4.1.

Relational Databases 181

f i gu r e 4 .1 Amazon RDS database engines

Amazon RDS assumes many of the difficult or tedious management tasks of a relational
database:

Procurement, configuration, and backup tasks

 ■ When you buy a server, you get a central processing unit (CPU), memory, storage,
and input/output operations per second (IOPS) all bundled together. With Amazon
RDS, these are split apart so that you can scale them independently and allocate your
resources as you need them.

 ■ Amazon RDS manages backups, software patches, automatic failure detection, and
recovery.

 ■ You can configure automated backups or manually create your own backup snapshot
and use these backups to restore a database. The Amazon RDS restore process works
reliably and efficiently.

 ■ You can use familiar database products: MySQL, MariaDB, PostgreSQL, Oracle,
Microsoft SQL Server, and the MySQL- and PostgreSQL-compatible Amazon Aurora
DB engine.

Security and availability

 ■ You can enable the encryption option for your Amazon RDS DB instance.

 ■ You can get high availability with a primary instance and a synchronous secondary
instance that you can fail over to when problems occur. You can also use MySQL,
MariaDB, or PostgreSQL read replicas to increase read scaling.

 ■ In addition to the security in your database package, you can use AWS Identity and
Access Management (IAM) to define users, and permissions help control who can
access your Amazon RDS databases. You can also help protect your databases by
storing them in a virtual private cloud (VPC).

 ■ To deliver a managed service experience, Amazon RDS does not provide shell access to
DB instances, and it restricts access to certain system procedures and tables that require
advanced permissions.

When you host databases on Amazon RDS, AWS is responsible for the items in Figure 4.2.

182 Chapter 4 ■ Hello, Databases

f i gu r e 4 . 2 Amazon RDS host responsibilities

Scaling

High Availability

Database Backups

DB S/W Patches

DB S/W Installs

OS Patches

OS Installation

Server Maintenance

Rack and Stack

Power, HVAC, NetApp Optimization

You Amazon RDS

Relational Database Engines on Amazon RDS
Amazon RDS provides six familiar database engines: Amazon Aurora, Oracle, Microsoft
SQL Server, PostgreSQL, MySQL, and MariaDB. Because Amazon RDS is a managed ser-
vice, you gain a number of benefits and features built right into the Amazon RDS service.
These features include, but are not limited to, the following:

 ■ Automatic software patching

 ■ Easy vertical scaling

 ■ Easy storage scaling

 ■ Read replicas

 ■ Automatic backups

 ■ Database snapshots

 ■ Multi-AZ deployments

 ■ Encryption

 ■ IAM DB authentication

 ■ Monitoring and metrics with Amazon CloudWatch

Relational Databases 183

To create an Amazon RDS instance, you can run the following command from the
AWS CLI:

aws rds create-db-instance \
--db-instance-class db.t2.micro \
--allocated-storage 30 \
--db-instance-identifier my-cool-rds-db --engine mysql \
--master-username masteruser --master-user-password masterpassword1!

Depending on the configurations chosen, the database can take several minutes before it
is active and ready for use. You can monitor the Amazon RDS Databases console to view
the status. When the status states Available, it is ready to be used, as shown in Figure 4.3.

f i gu r e 4 . 3 Amazon RDS Databases console

Automatic Software Patching

Periodically, Amazon RDS performs maintenance on Amazon RDS resources. Maintenance
mostly involves patching the Amazon RDS database underlying operating system (OS)
or database engine version. Because this is a managed service, Amazon RDS handles the
patching for you.

When you create an Amazon RDS database instance, you can define a maintenance
window. A maintenance window is where you can define a period of time when you want
to apply any updates or downtime to your database instance. You also can enable the auto-
matic minor version upgrade feature, which automatically applies any new minor versions
of the database as they are released (see Figure 4.4).

f i gu r e 4 . 4 Maintenance window

184 Chapter 4 ■ Hello, Databases

You can select a maintenance window by using the AWS Management Console, AWS
CLI, or Amazon RDS API. After selecting the maintenance window, the Amazon RDS
instance is upgraded (if upgrades are available) during that time window. You can also
modify the maintenance window by running the following AWS CLI command:

aws rds modify-db-instance --db-instance-identifer your-db-instance-identifer
--preferred-maintenance-window Mon:07:00-Mon:07:30

Vertical Scaling

If your database needs to handle a bigger load, you can vertically scale your Amazon
RDS instance. At the time of this writing, there are 40 available DB instance classes,
which enable you to choose the number of virtual CPUs and memory available. This
gives you flexibility over the performance and cost of your Amazon RDS database. To
scale the Amazon RDS instance, you can use the console, AWS CLI, or AWS SDK.

If you are in a Single-AZ configuration for your Amazon RDS instance, the database is
unavailable during the scaling operation. However, if you are in a Multi-AZ configuration,
the standby database is upgraded first and then a failover occurs to the newly configured
database. You can also apply the change during the next maintenance window. This way,
your upgrade can occur during your normal outage windows.

To scale the Amazon RDS database by using the AWS CLI, run the following command:

aws rds modify-db-instance --db-instance-identifer your-db-instance-identifer
--db-instance-class db.t2.medium

Easy Storage Scaling

Storage is a critical component for any database. Amazon RDS has the following three
storage types:

General Purpose SSD (gp2) This storage type is for cost-effective storage that is ideal for
a broad range of workloads. Gp2 volumes deliver single-digit millisecond latencies and the
ability to burst to 3,000 IOPS for extended periods of time. The volume’s size determines
the performance of gp2 volumes.

Provisioned IOPS (io1) This storage type is for input/output-intensive workloads that
require low input/output (I/O) latency and consistent I/O throughput.

Magnetic Storage This storage type is designed for backward compatibility, and AWS
recommends that you use General Purpose SSD or Provisioned IOPS for any new Amazon
RDS workloads.

To scale your storage, you must modify the Amazon RDS DB instance by executing the
following AWS CLI command:

aws rds modify-db-instance --db-instance-identifer your-db-instance-identifer
--allocated-storage 50 --storage-type io1 --iops 3000

Relational Databases 185

This command modifies your storage to 50 GB in size, with a Provisioned IOPS storage
drive and a dedicated IOPS of 3000. While modifying the Amazon RDS DB instance, con-
sider the potential downtime.

Read Replicas (Horizontal Scaling)

There are two ways to scale your database tier with Amazon RDS: vertical scaling and
horizontal scaling. Vertical scaling takes the primary database and increases the amount of
memory and vCPUs allocated for the primary database. Alternatively, use horizontal scal-
ing (add another server) to your database tier to improve the performance of applications
that are read-heavy as opposed to write-heavy.

Read replicas create read-only copies of your master database, which allow you to
offload any reads (or SQL SELECT statements) to the read replica. The replication from
the master database to the read replica is asynchronous. As a result, the data queried
from the read replica is not the latest data. If your application requires strongly consistent
reads, consider an alternative option.

At the time of this writing, Amazon RDS MySQL, PostgreSQL, and MariaDB support
up to five read replicas, and Amazon Aurora supports up to 15 read replicas. Microsoft
SQL Server and Oracle do not support read replicas.

To create a read replica by using AWS CLI, run the following command:

aws rds create-db-instance-read-replica --db-instance-identifier your-db-
instance-identifier --source-db-instance-identifier your-source-db

Backing Up Data with Amazon RDS
Amazon RDS has two different ways of backing up data of your database instance: auto-
mated backups and database snapshots (DB snapshots).

Automated Backups (Point-in-Time)

With Amazon RDS, automated backups offer a point-in-time recovery of your database.
When enabled, Amazon RDS performs a full daily snapshot of your data that is taken
during your preferred backup window. After the initial backup is taken (each day), then
Amazon RDS captures transaction logs as changes are made to the database.

After you initiate a point-in-time recovery, to restore your database instance, the trans-
action logs are applied to the most appropriate daily backup. You can perform a restore
up to the specific second, as long as it’s within your retention period. The default retention
period is seven days, but it can be a maximum of up to 35 days.

To perform a restore, you must choose the Latest Restorable Time, which is typically
within the last 5 minutes. For example, suppose that the current date is February 14 at
10 p.m., and you would like to do a point-in-time restore of February 14 at 9 p.m. This
restore would succeed because the Latest Restorable Time is a maximum of February
14 at 9:55 p.m. (which is the last 5-minute window). However, a point-in-time restore of
February 14 at 9:58 p.m. would fail, because it is within the 5-minute window.

Automated backups are kept until the source database is deleted. After the source
Amazon RDS instance is removed, the automated backups are also removed.

186 Chapter 4 ■ Hello, Databases

Database Snapshots (Manual)

Unlike automated backups, database snapshots with Amazon RDS are user-initiated and
enable you to back up your database instance in a known state at any time. You can also
restore to that specific snapshot at any time.

Similar to the other Amazon RDS features, you can create the snapshots through the
AWS Management Console, with the CreateDBSnapshot API, or with the AWS CLI.

With DB snapshots, the backups are kept until you explicitly delete them; therefore,
before removing any Amazon RDS instance, take a final snapshot before removing it.
Regardless of the backup taken, storage I/O may be briefly suspended while the backup
process initializes (typically a few seconds), and you may experience a brief period of
elevated latency. A way to avoid these types of suspensions is to deploy in a Multi-AZ con-
figuration. With such a deployment, the backup is taken from the standby instead of the
primary database.

To create a snapshot of the database, from the Amazon RDS Databases console, under
Actions, select the Take snapshot option (see Figure 4.5). After a snapshot is taken, you can
view all of your snaps from the Snapshots console.

f i gu r e 4 .5 Taking an Amazon RDS snapshot

Multi-AZ Deployments
By using Amazon RDS, you can run in a Multi-AZ configuration. In a Multi-AZ configu-
ration, you have a primary and a standby DB instance. Updates to the primary database
replicate synchronously to the standby replica in a different Availability Zone. The primary
benefit of Multi-AZ is realized during certain types of planned maintenance, or in the
unlikely event of a DB instance failure or an Availability Zone failure. Amazon RDS auto-
matically fails over to the standby so that you can resume your workload as soon as the
standby is promoted to the primary. This means that you can reduce your downtime in the
event of a failure.

Relational Databases 187

Because Amazon RDS is a managed service, Amazon RDS handles the fail to the
standby. When there is a DB instance failure, Amazon RDS automatically promotes the
standby to the primary—you will not interact with the standby directly. In other words,
you will receive one endpoint connection for the Amazon RDS cluster, and Amazon RDS
handles the failover.

Amazon RDS Multi-AZ configuration provides the following benefits:

 ■ Automatic failover; no administration required

 ■ Increased durability in the unlikely event of component failure

 ■ Increased availability in the unlikely event of an Availability Zone failure

 ■ Increased availability for planned maintenance (automated backups; I/O activity is no
longer suspended)

To create an Amazon RDS instance in a Multi-AZ configuration, you must specify
a subnet group that has two different Availability Zones specified. You can specify a
Multi-AZ configuration by using AWS CLI by adding the --multi-az flag to the AWS CLI
command, as follows:

aws rds create-db-instance \
--db-instance-class db.t2.micro \
--allocated-storage 30 \
--db-instance-identifier multi-az-rds-db --engine mysql \
--master-username masteruser \
--master-user-password masterpassword1! \
--multi-az

Encryption
For encryption at rest, Amazon RDS uses the AWS Key Management Service (AWS KMS)
for AES-256 encryption. You can use a default master key or specify your own for the
Amazon RDS DB instance. Encryption is one of the few options that must be configured
when the DB instance is created. You cannot modify an Amazon RDS database to enable
encryption. You can, however, create a DB snapshot and then restore to an encrypted DB
instance or cluster.

Amazon RDS supports using the Transparent Data Encryption (TDE) for Oracle and
SQL Server. For more information on TDE with Oracle and Microsoft SQL Server, see the
following:

 ■ Microsoft SQL Server Transparent Data Encryption Support at:

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer
.Options.TDE.html

 ■ Options for Oracle DB Instances:

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle
.Options.html#Appendix.Oracle.Options.AdvSecurity

188 Chapter 4 ■ Hello, Databases

At the time of this writing, the following Amazon RDS DB instance types are not
 supported for encryption at rest:

 ■ Db.m1.small

 ■ Db.m1.medium

 ■ Db.m1.large

 ■ Db.m1.xlarge

 ■ Db.m2.xlarge

 ■ Db.m2.2xlarge

 ■ Db.m2.4xlarge

 ■ Db.t2.micro

For encryption in transit, Amazon RDS generates an SSL certificate for each database
instance that can be used to connect your application and the Amazon RDS instance.
However, encryption is a compute-intensive operation that increases the latency of your
database connection. For more information, see the documentation for the specific data-
base engine.

IAM DB Authentication
You can authenticate to your DB instance by using IAM. By using IAM, you can manage
access to your database resources centrally instead of storing the user credentials in each
database. The IAM feature also encrypts network traffic to and from the database by using
SSL.

IAM DB authentication is supported only for MySQL and PostgreSQL. At the time of
this writing, the following MySQL versions are supported:

 ■ MySQL 5.6.34 or later

 ■ MySQL 5.7.16 or later

There’s no support for the following:

 ■ IAM DB Authentication for MySQL 5.5 or MySQL 8.0

 ■ db.t2.small and db.m1.small instances

The following PostgreSQL versions are supported:

 ■ PostgreSQL versions 10.6 or later

 ■ PostgreSQL 9.6.11 or later

 ■ PostgreSQL 9.5.15 or later

To enable IAM DB authentication for your Amazon RDS instance, run the following
command:

aws rds modify-db-instance --db-instance-identifier my-rds-db --enable-iam-
database-authentication --apply-immediately

Relational Databases 189

Because downtime is associated with this action, you can enable this feature dur-
ing the next maintenance window. You can do so by changing the last parameter to
--no-apply-immediately.

Monitoring with Amazon CloudWatch
Use Amazon CloudWatch to monitor your database tier. You can create alarms to notify
database administrators when there is a failure.

By default, CloudWatch provides some built-in metrics for Amazon RDS with a granu-
larity of 5 minutes (600 seconds). If you want to gather metrics in a smaller window of
granularity, such as 1 second, enable enhanced monitoring, which is similar to how you
enable these features in Amazon EC2.

To view all the Amazon RDS metrics that are provided through CloudWatch, select the
Monitoring tab from the Amazon RDS console (see Figure 4.6).

f i gu r e 4 .6 Amazon RDS with CloudWatch metrics

Amazon RDS integrates with CloudWatch to send it the following database logs:

 ■ Audit log

 ■ Error log

 ■ General log

 ■ Slow query log

From the Amazon RDS console, select the Logs & events tab to view and download the
specified logs, as shown in Figure 4.7.

190 Chapter 4 ■ Hello, Databases

f i gu r e 4 .7 Amazon RDS with CloudWatch Logs

For more information on CloudWatch and its capabilities across other AWS services, see
Chapter 15, “Monitoring and Troubleshooting.”

Amazon Aurora
Amazon Aurora is a MySQL- and PostgreSQL-compatible relational database engine that
combines the speed and availability of high-end commercial databases with the simplicity
and cost-effectiveness of open source databases.

Aurora is part of the managed database service Amazon RDS.

Amazon Aurora DB Clusters

Aurora is a drop-in replacement for MySQL and PostgreSQL relational databases. It is
built for the cloud, and it combines the performance and availability of high-end commer-
cial databases with the simplicity and cost-effectiveness of open source databases. You can
use the code, tools, and applications that you use today with your existing MySQL and
PostgreSQL databases with Aurora.

The integration of Aurora with Amazon RDS means that time-consuming administra-
tion tasks, such as hardware provisioning, database setup, patching, and backups, are
automated.

Aurora features a distributed, fault-tolerant, self-healing storage system that automati-
cally scales up to 64 TiB per database instance. (In comparison, other Amazon RDS
options allow for a maximum of 32 TiB.) Aurora delivers high performance and avail-
ability with up to 15 low-latency read replicas, point-in-time recovery, continuous backup
to Amazon Simple Storage Service (Amazon S3), and replication across three Availability
Zones. When you create an Aurora instance, you create a DB cluster. A DB cluster con-
sists of one or more DB instances and a cluster volume that manages the data for those

Relational Databases 191

instances. An Aurora cluster volume is a virtual database storage volume that spans mul-
tiple Availability Zones, and each Availability Zone has a copy of the DB cluster data.

An Aurora DB cluster has two types of DB instances:

Primary Instance Supports read and write operations and performs all of the data modifi-
cations to the cluster volume. Each Aurora DB cluster has one primary instance.

Amazon Aurora Replica Supports read-only operations. Each Aurora DB cluster can
have up to 15 Amazon Aurora Replicas in addition to the primary instance. Multiple
Aurora Replicas distribute the read workload, and if you locate Aurora Replicas in separate
Availability Zones, you can also increase database availability.

Figure 4.8 illustrates the relationship between the cluster volume, the primary instance,
and Aurora Replicas in an Aurora DB cluster.

f i gu r e 4 . 8 Amazon Aurora DB cluster

Amazon Aurora DB Cluster

Primary
Instance

Aurora
Replica

Aurora
Replicas

Data Copies

Cluster Volume

Data CopiesData Copies

Re
ad

s

Re
ad

s Re
ad

s

Re
ad

sW
rites

Writes

Writes

Availability Zone a Availability Zone b Availability Zone c

As you can see from Figure 4.8, this architecture is vastly different from the other
Amazon RDS databases. Aurora is engineered and architected for the cloud. The primary
difference is that there is a separate storage layer, called the cluster volume, which is spread
across multiple Availability Zones in a single AWS Region. This means that the durability
of your data is increased.

Additionally, Aurora has one primary instance that writes across the cluster volume.
This means that Aurora replicas can be spun up quickly, because they don’t have to copy
and store their own storage layer; they connect to it. Because the cluster volume is separated
in this architecture, the cluster volume can grow automatically as your data increases. This
is in contrast to how other Amazon RDS databases are built, whereby you must define the
allocated storage in advance.

192 Chapter 4 ■ Hello, Databases

Amazon Aurora Global Databases

With Aurora, you can also create a multiregional deployment for your database tier. In this
configuration, the primary AWS Region is where your data is written (you may also do
reads from the primary AWS Region). Any application performing writes must write to the
primary AWS Region where the cluster is operating.

The secondary AWS Region is used for reading data only. Aurora replicates the data
to the secondary AWS Region with typical latency of less than a second. Furthermore,
you can use the secondary AWS Region for disaster recovery purposes. You can promote
the secondary cluster and make it available as the primary typically in less than a minute.
At the time of this writing, Aurora global databases are available in the following AWS
Regions only:

 ■ US East (N. Virginia)

 ■ US East (Ohio)

 ■ US West (Oregon)

 ■ EU (Ireland)

Additionally, at the time of this writing, Aurora global databases are available only for
MySQL 5.6.

Amazon Aurora Serverless

Aurora Serverless is an on-demand, automatic scaling configuration for Aurora. (It is avail-
able only for MySQL at the time of this writing.) With Aurora Serverless, the database will
automatically start up, shut down, and scale capacity up or down based on your applica-
tion’s needs. This means that, as a developer, you can run your database in the AWS Cloud
and not worry about managing any database instances.

Best Practices for Running Databases on AWS
The following are best practices for working with Amazon RDS:

Follow Amazon RDS basic operational guidelines. The Amazon RDS Service Level
Agreement requires that you follow these guidelines:

 ■ Monitor your memory, CPU, and storage usage. Amazon CloudWatch can notify
you when usage patterns change or when you approach the capacity of your
deployment so that you can maintain system performance and availability.

 ■ Scale up your DB instance when you approach storage capacity limits. Have some
buffer in storage and memory to accommodate unforeseen increases in demand
from your applications.

 ■ Enable automatic backups, and set the backup window to occur during the daily
low in write IOPS.

Relational Databases 193

 ■ If your database workload requires more I/O than you have provisioned, recovery
after a failover or database failure will be slow. To increase the I/O capacity of a
DB instance, do any or all of the following:

 ■ Migrate to a DB instance class with high I/O capacity.

 ■ Convert from standard storage either to General Purpose or Provisioned IOPS
storage, depending on how much of an increase you need. If you convert to
Provisioned IOPS storage, make sure that you also use a DB instance class that
is optimized for Provisioned IOPS.

 ■ If you are already using Provisioned IOPS storage, provision additional
throughput capacity.

 ■ If your client application is caching the Domain Name Service (DNS) data of your
DB instances, set a time-to-live (TTL) value of less than 30 seconds. Because the
underlying IP address of a DB instance can change after a failover, caching the
DNS data for an extended time can lead to connection failures if your application
tries to connect to an IP address that no longer is in service.

 ■ Test failover for your DB instance to understand how long the process takes for
your use case and to ensure that the application that accesses your DB instance can
automatically connect to the new DB instance after failover.

Allocate sufficient RAM to the DB instance. An Amazon RDS performance best practice
is to allocate enough RAM so that your working set resides almost completely in memory.
Check the ReadIOPS metric by using CloudWatch while the DB instance is under load to
view the working set. The value of ReadIOPS should be small and stable. Scale up the DB
instance class until ReadIOPS no longer drops dramatically after a scaling operation or
when ReadIOPS is reduced to a small amount.

Implement Amazon RDS security. Use IAM accounts to control access to Amazon RDS
API actions, especially actions that create, modify, or delete Amazon RDS resources, such
as DB instances, security groups, option groups, or parameter groups, and actions that
perform common administrative actions, such as backing up and restoring DB instances, or
configuring Provisioned IOPS storage.

 ■ Assign an individual IAM account to each person who manages Amazon RDS
resources. Do not use an AWS account user to manage Amazon RDS resources;
create an IAM user for everyone, including yourself.

 ■ Grant each user the minimum set of permissions required to perform his or her duties.

 ■ Use IAM groups to manage permissions effectively for multiple users.

 ■ Rotate your IAM credentials regularly.

Use the AWS Management Console, the AWS CLI, or the Amazon RDS API to change the pass-
word for your master user. If you use another tool, such as a SQL client, to change the master
user password, it might result in permissions being revoked for the user unintentionally.

Use enhanced monitoring to identify OS issues. Amazon RDS provides metrics in real
time for the OS on which your DB instance runs. You can view the metrics for your DB

194 Chapter 4 ■ Hello, Databases

instance by using the console or consume the Enhanced Monitoring JSON output from
CloudWatch Logs in a monitoring system of your choice. Enhanced Monitoring is available
for the following database engines:

 ■ MariaDB

 ■ Microsoft SQL Server

 ■ MySQL version 5.5 or later

 ■ Oracle

 ■ PostgreSQL

 Enhanced Monitoring is available for all DB instance classes except for db.m1.small . Enhanced
Monitoring is available in all regions except for AWS GovCloud (US).

Use metrics to identify performance issues. To identify performance issues caused by
insuffi cient resources and other common bottlenecks, you can monitor the metrics available
for your Amazon RDS DB instance.

 Monitor performance metrics regularly to see the average, maximum, and minimum values
for a variety of time ranges. If you do so, you can identify when performance is degraded.
You can also set CloudWatch alarms for particular metric thresholds.

 To troubleshoot performance issues, it’s important to understand the baseline performance
of the system. When you set up a new DB instance and get it running with a typical work-
load, you should capture the average, maximum, and minimum values of all the perfor-
mance metrics at a number of different intervals (for example, 1 hour, 24 hours, 1 week,
or 2 weeks) to get an idea of what is normal. It helps to get comparisons for both peak and
off-peak hours of operation. You can then use this information to identify when perfor-
mance is dropping below standard levels.

Tune queries. One of the best ways to improve DB instance performance is to tune your
most commonly used and most resource-intensive queries to make them less expensive
to run.

 A common aspect of query tuning is creating effective indexes. You can use the Database
Engine Tuning Advisor to get potential index improvements for your DB instance.

Use DB parameter groups. AWS recommends that you apply changes to the DB parameter
group on a test DB instance before you apply parameter group changes to your production
DB instances. Improperly setting DB engine parameters in a DB parameter group can have
unintended adverse effects, including degraded performance and system instability. Always
exercise caution when modifying DB engine parameters, and back up your DB instance
before modifying a DB parameter group.

 Use read replicas. Use read replicas to relieve pressure on your master node with addi-
tional read capacity. You can bring your data closer to applications in different regions and
promote a read replica to a master for faster recovery in the event of a disaster.

 You can use the AWS Database Migration Service (AWS DMS) to migrate
or replicate your existing databases easily to Amazon RDS.

Nonrelational Databases 195

Nonrelational Databases
Nonrelational databases are commonly used for internet-scale applications that do not
require any complex queries.

NoSQL Database
NoSQL databases are nonrelational databases optimized for scalable performance and
schema-less data models. NoSQL databases are also widely recognized for their ease of
development, low latency, and resilience.

NoSQL database systems use a variety of models for data management, such as in-
memory key-value stores, graph data models, and document stores. These types of data-
bases are optimized for applications that require large data volume, low latency, and
flexible data models, which are achieved by relaxing some of the data consistency restric-
tions of traditional relational databases.

When to Use a NoSQL Database
NoSQL databases are a great fit for many big data, mobile, and web applications that
require greater scale and higher responsiveness than traditional relational databases.
Because of simpler data structures and horizontal scaling, NoSQL databases typically
respond faster and are easier to scale than relational databases.

Comparison of SQL and NoSQL Databases
Many developers are familiar with SQL databases but might be new to working with
NoSQL databases. Relational database management systems (RDBMS) and nonrelational
(NoSQL) databases have different strengths and weaknesses. In a RDBMS, data can be
queried flexibly, but queries are relatively expensive and do not scale well in high-traffic sit-
uations. In a NoSQL database, you can query data efficiently in a limited number of ways.
Table 4.3 shows a comparison of different characteristics of SQL and NoSQL databases.

TA b le 4 . 3 SQL vs. NoSQL Database Characteristics

Type SQL NoSQL

Data Storage Rows and columns Key-value, document, wide-column, graph

Schemas Fixed Dynamic

Querying Using SQL Focused on collection of documents

Scalability Vertical Horizontal

Transactions Supported Support varies

Consistency Strong Eventual and strong

196 Chapter 4 ■ Hello, Databases

The storage format for SQL versus NoSQL databases also differs. As shown in Figure 4.9,
SQL databases are often stored in a row and column format, whereas NoSQL databases,
such as Amazon DynamoDB, have a key-value format that could be in a JSON format, as
shown in this example.

f i gu r e 4 . 9 SQL versus NoSQL format comparison

NoSQL Database Types
There are four types of NoSQL databases: columnar, document, graph, and in-memory
key-value. Generally, these databases differ in how the data is stored, accessed, and struc-
tured, and they are optimized for different use cases and applications.

Columnar databases Columnar databases are optimized for reading and writing columns
of data as opposed to rows of data. Column-oriented storage for database tables is an
important factor in analytic query performance because it drastically reduces the overall
disk I/O requirements and reduces the amount of data that you must load from disk.

Document databases Document databases are designed to store semi-structured data as
documents, typically in JSON or XML format. Unlike traditional relational databases, the
schema for each NoSQL document can vary, giving you more flexibility in organizing and
storing application data and reducing storage required for optional values.

Graph databases Graph databases store vertices and directed links called edges. Graph
databases can be built on both SQL and NoSQL databases. Vertices and edges can each
have properties associated with them.

In-memory key-value stores In-memory key-value stores are NoSQL databases optimized
for read-heavy application workloads (such as social networking, gaming, media sharing,
and Q&A portals) or compute-intensive workloads (such as a recommendation engine).
In-memory caching improves application performance by storing critical pieces of data in
memory for low-latency access.

Amazon DynamoDB
Amazon DynamoDB is a fast and flexible NoSQL database service for all applications that
need consistent, single-digit millisecond latency at any scale. It is a fully managed cloud

Nonrelational Databases 197

database, and it supports both document and key-value store models. Its flexible data
model, reliable performance, and automatic scaling of throughput capacity make it a great
fit for the following:

 ■ Mobile

 ■ Gaming

 ■ Adtech

 ■ Internet of Things (IoT)

 ■ Applications that do not require complex queries

With DynamoDB, you can create database tables that can store and retrieve any amount
of data and serve any level of request traffic. You can scale up or scale down your table
throughput capacity without downtime or performance degradation. DynamoDB auto-
matically spreads the data and traffic for your tables over a sufficient number of servers to
handle your throughput and storage requirements while maintaining consistent and fast
performance. All of your data is stored on solid-state drives (SSDs) and automatically rep-
licated across multiple Availability Zones in an AWS Region, providing built-in high avail-
ability and data durability. You can use global tables to keep DynamoDB tables in sync
across AWS Regions.

Core Components of Amazon DynamoDB
In DynamoDB, tables, items, and attributes are the core components with which you work.
A table is a collection of items, and each item is a collection of attributes. DynamoDB uses
partition keys to identify uniquely each item in a table. Secondary indexes can be used to
provide more querying flexibility. You can use DynamoDB Streams to capture data modifi-
cation events in DynamoDB tables.

Figure 4.10 shows the DynamoDB data model, including a table, items, attributes,
a required partition key, an optional sort key, and an example of data being stored in
partitions.

f i gu r e 4 .10 Amazon DynamoDB tables and partitions

Sort Key
(Optional)

Table data is stored in partitions
based on partition key.

Partition Key
(Required)

Table

Items

Attributes

Partition
Key: A

Partition
Key: B

Partition
Key: C

Partition
Key: D

198 Chapter 4 ■ Hello, Databases

Tables

Similar to other database systems, DynamoDB stores data in tables. A table is a
collection of items. For example, a table called People could be used to store personal contact
information about friends, family, or anyone else of interest.

Items

An item in DynamoDB is similar in many ways to rows, records, or tuples in other data-
base systems. Each DynamoDB table contains zero or more items. An item is a collection of
attributes that is uniquely identifiable for each record in that table. For a People table, each
item represents a person. There is no limit to the number of items that you can store in a
table.

Attributes

Each item is composed of one or more attributes. Attributes in DynamoDB are similar in
many ways to fields or columns in other database systems. An attribute is a fundamen-
tal data element, something that does not need to be broken down any further. You can
think of an attribute as similar to columns in a relational database. For example, an item
in a People table contains attributes called PersonID, Last Name, First Name, and so on.

Figure 4.11 shows a table named People with items and attributes. Each block represents
an item, and within those blocks you have attributes that define the overall item:

 ■ Each item in the table has a unique identifier, a primary key, or a partition key that
distinguishes the item from all of the others in the table. The primary key consists of
one attribute (PersonID).

 ■ Other than the primary key, the People table is schemaless, which means that you
do not have to define the attributes or their data types beforehand. Each item can
have its own distinct attributes. This is where the contrast begins to show between
NoSQL and SQL. In SQL, you would have to define a schema for each person, and
every person would need to have the same data points or attributes. As you can see in
Figure 4.11, with NoSQL and DynamoDB, each person can have different attributes.

 ■ Most of the attributes are scalar, so they can have only one value. Strings and numbers
are common examples of scalars.

 ■ Some of the items have a nested attribute (Address). DynamoDB supports nested
attributes up to 32 levels deep.

Nonrelational Databases 199

f i gu r e 4 .11 Amazon DynamoDB table with items and attributes

Primary Key

When you create a table, at a minimum, you are required to specify the table name and pri-
mary key of the table. The primary key uniquely identifies each item in the table. No two
items can have the same key within a table.

DynamoDB supports two different kinds of primary keys: partition key and partition
key and sort key.

Partition key (hash key) A simple primary key, composed of one attribute, is known as
the partition key. DynamoDB uses the partition key’s value as an input to an internal hash
function. The output from the hash function determines the partition (physical storage
internal to DynamoDB) in which the item is stored.

In a table that has only a partition key, no two items can have the same partition key value.
For example, in the People table, with a simple primary key of PersonID, you cannot have
two items with PersonID of 000-07-1075.

200 Chapter 4 ■ Hello, Databases

The partition key of an item is also known as its hash attribute. The term hash attribute
derives from the use of an internal hash function in DynamoDB that evenly distributes data
items across partitions based on their partition key values.

Each primary key attribute must be a scalar (meaning that it can hold only a single value).
The only data types allowed for primary key attributes are string, number, or binary. There
are no such restrictions for other, nonkey attributes.

Partition key and sort key (range attribute) A composite primary key is composed of two
attributes: partition key and the sort key.

The sort key of an item is also known as its range attribute. The term range attribute
derives from the way that DynamoDB stores items with the same partition key physically
close together, in sorted order, by the sort key value.

The partition key acts the same as the sort key, but in addition to also using a sort key, the
items with the same partition key are stored together, in sorted order, by sort key value.

In a table that has a partition key and a sort key, it’s possible for two items to have the
same partition key value, but those two items must have different sort key values. You can-
not have two items in the table that have identical partition key and sort key values.

For example, if you have a Music table with a composite primary key (Artist and
SongTitle), you can access any item in the Music table directly if you provide the Artist and
SongTitle values for that item.

A composite primary key gives you additional flexibility when querying data. For example,
if you provide only the value for Artist, DynamoDB retrieves all of the songs by that artist.
To retrieve only a subset of songs by a particular artist, you can provide a value for Artist
with a range of values for SongTitle.

As a developer, the attribute you choose for your application has important implications. If
there is little differentiation among partition keys, all of your data is stored together in the
same physical location.

Figure 4.12 shows an example of these two types of keys. In the SensorLocation table, the
primary key is the SensorId attribute. This means that every item (or row) in this table has
a unique SensorId, meaning that each sensor has exactly one location or latitude and longi-
tude value.

f i gu r e 4 .12 Amazon DynamoDB primary keys

Nonrelational Databases 201

Conversely, the SensorReadings table has a partition key and a sort key. The SensorId
attribute is the partition key and the Time attribute is the sort key, which combined make it
a composite key. For each SensorId, there may be multiple items corresponding to sensor
readings at different times. The combination of SensorId and Time uniquely identifies items
in the table. This design enables you to query the table for all readings related to a particu-
lar sensor.

Secondary Indexes
If you want to perform queries on attributes that are not part of the table’s primary key,
you can create a secondary index. By using a secondary index, you can query the data
in the table by using an alternate key, in addition to querying against the primary key.
DynamoDB does not require that you use indexes, but doing so may give you more flex-
ibility when querying your data depending on your application and table design.

After you create a secondary index on a table, you can then read data from the index
in much the same way as you do from the table. DynamoDB automatically creates indexes
based on the primary key of a table and automatically updates all indexes whenever a table
changes.

A secondary index contains the following:

 ■ Primary key attributes

 ■ Alternate key attributes

 ■ (Optional) A subset of other attributes from the base table (projected attributes)

DynamoDB provides fast access to the items in a table by specifying primary key val-
ues. However, many applications might benefit from having one or more secondary (or
alternate) keys available. This allows efficient access to data with attributes other than the
primary key.

DynamoDB supports two types of secondary indexes: local secondary indexes and
global secondary indexes. You can define up to five global secondary indexes and five local
secondary indexes per table.

Local Secondary Index

A local secondary index is an index that has the same partition key as the base table, but a
different sort key (see Figure 4.13). It is “local” in the sense that every partition of a local
secondary index is scoped to a base table partition that has the same partition key value.
You can construct only one while creating the table, but you cannot add, remove, or
modify it later.

202 Chapter 4 ■ Hello, Databases

f i gu r e 4 .13 Local secondary index

Global Secondary Index

A global secondary index is an index with a partition key and a sort key that can be differ-
ent from those on the base table (see Figure 4.14). It is considered “global” because queries
on the index can span all of the data in the base table across all partitions. You can create
one during table creation, and you can add, remove, or modify it later.

f i gu r e 4 .14 Global secondary index

Nonrelational Databases 203

 You can create a global secondary index, not a local secondary index, after
table creation.

 For example, by using a Music table, you can query data items by Artist (partition key)
or by Artist and SongTitle (partition key and sort key). Suppose that you also wanted to
query the data by Genre and Album Title . To do this, you could create a global secondary
index on Genre and AlbumTitle and then query the index in much the same way as you’d
query the Music table.

 Figure 4.15 shows the example Music table with a new index called GenreAlbumTitle .
In the index, Genre is the partition key, and AlbumTitle is the sort key.

 f i gu r e 4 .15 Amazon DynamoDB table and secondary index

204 Chapter 4 ■ Hello, Databases

Note the following about the GenreAlbumTitle index:

 ■ Every index belongs to a table, which is called the base table for the index. In the
preceding example, Music is the base table for the GenreAlbumTitle index.

 ■ DynamoDB maintains indexes automatically. When you add, update, or delete an item
in the base table, DynamoDB adds, updates, or deletes the corresponding item in any
indexes that belong to that table.

 ■ When you create an index, you specify which attributes will be copied, or projected,
from the base table to the index. At a minimum, DynamoDB projects the key attributes
from the base table into the index. This is the case with GenreAlbumTitle, wherein
only the key attributes from the Music table are projected into the index.

You can query the GenreAlbumTitle index to find all albums of a particular genre (for
example, all Hard Rock albums). You can also query the index to find all albums within a
particular genre that have certain album titles (for example, all Heavy Metal albums with
titles that start with the letter M).

Comparison of Local Secondary Indexes and Global Secondary Indexes

To determine which type of index to use, consider your application’s requirements.
Table 4.4 shows the main differences between a global secondary index and a local
secondary index.

TA b le 4 . 4 Comparison of Local and Global Secondary Indexes

Characteristic Global Secondary Index Local Secondary Index

Query Scope Entire table, across all partitions. Single partition, as specified
by the partition key value in
the query.

Key Attributes ■ Partition key, or partition and
sort key.

 ■ Can be any scalar attribute in
the table.

 ■ Partition and sort key.
 ■ Partition key of index must

be the same attribute as
base table.

Projected Attributes Only projected attributes can be
queried.

Can query attributes that are
not projected. Attributes are
retrieved from the base table.

Read Consistency Eventual consistency only. Eventual consistency or
strong consistency.

Nonrelational Databases 205

Characteristic Global Secondary Index Local Secondary Index

Provisioned
Throughput

 ■ Separate throughput settings
from base table.

 ■ Consumes separate capacity
units.

 ■ Same throughput settings
as base table.

 ■ Consumes base table
capacity units.

Lifecycle
Considerations

Can be created or deleted at any
time.

 ■ Must be created when the
table is created.

 ■ Can be deleted only when
the table is deleted.

Amazon DynamoDB Streams
Amazon DynamoDB Streams is an optional feature that captures data modification events
in DynamoDB tables. The data about these events appears in the stream in near real time
and in the order that the events occurred.

Each event is represented by a stream record. If you enable a stream on a table,
DynamoDB Streams writes a stream record whenever one of the following events occurs:

A new item is added to the table—The stream captures an image of the entire item,
including all of its attributes.

An item is updated—The stream captures the “before” and “after” images of any
attributes that were modified in the item.

An item is deleted from the table—The stream captures an image of the entire item
before it was deleted.

Each stream record also contains the name of the table, the event timestamp, and other
metadata. Stream records have a lifetime of 24 hours; after that, they are automatically
removed from the stream.

Figure 4.16 shows how you can use DynamoDB Streams together with AWS Lambda to
create a trigger—code that executes automatically whenever an event of interest appears
in a stream. For example, consider a Customers table that contains customer information
for a company. Suppose that you want to send a “welcome” email to each new customer.
You could enable a stream on that table and then associate the stream with a Lambda func-
tion. The Lambda function would execute whenever a new stream record appears, but only
process new items added to the Customers table. For any item that has an EmailAddress
attribute, the Lambda function could invoke Amazon Simple Email Service (Amazon SES)
to send an email to that address.

206 Chapter 4 ■ Hello, Databases

 f i gu r e 4 .16 Example of Amazon DynamoDB Streams and AWS Lambda

Customers

New Item

Stream
record DynamoDB Streams

Stream
record

Stream
record

AWS
Lambda

Amazon
SES

Welcome!

New Item

New Item

 In the example shown in Figure 4.16 , the last customer, Craig Roe, will not
receive an email because he does not have an EmailAddress .

 In addition to triggers, DynamoDB Streams enables other powerful solutions that devel-
opers can create, such as the following:

 ■ Data replication within and across AWS regions

 ■ Materialized views of data in DynamoDB tables

 ■ Data analysis by using Amazon Kinesis materialized views

 Read Consistency
 DynamoDB replicates data among multiple Availability Zones in a region. When your
application writes data to a DynamoDB table and receives an HTTP 200 response (OK),
all copies of the data are updated. The data is eventually consistent across all storage
locations, usually within 1 second or less. DynamoDB supports both eventually consistent
and strongly consistent reads.

Nonrelational Databases 207

Eventually Consistent Reads

When you read data from a DynamoDB table immediately after a write operation, the
response might not reflect the results of a recently completed write operation. The response
might include some stale data. If you repeat your read request after a short time, the
response should return the latest data. DynamoDB uses eventually consistent reads, unless
you specify otherwise.

Strongly Consistent Reads

When querying data, you can specify whether DynamoDB should return strongly consis-
tent reads. When you request a strongly consistent read, DynamoDB returns a response
with the most up-to-date data, reflecting updates from all prior write operations that were
successful. A strongly consistent read might not be available if there is a network delay or
outage.

Comparison of Consistent Reads

As a developer, it is important to understand the needs of your application. In some appli-
cations, eventually consistent reads might be fine, such as a high-score dashboard. In other
applications or parts of an application, however, such as a financial or medical system, an
eventually consistent read could be an issue. You will want to evaluate your data usage
patterns to ensure that you are choosing the right type of reads for each part of your
application.

There is an additional cost for strongly consistent reads, and they will have more latency
in returning data than an eventually consistent read. So, that cost and timing should also
play into your decision.

Read and Write Throughput
When you create a table or index in DynamoDB, you must specify your capacity require-
ments for read and write activity. By defining your throughput capacity in advance,
DynamoDB can reserve the necessary resources to meet the read and write activity your
application requires, while ensuring consistent, low-latency performance. Specify your
required throughput value by setting the ProvisionedThroughput parameter when you cre-
ate or update a table.

You specify throughput capacity in terms of read capacity units and write capacity units:

 ■ One read capacity unit (RCU) represents one strongly consistent read per second, or
two eventually consistent reads per second, for an item up to 4 KB in size. If you need
to read an item that is larger than 4 KB, DynamoDB will need to consume additional
read capacity units. The total number of read capacity units required depends on the
item size and whether you want an eventually consistent or strongly consistent read.

 ■ One write capacity unit (WCU) represents one write per second for an item up to
1 KB in size. If you need to write an item that is larger than 1 KB, DynamoDB must
consume additional write capacity units. The total number of write capacity units
required depends on the item size.

208 Chapter 4 ■ Hello, Databases

For example, suppose that you create a table with five read capacity units and five write
capacity units. With these settings, your application could do the following:

 ■ Perform strongly consistent reads of up to 20 KB per second (4 KB × 5 read
capacity units).

 ■ Perform eventually consistent reads of up to 40 KB per second (twice as much read
throughput).

 ■ Write up to 5 KB per second (1 KB × 5 write capacity units).

If your application reads or writes larger items (up to the DynamoDB maximum item size
of 400 KB), it consumes more capacity units.

If your read or write requests exceed the throughput settings for a table, DynamoDB
can throttle that request. DynamoDB can also throttle read requests excess for an
index. Throttling prevents your application from consuming too many capacity units.
When a request is throttled, it fails with an HTTP 400 code (Bad Request) and a
ProvisionedThroughputExceededException. The AWS SDKs have built-in support for
retrying throttled requests, so you do not need to write this logic yourself.

DynamoDB provides the following mechanisms for managing throughput as it changes:

Amazon DynamoDB Auto Scaling DynamoDB automatic scaling actively manages
throughput capacity for tables and global secondary indexes. With automatic scaling, you
define a range (upper and lower limits) for read and write capacity units. You also define a
target utilization percentage within that range. DynamoDB auto scaling seeks to maintain
your target utilization, even as your application workload increases or decreases.

Provisioned throughput If you aren’t using DynamoDB auto scaling, you have to define
your throughput requirements manually. As discussed, with this setting you may run into a
ProvisionedThroughputExceededException if you are throttled. But you can change your
throughput with a few clicks.

Reserved capacity You can purchase reserved capacity in advance, where you pay a one-
time upfront fee and commit to a minimum usage level over a period of time. You may real-
ize significant cost savings compared to on-demand provisioned throughput settings.

On-demand It can be difficult to plan capacity, especially if you aren’t collecting metrics
or perhaps are developing a new application and you aren’t sure what type of performance
you require. With On-Demand mode, your DynamoDB table will automatically scale up
or down to any previously reached traffic level. If a workload’s traffic level reaches a new
peak, DynamoDB rapidly adapts to accommodate the workload. As a developer, focus on
making improvements to your application and offload scaling activities to AWS.

Partitions and Data Distribution

When you are using a table in DynamoDB, the data is placed on multiple partitions
(depending on the amount of data and the amount of throughput allocated to it; recall
that throughput is determined by RCUs and WCUs). When you allocate RCUs and

Nonrelational Databases 209

WCUs to a table, those RCUs and WCUs are split evenly among all partitions for your
table.

For example, suppose that you have allocated 1,000 RCUs and 1,000 WCUs to a
table, and this table has 10 partitions allocated to it. Then each partition would have
100 RCUs and 100 WCUs for it to use. If one of your partitions consumes all the RCUs
and WCUs for the table, you may receive a ProvisionedThroughputExceededException
error because one of your partitions is hot. To deal with hot partitions, DynamoDB has
two features: burst capacity and adaptive capacity.

Burst Capacity

The previous example discussed how you had 10 partitions, each with 100 RCUs and
100 WCUs allocated to them. One of your partitions begins to become hot and now needs
to consume more than 100 RCUs. Under normal circumstances, you may receive the
ProvisionedThroughputExceededException error. However, with burst capacity, when-
ever your partition is not using all of its total capacity, DynamoDB reserves a portion of
that unused capacity for later bursts of throughput to handle any spike your partition may
experience.

At the time of this writing, DynamoDB currently reserves up to 300 seconds (5 minutes)
of unused read and write capacity, which means that your partition can handle a peak
load for 5 minutes over its normal expected load. Burst capacity is enabled and runs in the
background.

Adaptive Capacity

Adaptive capacity is when it is not always possible to distribute read and write activity to a
partition evenly. In the example, a partition is experiencing not only peak demand but also
consistent demand over and above its normal 100 RCU and 100 WCUs. Suppose that now
this partition requires 200 RCUs instead of 100 RCUs.

DynamoDB adaptive capacity enables your application to continue reading and writing
to hot partitions without being throttled, provided that the total provisioned capacity for
the table is not exceeded. DynamoDB allocates additional RCUs to the hot partition; in this
case, 100 more. With adaptive capacity, you will still be throttled for a period of time, typi-
cally between 5–30 minutes, before adaptive capacity turns on or activates. So, for a por-
tion of time, your application will be throttled; however, after adaptive capacity allocates
the RCUs to the partition, DynamoDB is able to sustain the new higher throughput for
your partition and table. Adaptive capacity is on by default, and there is no need to enable
or disable it.

Retrieving Data from DynamoDB
Two primary methods are used to retrieve data from DynamoDB: Query and Scan.

Query

In DynamoDB, you perform Query operations directly on the table or index. To run the
Query command, you must specify, at a minimum, a primary key. If you are querying an
index, you must specify both TableName and IndexName.

210 Chapter 4 ■ Hello, Databases

The following is a query on a Music table in DynamoDB using the Python SDK:

import boto3
import json
import decimal

Helper class to convert a DynamoDB item to JSON.
class DecimalEncoder(json.JSONEncoder):
 def default(self, o):
 if isinstance(o, decimal.Decimal):
 if o % 1 > 0:
 return float(o)
 else:
 return int(o)
 return super(DecimalEncoder, self).default(o)

dynamodb = boto3.resource('dynamodb', region_name='us-east-1')

table = dynamodb.Table('Music')

print("A query with DynamoDB")

response = table.query(
 KeyConditionExpression=Key('Artist').eq('Sam Samuel')
)

for i in response['Items']:
 print(i['SongTitle'], "-", i['Genre'], i['Price'])

The query returns all of the songs by the artist Sam Samuel in the Music table.

Scan

You can also perform Scan operations on a table or index. The Scan operation returns one
or more items and item attributes by accessing every item in a table or a secondary index.
To have DynamoDB return fewer items, you can provide a FilterExpression operation.

If the total number of scanned items exceeds the maximum dataset size limit of 1 MB,
the scan stops, and the results are returned to the user as a LastEvaluatedKey value to
continue the scan in a subsequent operation. The results also include the number of items
exceeding the limit. A scan can result in no table data meeting the filter criteria.

A single Scan operation reads up to the maximum number of items set (if you’re using
the Limit parameter) or a maximum of 1 MB of data and then applies any filtering to the
results by using FilterExpression. If LastEvaluatedKey is present in the response, you
must paginate the result set.

Nonrelational Databases 211

Scan operations proceed sequentially; however, for faster performance on a large table
or secondary index, applications can request a parallel Scan operation by providing the
Segment and TotalSegments parameters.

Scan uses eventually consistent reads when accessing the data in a table; therefore, the
result set might not include the changes to data in the table immediately before the opera-
tion began. If you need a consistent copy of the data, as of the time that the Scan begins,
you can set the ConsistentRead parameter to true.

The following is a scan on a Movies table with the Python SDK:

// Return all of the data in the index
import boto3
import json
import decimal

Create the DynamoDB Resource
dynamodb = boto3.resource('dynamodb', region_name='us-east-1')

Use the Music Table
table = dynamodb.Table('Music')

Helper class to convert a DynamoDB decimal/item to JSON.
class DecimalEncoder(json.JSONEncoder):
 def default(self, o):
 if isinstance(o, decimal.Decimal):
 if o % 1 > 0:
 return float(o)
 else:
 return int(o)
 return super(DecimalEncoder, self).default(o)

Specify some filters for the scan
Here we are stating that the Price must be between 12 - 30
fe = Key('Price').between(12, 30)
pe = "#g, Price"
Expression Attribute Names for Projection Expression only.
ean = { "#g": "Genre", }

#
response_scan = table.scan(
 FilterExpression=fe,
 ProjectionExpression=pe,
 ExpressionAttributeNames=ean
)

Print all the items
for i in response_scan['Items']:
 print(json.dumps(i, cls=DecimalEncoder))

212 Chapter 4 ■ Hello, Databases

while 'LastEvaluatedKey' in response:
 response = table.scan(
 ProjectionExpression=pe,
 FilterExpression=fe,
 ExpressionAttributeNames= ean,
 ExclusiveStartKey=response['LastEvaluatedKey']
)
 for i in response['Items']:
 print(json.dumps(i)

As you can see from the Python code, the scan returns all records with a price of
between 12 and 30 and the genre and the price. The LastEvaluatedKey property is
included to continue to loop through the entire table.

Global Tables
Global tables build upon the DynamoDB global footprint to provide you with a fully man-
aged, multiregion, and multimaster database that provides fast, local, read-and-write per-
formance for massively scaled, global applications. DynamoDB performs all the necessary
tasks to create identical tables in these regions and propagate ongoing data changes to all of
them. Figure 4.17 shows an example of how global tables can work with a global applica-
tion and globally dispersed users.

f i gu r e 4 .17 Global tables

Globally
Dispersed
Users

Global App

Replica (N. America) Replica (Europe) Replica (Asia)

Nonrelational Databases 213

A global table is a collection of one or more DynamoDB tables, all owned by a single
AWS account, identified as replica tables. A replica table (or replica, for short) is a single
DynamoDB table that functions as a part of a global table. Each replica stores the same set
of data items. Any given global table can have only one replica table per region, and every
replica has the same table name and the same primary key schema. Changes made in one
replica are recorded in a stream and propagated to other replicas, as shown in Figure 4.18.

f i gu r e 4 .18 Replication flow in global tables

If your application requires strongly consistent reads, then it must perform all of its
strongly consistent reads and writes in the same region. DynamoDB does not support
strongly consistent reads across AWS Regions.

Conflicts can arise if applications update the same item in different regions at about the
same time (concurrent updates). To ensure eventual consistency, DynamoDB global tables
use a “last writer wins” reconciliation between concurrent updates whereby DynamoDB
makes a best effort to determine the last writer. With this conflict resolution mechanism,
all replicas agree on the latest update and converge toward a state in which they all have
identical data.

To create a DynamoDB global table, perform the following steps:

1. Create an ordinary DynamoDB table, with DynamoDB Streams enabled, in an AWS
Region.

2. Repeat step 1 for every other AWS Region where you want to replicate your data.

3. Define a DynamoDB global table based on the tables that you have created.

The AWS Management Console automates these tasks so that you can create a global
table quickly and easily.

214 Chapter 4 ■ Hello, Databases

Object Persistence Model
The DynamoDB object persistence model enables you to map client-side classes to
DynamoDB tables. The instances of these classes (objects) map to items in a DynamoDB
table.

You can use the object persistence programming interface to connect to DynamoDB;
perform create, read, update, and delete operations (CRUD); execute queries; and imple-
ment optimistic locking with a version number. Figure 4.19 shows an example of using the
object persistence model to map client-side objects in DynamoDB.

f i gu r e 4 .19 Object persistence model

Object
A

Object
B

Customer
Class

Customer Table

Item A

Item B

Support for the object persistence model is available in the Java and .NET SDKs.

Amazon DynamoDB Local
DynamoDB Local is the downloadable version of DynamoDB that lets you write and test
applications by using the Amazon DynamoDB API without accessing the DynamoDB web
service. Instead, the database is self-contained on your computer. When you’re ready to
deploy your application in production, you can make a few minor changes to the code so
that it uses the DynamoDB web service.

Having this local version helps you save on provisioned throughput, data storage, and
data transfer fees. In addition, you don’t need an internet connection while you’re develop-
ing your application.

IAM and Fine-Grained Access Control
You can use AWS IAM to grant or restrict access to DynamoDB resources and API actions.
For example, you could allow a user to execute the GetItem operation on a Books table.
DynamoDB also supports fine-grained access control so that you can control access to
individual data items and attributes. This means that perhaps you have a Users table
and you want the specific user to have access only to his or her data. You can accom-
plish this with fine-grained access control. Use a condition inside an IAM policy with the
dynamodb:LeadingKeys property.

By using LeadingKeys, you can limit the user so that they can access only the items
where the partition key matches the userID. In the following example in the Users table,

Nonrelational Databases 215

you want to restrict who can view the profile information to only the user to which the data
or profile information belongs:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "LeadingKeysExample",
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],
 "Resource": [
 "arn:aws:dynamodb:us-east-1:accountnumber:table/UserProfiles"
],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:LeadingKeys": [
 "${www.amazon.com:user_id}"

],
 "dynamodb:Attributes": [
 "UserId",
 "FirstName",
 "LastName",
 "Email",
 "Birthday"
]
 },
 "StringEqualsIfExists": {
 "dynamodb:Select": "SPECIFIC_ATTRIBUTES"
 }
 }
 }
]
}

216 Chapter 4 ■ Hello, Databases

As you can see in the IAM policy, only the specific user is allowed to access a subset
of the total attributes that are defined in the Attributes section of the policy. Furthermore,
the SELECT statement specifies that the application must provide a list of specific attributes
to act upon, preventing the application from requesting all attributes.

Backup and Restore
You can create on-demand backups and enable point-in-time recovery for your DynamoDB
tables.

On-demand backups create full backups of your tables or restore them on-demand at
any time. These actions execute with zero impact on table performance or availability and
without consuming any provisioned throughput on the table.

Point-in-time recovery helps protect your DynamoDB tables from accidental write or
delete operations. For example, suppose that a test script accidentally writes to a produc-
tion DynamoDB table. With point-in-time recovery, you can restore that table to any point
in time during the last 35 days. DynamoDB maintains incremental backups of your table.
These operations will not affect performance or latency.

Encryption with Amazon DynamoDB
DynamoDB offers fully managed encryption at rest, and it is enabled by default. DynamoDB
uses AWS KMS for encrypting the objects at rest. By default, DynamoDB uses the AWS-owned
customer master key (CMK); however, you can also specify your own AWS KMS CMK
key that you have created. For more information on AWS KMS, see Chapter 5, “Encryption on
AWS.”

Amazon DynamoDB Best Practices
Now that you understand what DynamoDB is and how you can use it to create a scalable
database for your application, review some best practices for using DynamoDB.

Distribute Workload Evenly

The primary key or partition key portion of a table’s primary key determines the logical
partitions in which the table’s data is stored. These logical partitions also affect the under-
lying physical partitions. As a result, you want to distribute your workload across the parti-
tions as evenly as possible, reducing the number of “hot” partition issues that may arise.

Table 4.5 compares the more common partition key schemas and whether they are good
for DynamoDB.

TA b le 4 .5 Amazon DynamoDB Partition Key Recommended Strategies

Partition Key Value Uniformity

User ID, where the application has many users Good

Status code, where there are only a few possible status codes Bad

Data Warehouse 217

Partition Key Value Uniformity

Item creation date, rounded to the nearest time period (for example, day,
hour, or minute)

Bad

Device ID, where each device accesses data at relatively similar intervals Good

Device ID, where even if there are many devices being tracked, one is by
far more popular than all the others

Bad

Comparison of Query and Scan Operations

The Query operation finds items in a table based on primary key values. You must provide
the name of the partition key attribute and the value of that attribute. You can provide a
sort key attribute name and value to refine the search results (for example, all of the forums
with this ID in the last seven days). By default, Query returns all of the data attributes for
those items with specified primary keys. The results are sorted by the sort key in ascending
order, which can be reversed. Additionally, queries are set to be Eventually Consistent, with
an option to change to Strongly Consistent, if necessary.

The Scan operation returns all of the item attributes by accessing every item in the table.
It is for this reason that Query is more efficient than the Scan operation.

Data Warehouse
If you are performing analytics, you may want to use a data warehouse. A data ware-
house is a central repository of information that you can analyze to make better-informed
decisions. Data flows into a data warehouse from transactional systems, relational data-
bases, and other sources, typically on a regular cadence. Business analysts, data scientists,
and decision-makers access the data through BI tools, SQL clients, and other analytics
applications.

Data Warehouse Architecture
A data warehouse architecture consists of three tiers. The bottom tier of the architecture is
the database server, where data is loaded and stored. The middle tier consists of the analyt-
ics engine that is used to access and analyze the data. The top tier is the front-end client
that presents results through reporting, analysis, and data mining tools.

A data warehouse works by organizing data into a schema that describes the layout and
type of data, such as integer, data field, or string. When data is ingested, it is stored in vari-
ous tables described by the schema. Query tools use the schema to determine which data
tables to access and analyze.

218 Chapter 4 ■ Hello, Databases

Data Warehouse Benefits
Benefits of using a data warehouse include the following:

 ■ Better decision-making

 ■ Consolidation of data from many sources

 ■ Data quality, consistency, and accuracy

 ■ Historical intelligence

 ■ Analytics processing that is separate from transactional databases, improving the
performance of both systems

The data warehousing landscape has changed dramatically in recent years with the
emergence of cloud-based services that offer high performance, simple deployment, near-
infinite scaling, and easy administration at a fraction of the cost of on-premises solutions.

Comparison of Data Warehouses and Databases
A data warehouse is specially designed for data analytics, which involves reading large
amounts of data to understand relationships and trends across the data. A database is used
to capture and store data, such as recording details of a transaction. Table 4.6 is useful in
comparing the characteristics of data warehouses and databases.

TA b le 4 .6 Comparison of Data Warehouse and Database Characteristics

Characteristics Data Warehouse Transactional Database

Suitable Workloads Analytics, reporting, big data Transaction processing

Data Source Data collected and normalized
from many sources

Data captured as-is from a single
source, such as a transactional
system

Data Capture Bulk write operations typically
on a predetermined batch
schedule

Optimized for continuous write
operations as new data is available
to maximize transaction throughput

Data Normalization Denormalized schemas,
such as the star schema or
snowflake schema

Highly normalized, static schemas

Data Storage Optimized for simplicity
of access and high-speed
query performance by using
columnar storage

Optimized for high-throughout
write operations to a single row-
oriented physical block

Data Access Optimized to minimize I/O and
maximize data throughput

High volumes of small read
operations

Data Warehouse 219

Comparison of Data Warehouses and Data Lakes
Unlike a data warehouse, a data lake, as described in Chapter 3, “Hello, Storage,” is a cen-
tralized repository for all data, including structured and unstructured. A data warehouse
uses a predefined schema that is optimized for analytics. In a data lake, the schema is not
defined, enabling additional types of analytics, such as big data analytics, full text search,
real-time analytics, and machine learning. Table 4.7 compares the characteristics of a data
warehouse and a data lake.

TA b le 4 .7 Comparison of Data Warehouse and Data Lake Characteristics

Characteristics Data Warehouse Data Lake

Data Relational data from transactional
systems, operational databases,
and line-of-business applications

Nonrelational and relational
data from IoT devices, websites,
mobile apps, social media, and
corporate applications

Schema Designed before the data
warehouse implementation
(schema-on-write)

Written at the time of analysis
(schema-on-read)

Price/Performance Fastest query results by using
higher-cost storage

Query results getting faster by
using low-cost storage

Data Quality Highly curated data that serves
as the central version of the truth

Any data that may or may not be
curated (in other words, raw data)

Users Business analysts, data scientists,
and data developers

Data scientists, data developers,
and business analysts (using
curated data)

Analytics Batch reporting, BI, and
visualizations

Machine learning, predictive
analytics, data discovery, and
profiling

Comparison of Data Warehouses and Data Marts
A data mart is a data warehouse that serves the needs of a specific team or business unit,
such as finance, marketing, or sales. It is smaller, is more focused, and may contain summa-
ries of data that best serve its community of users. Table 4.8 compares the characteristics of
a data warehouse and a data mart.

220 Chapter 4 ■ Hello, Databases

TA b le 4 . 8 Comparison of Data Warehouse and Data Mart Characteristics

Characteristics Data Warehouse Transactional Database

Scope Centralized, multiple subject
areas integrated together

Decentralized, specific subject
area

Users Organization-wide A single community or
department

Data Source Many sources A single or a few sources,
or a portion of data already
collected in a data warehouse

Size Large—can be 100s of gigabytes
to petabytes

Small, generally up to 10s of
gigabytes

Design Top-down Bottom-up

Data Detail Complete, detailed data May hold summarized data

Amazon Redshift
Amazon Redshift is a fast, fully managed, petabyte-scale data warehouse that makes it
simple and cost-effective to analyze all your data by using standard SQL and your existing
BI tools. With Amazon Redshift, you can run complex analytic queries against petabytes
of structured data using sophisticated query optimization, columnar storage on high-
performance local disks, and massively parallel query execution. Most results come back in
seconds. Amazon Redshift is up to 10 times faster than traditional on-premises data ware-
houses at 1/10 the cost.

Architecture
An Amazon Redshift data warehouse is a collection of computing resources called nodes,
which are organized into a group called a cluster. Each cluster runs an Amazon Redshift
engine and contains one or more databases. After you provision your cluster, you can
upload your dataset and then perform data analysis queries. Each cluster has a leader
node and one or more compute nodes, and you have a choice of a hardware platform for
your cluster.

Client Applications

Amazon Redshift integrates with various data loading and extract, transform, and load
(ETL) tools and BI reporting, data mining, and analytics tools. It is based on open standard
PostgreSQL, so most existing SQL client applications will integrate with Amazon Redshift
with only minimal changes. For important differences between Amazon Redshift SQL and
PostgreSQL, see the Amazon Redshift documentation.

Data Warehouse 221

Leader Node

The leader node acts as the SQL endpoint and receives queries from client applications,
parses the queries, and develops query execution plans. The leader node then coordinates
a parallel execution of these plans with the compute nodes and aggregates the intermediate
results from these nodes. Finally, it returns the results to the client applications. The leader
node also stores metadata about the cluster. Amazon Redshift communicates with client
applications by using open standard PostgreSQL, JDBC, and ODBC drivers.

Compute Nodes

Compute nodes execute the query execution plan and transmit data among themselves to
serve these queries. The intermediate results are sent to the leader node for aggregation
before being sent back to the client applications.

Node Slices

A compute node is partitioned into slices. Each slice is allocated a portion of the node’s
memory and disk space, where it processes a portion of the workload assigned to the node.
The leader node manages distributing data to the slices and allocates the workload for any
queries or other database operations to the slices. The slices then work in parallel to com-
plete the operation. The node size of the cluster determines the number of slices per node.

Figure 4.20 shows the Amazon Redshift data warehouse architecture, including the client
applications, JDBC and ODBC connections, leader node, compute nodes, and node slices.

f i gu r e 4 . 20 Amazon Redshift architecture

Client Applications

Leader Node

Data Warehouse Cluster

JD
BC

OD
BC

Compute Node 1

Node Slices

Compute Node n

Node Slices

222 Chapter 4 ■ Hello, Databases

Databases

A cluster contains one or more databases. User data is stored on the compute nodes.

Hardware Platform Options

When you launch a cluster, one option you specify is the node type. The node type deter-
mines the CPU, RAM, storage capacity, and storage drive type for each node. There are
two categories for node types. The dense storage (DS) node types are storage-optimized
using large magnetic disks and can provide up to 2 PB of storage capacity. The dense com-
pute (DC) node types are compute-optimized. Because they use solid state drive (SSD) stor-
age, they deliver much faster I/O compared to DS node types but provide less storage space
at a maximum of 326 TB.

Table Design
Each database within an Amazon Redshift cluster can support many tables. Like most
SQL-based databases, you can create a table using the CREATE TABLE command. This com-
mand specifies the name of the table, the columns, and their data types. This command
also supports specifying compression encodings, distribution strategy, and sort keys in
Amazon Redshift.

Data Types

Each value that Amazon Redshift stores or retrieves has a data type with a fixed set of
associated properties. Data types are declared when tables are created. Additional columns
can be added to a table by using the ALTER TABLE command, but you cannot change the
data type on an existing column.

Many familiar data types are available, including the following:

Numeric data types

 ■ BIGINT

 ■ DECIMAL

 ■ DOUBLE PRECISION

 ■ INTEGER

 ■ REAL

 ■ SMALLINT

Text data types

 ■ CHAR

 ■ VARCHAR

Date data types

 ■ DATE

 ■ TIMESTAMP

 ■ TIMESTAMPTZ

Data Warehouse 223

Logical data type

 ■ BOOLEAN

Compression Encoding

Amazon Redshift uses data compression as one of the key performance optimizations.
When you load data for the first time into an empty table, Amazon Redshift samples your
data automatically and selects the best compression scheme for each column. Alternatively,
you can specify your preferred compression encoding on a per-column basis as part of the
CREATE TABLE command.

Distribution Strategy

When you load data into a table, Amazon Redshift distributes the rows of the table to each
of the compute nodes according to the table’s distribution style. When you execute a query,
the query optimizer redistributes the rows to the compute nodes as needed to perform any
joins and aggregations. The goal in selecting a table distribution style is to minimize the
impact of the redistribution step by locating the data where it needs to be before the query
is executed.

This is one of the primary decisions when you’re creating a table in Amazon Redshift.
You can configure the distribution style of a table to give Amazon Redshift hints as to how
the data should be partitioned to meet your query patterns. The style you select for your
database affects query performance, storage requirements, data loading, and maintenance.
By choosing the best distribution strategy for each table, you can balance your data distri-
bution and significantly improve overall system performance.

When creating a table, you can choose among one of the three distribution styles:
EVEN, KEY, or ALL.

EVEN distribution Rows are distributed across the slices in a round-robin fashion,
regardless of the values in any particular column. It is an appropriate choice when a table
does not participate in joins or when there is not a clear choice between KEY distribution
or ALL distribution. EVEN is the default distribution type.

KEY distribution Rows are distributed according to the values in one column. The leader
node attempts to place matching values on the same node slice. Use this style when you will
be querying heavily against values of a specific column.

ALL distribution A copy of the entire table is distributed to every node. This ensures that
every row is collocated for every join in which the table participates. This multiplies the
storage required by the number of nodes in the cluster, and it takes much longer to load,
update, or insert data into multiple tables. Use this style only for relatively slow-moving
tables that are not updated frequently or extensively.

Sort Keys

Another important decision to make during table creation is choosing the appropriate sort
key. Amazon Redshift stores your data on disk in sorted order according to the sort key,
and the query optimizer uses sort order when it determines the optimal query plans. Specify
an appropriate sort key for the way that your data will be queried, filtered, or joined.

224 Chapter 4 ■ Hello, Databases

 The following are some general guidelines for choosing the best sort key:

 ■ If recent data is queried most frequently, specify the timestamp column as the leading
column for the sort key.

 ■ If you do frequent range filtering or equality filtering on one column, specify that
column as the sort key.

 ■ If you frequently join a table, specify the join column as both the sort key and the
distribution key.

 Loading Data
 Loading large datasets can take a long time and consume many computing resources. How
your data is loaded can also affect query performance. You can reduce these impacts by using
COPY commands, bulk inserts, and staging tables when loading data into Amazon Redshift.

 The COPY command loads data in parallel from Amazon S3 or other data
sources in a more efficient manner than INSERT commands.

 Querying Data
 You can query Amazon Redshift tables by using standard SQL commands, such as using
SELECT statements, to query and join tables. For complex queries, you are able to analyze
the query plan to choose better optimizations for your specifi c access patterns.

 For large clusters supporting many users, you can confi gure workload management
(WLM) to queue and prioritize queries.

 Snapshots
 Amazon Redshift supports snapshots, similar to Amazon RDS. You can create automated
and manual snapshots, which are stored in Amazon S3 by using an encrypted Secure
Socket Layer (SSL) connection. If you need to restore from a snapshot, Amazon Redshift
creates a new cluster and imports data from the snapshot that you specify.

 When you restore from a snapshot, Amazon Redshift creates a new cluster and makes
it available before all of the data is loaded so that you can begin querying the new cluster
immediately. Amazon Redshift will stream data on demand from the snapshot in response
to active queries and load all the remaining data in the background.

 Achieving proper durability for a database requires more effort and more attention.
Even when using Amazon Elastic Block Store (Amazon EBS) volumes, take snapshots on
a frozen fi le system to be consistent. Also, restoring a database might require additional
operations other than restoring a volume from a snapshot and attaching it to an Amazon
EC2 instance.

 Security
 Securing your Amazon Redshift cluster is similar to securing other databases running in
the AWS Cloud. To meet your needs, you will use a combination of IAM policies, security
groups, and encryption to secure the cluster.

Data Warehouse 225

 Encryption

 Protecting the data stored in Amazon Redshift is an important aspect of your security
design. Amazon Redshift supports encryption of data in transit using SSL-encrypted
connections.

 You can also enable database encryption for your clusters to help protect data at rest.
AWS recommends enabling encryption for clusters that contain sensitive data. You might
be required to use encryption depending on the compliance guidelines or regulations that
govern your data. Encryption is an optional setting, and it must be confi gured during the
cluster launch. To change encryption on a cluster, you need to create a new cluster and
migrate the data.

 Amazon Redshift automatically integrates with AWS KMS.

 Implement security at every level of your Amazon Redshift architecture,
including the infrastructure resources, database schema, data, and
network access.

 Access to Amazon Redshift resources is controlled at three levels: cluster management,
cluster connectivity, and database access. For details on the controls available to help
you manage each of these areas, see the Amazon Redshift Cluster Management Guide at
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html .

 The following are some best practices for securing your Amazon Redshift deployments:

 ■ Enable and use SSL when connecting to the Amazon Redshift database port.

 ■ Ensure that your data is available only via SSL by setting the require_ssl parameter
to true in the parameter group that is associated with the cluster.

 ■ Use long, random database passwords generated by Amazon Redshift and store them
by using a secret management system.

 ■ Enable cluster encryption.

 ■ Secure the S3 bucket by enabling Amazon S3 encryption and configuring access
control for Amazon S3.

 ■ Secure the ETL system by enacting access control, auditing/logging, patch
management, disk encryption/secure deletion, and SSL connectivity to Amazon S3.

 ■ Secure the BI system by enacting access control, auditing, patching, SSL connectivity to
Amazon Redshift, and SSL UI (if applicable).

 ■ Use cluster or VPC security groups to limit Amazon Redshift access only to the
necessary IP addresses (for both inbound and outbound flows).

 ■ Enable cluster encryption.

 Amazon Redshift Spectrum
 Amazon Redshift also includes Redshift Spectrum , allowing you to run SQL queries
directly against exabytes of unstructured data in Amazon S3. No loading or transforma-
tion is required.

226 Chapter 4 ■ Hello, Databases

You can use many open data formats, including Apache Avro, CSV, Grok, Ion, JSON,
Optimized Row Columnar (ORC), Apache Parquet, RCFile, RegexSerDe, SequenceFile,
TextFile, and TSV. Redshift Spectrum automatically scales query compute capacity based on
the data being retrieved, so queries against Amazon S3 run fast, regardless of dataset size.

To use Redshift Spectrum, you need an Amazon Redshift cluster and a SQL client that’s
connected to your cluster so that you can execute SQL commands. The cluster and the data
files in Amazon S3 must be in the same AWS Region.

In-Memory Data Stores
In-memory data stores are used for caching and real-time workloads. AWS provides a
variety of in-memory, key-value database options. You can operate your own nonrelational
key-value data store in the cloud on Amazon EC2 and Amazon EBS, work with AWS solu-
tion providers, or take advantage of fully managed nonrelational services such as Amazon
ElastiCache.

Caching
In computing, the data in a cache is generally stored in fast-access hardware, such as
random-access memory (RAM), and may also be used in correlation with a software com-
ponent. A cache’s primary purpose is to increase data retrieval performance by reducing the
need to access the underlying slower storage layer.

Trading off capacity for speed, a cache typically stores a subset of data transiently, in
contrast to databases whose data is usually complete and durable.

Benefits of Caching
A cache provides high-throughput, low-latency access to commonly accessed application
data by storing the data in memory. Caching can improve the speed of your application.
Caching reduces the response latency, which improves a user’s experience with
your application.

Time-consuming database queries and complex queries often create bottlenecks in appli-
cations. In read-intensive applications, caching can provide large performance gains by
reducing application processing time and database access time. Write-intensive applications
typically do not see as great a benefit to caching. However, even write-intensive applica-
tions normally have a read/write ratio greater than 1, which implies that read caching can
be beneficial. In summary, the benefits of caching include the following:

 ■ Improve application performance

 ■ Reduce database cost

 ■ Reduce load on the backend database tier

 ■ Facilitate predictable performance

In-Memory Data Stores 227

 ■ Eliminate database hotspots

 ■ Increase read throughput (IOPS)

The following types of information or applications can often benefit from caching:

 ■ Results of database queries

 ■ Results of intensive calculations

 ■ Results of remote API calls

 ■ Compute-intensive workloads that manipulate large datasets, such as high-
performance computing simulations and recommendation engines

Consider caching your data if the following conditions apply:

 ■ It is slow or expensive to acquire when compared to cache retrieval.

 ■ It is accessed with sufficient frequency.

 ■ Your data or information for your application is relatively static

 ■ Your data or information for your application is rapidly changing and staleness is not
significant.

Caching Strategies
You can implement different caching strategies for your application. Two primary methods
are lazy loading and write through. A cache hit occurs when the cache contains the infor-
mation requested. A cache miss occurs when the cache does not contain the information
requested.

Lazy loading Lazy loading is a caching strategy that loads data into the cache only when
necessary. When your application requests data, it first makes the request to the cache. If
the data exists in the cache (a cache hit), it is retrieved; but if it does not or has expired (a
cache miss), then the data is retrieved from your data store and then stored in the cache.
The advantage of lazy loading is that only the requested data is cached. The disadvantage is
that there is a cache miss penalty resulting in three trips:

1. The application requests data from the cache.

2. If there is a cache miss, you must query the database.

3. After data retrieval, the cache is updated.

Write through The write-through strategy adds data or updates in the cache whenever
data is written to the database. The advantage of write through is that the data in the cache
is never stale. The disadvantage is that there is a write penalty because every write involves
two trips: a write to the cache and a write to the database. Another disadvantage is that
because most data is never read in many applications, the data or information that is stored
in the cluster is never used. This storage incurs a cost for space and overhead due to the
duplicate data. In addition, if your data is updated frequently, the cache may be updating
often, causing cache churn.

228 Chapter 4 ■ Hello, Databases

In-Memory Key-Value Store
An in-memory key-value store is a NoSQL database optimized for read-heavy application
workloads (such as social networking, gaming, media sharing, and Q&A portals) or compute-
intensive workloads (such as a recommendation engine). In-memory caching improves
application performance by storing critical pieces of data in memory for low-latency access.
Cached information may include the results of I/O-intensive database queries or the results
of computationally intensive calculations.

Benefits of In-Memory Data Stores
The strict performance requirements imposed by real-time applications mandate more
efficient databases. Traditional databases rely on disk-based storage. A single user action
may consist of multiple database calls. As they accumulate, latency increases. However,
by accessing data in memory, in-memory data stores provide higher throughput and lower
latency. In fact, in-memory data stores can be one to two orders of magnitude faster than
disk-based databases.

As a NoSQL data store, an in-memory data store does not share the architectural
limitations found in traditional relational databases. NoSQL data stores are built to
be scalable. Traditional relational databases use a rigid table-based architecture. Some
NoSQL data stores use a key-value store and therefore don’t enforce a structure on the
data. This enables scalability and makes it easier to grow, partition, or shard data as data
stores grow. When consumed as a cloud-based service, an in-memory data store also pro-
vides availability and cost benefits. On-demand access allows organizations to scale their
applications as needed in response to demand spikes and at a lower cost than disk-based
stores. Using managed cloud services also eliminates the need to administer infrastructure.
Database hotspots are reduced, and performance becomes more predictable. Some cloud-
based services also offer the benefit of high availability with replicas and support for mul-
tiple Availability Zones.

Benefits of Distributed Cache
A caching layer helps further drive throughput for read-heavy applications. A caching
layer is a high-speed storage layer that stores a subset of data. When a read request is sent,
the caching layer checks to determine whether it has the answer. If it doesn’t, the request
is sent on to the database. Meeting read requests through the caching layer in this man-
ner is more efficient and delivers higher performance than what can be had from a
traditional database alone.

It is also more cost-effective. A single node of in-memory cache can deliver the same
read throughput as several database nodes. Instead of provisioning additional instances
of your traditional database to accommodate a demand spike, you can drive more
throughput by adding one node of distributed cache, replacing several database nodes.
The caching layer saves you money because you’re paying for one node instead of mul-
tiple database nodes, and you get the added benefit of dramatically faster performance
for reads.

In-Memory Data Stores 229

Amazon ElastiCache
Developers need a way to maintain super-low latency, even as they accommodate spikes in
demand and while controlling infrastructure and database costs and load.

Amazon ElastiCache is a web service that makes it easy to deploy, operate, and scale an
in-memory cache in the AWS Cloud. The service improves the performance of web appli-
cations by allowing you to retrieve information from fast, managed, in-memory caches
instead of relying entirely on slower disk-based databases.

ElastiCache automatically detects and replaces failed nodes, reducing the overhead
associated with self-managed infrastructures and also provides a resilient
system that mitigates the risk of overloaded cloud databases, which slow website and
application load times.

ElastiCache currently supports two different open-source, in-memory, key-value caching
engines: Redis and Memcached. Each engine provides some advantages.

Redis
Redis is an increasingly popular open-source, key-value store that supports more advanced
data structures, such as sorted sets, hashes, and lists. Unlike Memcached, Redis has disk
persistence built in, meaning that you can use it for long-lived data. Redis also supports
replication, which can be used to achieve Multi-AZ redundancy, similar to Amazon RDS.

Memcached
Memcached is a widely adopted in-memory key store. It is historically the gold standard
of web caching. ElastiCache is protocol-compliant with Memcached, and it is designed
to work with popular tools that you use today with existing Memcached environments.
Memcached is also multithreaded, meaning that it makes good use of larger Amazon EC2
instance sizes with multiple cores.

Comparison of Memcached and Redis
Although both Memcached and Redis appear similar on the surface, in that they are both
in-memory key stores, they are quite different in practice. Because of the replication and
persistence features of Redis, ElastiCache manages Redis more as a relational database.
Redis ElastiCache clusters are managed as stateful entities that include failover, similar to
how Amazon RDS manages database failover.

Conversely, because Memcached is designed as a pure caching solution with no persis-
tence, ElastiCache manages Memcached nodes as a pool that can grow and shrink, similar
to an Amazon EC2 Auto Scaling group. Individual nodes are expendable, and ElastiCache
provides additional capabilities here, such as automatic node replacement and Auto
Discovery.

Consider the following requirements when deciding between Memcached and Redis.
Use Memcached if you require one or more of the following:

 ■ Object caching is your primary goal, for example, to offload your database.

 ■ You are interested in as simple a caching model as possible.

230 Chapter 4 ■ Hello, Databases

 ■ You plan to run large cache nodes and require multithreaded performance with the use
of multiple cores.

 ■ You want to scale your cache horizontally as you grow.

Use Redis if you require one or more of the following:

 ■ You are looking for more advanced data types, such as lists, hashes, and sets.

 ■ Sorting and ranking datasets in memory help you, such as with leaderboards.

 ■ Your application requires publish and subscribe (pub/sub) capabilities.

 ■ Persistence of your key store is important.

 ■ You want to run in multiple Availability Zones (Multi-AZ) with failover.

 ■ You want transactional support, which lets you execute a group of commands as an
isolated and atomic operation.

Amazon DynamoDB Accelerator
Amazon DynamoDB Accelerator (DAX) is a fully managed, highly available, in-memory
cache for DynamoDB that delivers up to 10 times the performance improvement—from milli-
seconds to microseconds—even at millions of requests per second. DAX does all of the heavy
lifting required to add in-memory acceleration to your DynamoDB tables, without requiring
developers to manage cache invalidation, data population, or cluster management.

With DAX, you can focus on building great applications for your customers without
worrying about performance at scale. You do not need to modify application logic, because
DAX is compatible with existing DynamoDB API calls. You can enable DAX with a few
clicks in the AWS Management Console or by using the AWS SDK, and you pay only for
the capacity you provision.

Graph Databases
AWS provides a variety of graph database options, such as Amazon Neptune, or you can
operate your own graph database in the cloud on Amazon EC2 and Amazon EBS. This sec-
tion takes a closer look at what exactly is a graph database and when you would want to
use one.

Many applications being built today must understand and navigate relationships
between highly connected data. This can enable use cases like the following:

 ■ Social applications

 ■ Recommendation engines

 ■ Fraud detection

 ■ Knowledge graphs

 ■ Life sciences

 ■ IT/network

Graph Databases 231

Because the data is highly connected, it is easily represented as a graph, which is a data
structure that consists of vertices and directed links called edges. Vertices and edges can
each have properties associated with them. Figure 4.21 depicts a simple graph of relation-
ships between friends and their interests—or social network—that could be stored and
 queried by using a graph database. A graph database is optimized to store and process
graph data.

f i gu r e 4 . 21 Example of a social network diagram

Anna

Books

Likes

Likes

Likes

Friend Friend

Movies

Justin

Alana

AWS provides a variety of graph database options. You can operate your own graph
database in the cloud on Amazon EC2 and Amazon EBS. You can also use Neptune, a fully
managed graph database service.

Amazon Neptune
Amazon Neptune is a fast, reliable, fully managed graph database service that makes it
easy to build and run applications that work with highly connected datasets. The core
of Neptune is a purpose-built, high-performance graph database engine optimized for
storing billions of relationships and querying the graph with milliseconds latency.

Neptune is highly available and provides the following features:

 ■ Read replicas

 ■ Point-in-time recovery

 ■ Continuous backup to Amazon S3

 ■ Replication across Availability Zones

 ■ Encryption at rest and in transit

Figure 4.22 shows a knowledge graph that can be powered by Neptune.

232 Chapter 4 ■ Hello, Databases

f i gu r e 4 . 22 Example of a graph database architecture running on Amazon Neptune

Neptune supports the popular graph models Property Graph and W3C’s RDS and their
respective query languages Apache TinkerPop Gremlin and SPARQL. With these models,
you can easily build queries that efficiently navigate highly connected datasets. Neptune
graph databases include the following use cases:

 ■ Recommendation engines

 ■ Fraud detection

 ■ Knowledge graphs

 ■ Drug discovery

 ■ Network security

Cloud Database Migration
Data is the cornerstone of successful cloud application deployments. Your evaluation and
planning process may highlight the physical limitations inherent to migrating data from on-
premises locations into the cloud. Amazon offers a suite of tools to help you move data via
networks, roads, and technology partners.

This chapter focuses on the AWS Database Migration Service (AWS DMS) and the AWS
Schema Conversion Tool (AWS SCT). Customers also use other AWS services and features

Cloud Database Migration 233

that are discussed in Chapter 3, “Hello, Storage,” for cloud data migration, including the
following:

 ■ AWS Direct Connect (DX)

 ■ AWS Snowball

 ■ AWS Snowball Edge

 ■ AWS Snowmobile

 ■ AWS Import/Export Disk

 ■ AWS Storage Gateway

 ■ Amazon Kinesis Data Firehose

 ■ Amazon S3 Transfer Acceleration

 ■ Virtual private network (VPN) connections

AWS Database Migration Service
AWS Database Migration Service (AWS DMS) helps you migrate databases to AWS quickly
and securely. The source database remains fully operational during the migration, minimiz-
ing downtime to applications that rely on the database. AWS DMS can migrate your data
to and from the most widely used commercial and open-source databases.

The service supports homogenous database migrations, such as Oracle to Oracle,
in addition to heterogeneous migrations between different database platforms, such as
Oracle to Amazon Aurora or Microsoft SQL Server to MySQL. You can also stream data
to Amazon Redshift, Amazon DynamoDB, and Amazon S3 from any of the supported
sources, such as Amazon Aurora, PostgreSQL, MySQL, MariaDB, Oracle Database, SAP
ASE, SQL Server, IBM DB2 LUW, and MongoDB, enabling consolidation and easy analy-
sis of data in a petabyte-scale data warehouse. You can also use AWS DMS for continuous
data replication with high availability.

Figure 4.23 shows an example of both heterogeneous and homogenous database migrations.

f i gu r e 4 . 23 Homogenous database migrations using AWS DMS

Source: Oracle Database
On-Premises, in EC2 or RDS

Source: MySQL Database
On-Premises, in EC2 or RDS

AWS Database Migration Service Target: RDS for Oracle
Database

Target: Amazon Aurora
Database

AWS Database Migration Service

234 Chapter 4 ■ Hello, Databases

To perform a database migration, AWS DMS connects to the source data store, reads the
source data, and formats the data for consumption by the target data store. It then loads the data
into the target data store. Most of this processing happens in memory, though large transactions
might require some buffering to disk. Cached transactions and log files are also written to disk.

At a high level, when you’re using AWS DMS, complete the following tasks:

 ■ Create a replication server.

 ■ Create source and target endpoints that have connection information about your
data stores.

 ■ Create one or more tasks to migrate data between the source and target data stores.

A task can consist of three major phases:

 ■ The full load of existing data

 ■ The application of cached changes

 ■ Ongoing replication

AWS Schema Conversion Tool
For heterogeneous database migrations, AWS DMS uses the AWS Schema Conversion Tool
(AWS SCT). AWS SCT makes heterogeneous database migrations predictable by automati-
cally converting the source database schema and a majority of the database code objects,
including views, stored procedures, and functions, to a format compatible with the target
database. Any objects that cannot be automatically converted are clearly marked so that
they can be manually converted to complete the migration.

AWS SCT can also scan your application source code for embedded SQL statements and
convert them as part of a database schema conversion project. During this process, AWS
SCT performs cloud-native code optimization by converting legacy Oracle and SQL Server
functions to their equivalent AWS service, thus helping you modernize the applications at
the same time as database migration.

Figure 4.24 is snapshot of the Action Items tab in the AWS SCT report, which shows
the items that the tool could not convert automatically. These are the items that you would
need to evaluate and adjust manually as needed. The report helps you to determine how
much work you would need to do to complete a conversion.

f i gu r e 4 . 24 AWS SCT action items

Running Your Own Database on Amazon Elastic Compute Cloud 235

After the schema conversion is complete, AWS SCT can help migrate data from a range
of data warehouses to Amazon Redshift by using built-in data migration agents.

Your source database can be on-premises, in Amazon RDS, or in Amazon EC2, and the
target database can be in either Amazon RDS or Amazon EC2. AWS SCT supports a num-
ber of different heterogeneous conversions. Table 4.9 lists the source and target databases
that are supported at the time of this writing.

TA b le 4 . 9 Source and Target Databases Supported by AWS SCT

Source Database Target Database on Amazon RDS

Oracle Database Amazon Aurora, MySQL, PostgreSQL, Oracle

Oracle Data Warehouse Amazon Redshift

Azure SQL Amazon Aurora, MySQL, PostgreSQL

Microsoft SQL Server Amazon Aurora, Amazon Redshift, MySQL, PostgreSQL

Teradata Amazon Redshift

IBM Netezza Amazon Redshift

IBM DB2 LUW Amazon Aurora, MySQL, PostgreSQL

HPE Vertica Amazon Redshift

MySQL and MariaDB PostgreSQL

PostgreSQL Amazon Aurora, MySQL

Amazon Aurora PostgreSQL

Greenplum Amazon Redshift

Apache Cassandra Amazon DynamoDB

Running Your Own Database on
Amazon Elastic Compute Cloud
This chapter focused heavily on the AWS services that are available from a managed data-
base perspective. However, it is important to know that you can also run your own unman-
aged database on Amazon EC2, not only for the exam but for managing projects in the real

236 Chapter 4 ■ Hello, Databases

world. For example, if you want to run MongoDB on Amazon EC2, this is perfectly within
the realm of possibility. However, by doing so, you lose the many benefits of using a man-
aged database service.

Compliance and Security
AWS includes various methods to provide security for your databases and meet the strictest
of compliance standards. You can use the following:

 ■ Network isolation through virtual private cloud (VPC)

 ■ Security groups

 ■ AWS resource-level permission controls that are IAM-based.

 ■ Encryption at rest by using AWS KMS or Oracle/Microsoft Transparent Data
Encryption (TDE)

 ■ Secure Sockets Layer (SSL) protection for data in transit

 ■ Assurance programs for finance, healthcare, government, and more

AWS Identity and Access Management
You can use Identity and Access Management (IAM) to perform governed access to control
who can perform actions with Amazon Aurora MySQL and Amazon RDS for MySQL.
Here’s an example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowCreateDBInstanceOnly",
 "Effect": "Allow",
 "Action": [
 "rds:CreateDBInstance"
],
 "Resource": [
 "arn:aws:rds:*:123456789012:db:test*",
 "arn:aws:rds: * : 123456789012:og:default*",
 "arn:aws:rds:*:123456789012:pg:default*",
 "arn:aws:rds: * : 1234 56789012 :subgrp: default"
],

Exam Essentials 237

 "Condition": {
 "StringEquals": {
 "rds:DatabaseEngine": "mysql",
 "rds:DatabaseClass": "db.t2.micro"
 }
 }
 }
 }
}

Summary
In this chapter, you learned the basic concepts of different types of databases, including
relational, nonrelational, data warehouse, in-memory, and graph databases. From there,
you learned about the various managed database services available on AWS. These included
Amazon RDS, Amazon DynamoDB, Amazon Redshift, Amazon ElastiCache, and Amazon
Neptune. You also saw how you can run your own database on Amazon EC2. Finally,
you looked at how to perform homogenous database migrations using the AWS Database
Migration Service (AWS DMS). For heterogeneous database migrations, you learned that
AWS DMS can use the AWS Schema Conversion Tool (AWS SCT).

Exam Essentials
Know what a relational database is. A relational database consists of one or more tables.
Communication to and from relational databases usually involves simple SQL queries, such
as “Add a new record” or “What is the cost of product x?” These simple queries are often
referred to as online transaction processing (OLTP).

Know what a nonrelational database is. Nonrelational databases do not have a
hard-defined data schema. They can use a variety of models for data management,
such as in-memory key-value stores, graph data models, and document stores. These
databases are optimized for applications that have a large data volume, require low
latency, and have flexible data models. In nonrelational databases, there is no concept
of foreign keys.

Understand the database options available on AWS. You can run all types of databases on
AWS. You should understand that there are managed and unmanaged options available, in
addition to relational, nonrelational, caching, graph, and data warehouses.

238 Chapter 4 ■ Hello, Databases

Understand which databases Amazon RDS supports. Amazon RDS currently supports six
relational database engines:

 ■ Microsoft SQL Server

 ■ MySQL

 ■ Oracle

 ■ PostgreSQL

 ■ MariaDB

 ■ Amazon Aurora

Understand the operational benefits of using Amazon RDS. Amazon RDS is an AWS
managed service. AWS is responsible for patching, antivirus, and the management of the
underlying guest OS for Amazon RDS. Amazon RDS greatly simplifies the process of set-
ting a secondary slave with replication for failover and setting up read replicas to offload
queries.

Remember that you cannot access the underlying OS for Amazon RDS DB instances. You
cannot use Remote Desktop Protocol (RDP) or SSH to connect to the underlying OS. If
you need to access the OS, install custom software or agents. If you want to use a database
engine that Amazon RDS does not support, consider running your database on an Amazon
EC2 instance instead.

Understand that Amazon RDS handles Multi-AZ failover for you. If your primary
Amazon RDS instance becomes unavailable, AWS fails over to your secondary instance
in another Availability Zone automatically. This failover is done by pointing your existing
database endpoint to a new IP address. You do not have to change the connection string
manually; AWS handles the DNS changes automatically.

Remember that Amazon RDS read replicas are used for scaling out and increased
performance. This replication feature makes it easy to scale out your read-intensive
databases. Read replicas are currently supported in Amazon RDS for MySQL, PostgreSQL,
and Amazon Aurora. You can create one or more replicas of a database within a single AWS
Region or across multiple AWS Regions. Amazon RDS uses native replication to propagate
changes made to a source DB instance to any associated read replicas. Amazon RDS also
supports cross-region read replicas to replicate changes asynchronously to another geogra-
phy or AWS Region.

Know how to calculate throughput for Amazon DynamoDB. Remember that one read
capacity unit (RCU) represents one strongly consistent read per second or two eventually
consistent reads per second for an item up to 4 KB in size. For writing data, know that one
write capacity unit (WCU) represents one write per second for an item up to 1 KB in size.
Be comfortable performing calculations to determine the appropriate setting for the RCU
and WCU for a table.

Know that DynamoDB spreads RCUs and WCUs across partitions evenly. Recall that
when you allocate your total RCUs and WCUs to a table, DynamoDB spreads these across

Resources to Review 239

your partitions evenly. For example, if you have 1,000 RCUs and you have 10 partitions,
then you have 100 RCUs allocated to each partition.

Know the differences between a local secondary index and a global secondary index.
Remember that you can create local secondary indexes only when you initially create the
table; additionally, know that local secondary indexes must share the same partition key as
the parent or source table. Conversely, you can create global secondary indexes at any time,
with different partitions keys or sort keys.

Know the difference between eventually consistent and strongly consistent reads. Know
that with eventually consistent reads, your application may retrieve data that is stale; but
with strongly consistent reads, the data is always up-to-date.

Understand the purpose of caching data and which related services are available. Know
why caching is important for your database tier and how it helps to improve your applica-
tion performance. Additionally, understand the differences between the caching methods
(lazy loading and write-through) and the corresponding AWS services (Amazon DynamoDB
Accelerator (DAX), ElastiCache for Redis, and ElastiCache for Memcached).

Resources to Review

What Is a Relational Database?

https://aws.amazon.com/relational-database/

AWS Databases:

https://aws.amazon.com/products/databases/

AWS Database Blog:

https://aws.amazon.com/blogs/database/

A One Size Fits All Database Doesn’t Fit Anyone:

https://www.allthingsdistributed.com/2018/06/purpose-built-databases-
in-aws.html

Amazon Relational Database Service (Amazon RDS) User Guide:

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html

Amazon RDS FAQs:

https://aws.amazon.com/rds/faqs/

Development and Test on Amazon Web Services:

https://d1.awsstatic.com/whitepapers/aws-development-test-
environments.pdf

Amazon Redshift Snapshots:

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-
snapshots.html

240 Chapter 4 ■ Hello, Databases

Amazon Aurora:

https://aws.amazon.com/rds/aurora/

Amazon Aurora Overview:

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/
CHAP_AuroraOverview.html

Amazon RDS Resources:

https://aws.amazon.com/rds/developer-resources/

Best Practices for Amazon RDS:

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/
CHAP_BestPractices.html

What Is a Document Database?

https://aws.amazon.com/nosql/document/

What Is a Columnar Database?

https://aws.amazon.com/nosql/columnar/

What Is NoSQL?

https://aws.amazon.com/nosql/

Amazon DynamoDB:

https://aws.amazon.com/dynamodb/

What Is Amazon DynamoDB?

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
Introduction.html

Amazon DynamoDB Core Components:

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
HowItWorks.CoreComponents.html

Amazon DynamoDB Developer Guide:

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/

GSI Attribute Projections:

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
GSI.html#GSI.Projections

Data Warehouse Concepts:

https://aws.amazon.com/data-warehouse/

Getting Started with Amazon Redshift:

http://docs.aws.amazon.com/redshift/latest/gsg/

Amazon Redshift Database Developer Guide:

http://docs.aws.amazon.com/redshift/latest/dg/

Resources to Review 241

Using Amazon Redshift Spectrum to Query External Data:

https://docs.aws.amazon.com/redshift/latest/dg/c-using-spectrum.html

What Is a Key-Value Database?

https://aws.amazon.com/nosql/key-value/

Amazon ElasticCache for Redis User Guide:

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/WhatIs.html

Amazon ElastiCache for Memcached User Guide:

https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/WhatIs.html

In-Memory Processing in the Cloud with Amazon ElastiCache (Whitepaper):

https://d1.awsstatic.com/elasticache/elasticache_in_memory_processing_
intel.pdf

Performance at Scale with Amazon ElastiCache (Whitepaper):

https://d1.awsstatic.com/whitepapers/performance-at-scale-with-amazon-
elasticache.pdf

Amazon DynamoDB Accelerator (DAX):

https://aws.amazon.com/dynamodb/dax/

Amazon DynamoDB Accelerator (DAX): A Read-Through/Write-Through Cache for
DynamoDB:

https://aws.amazon.com/blogs/database/amazon-dynamodb-accelerator-dax-
a-read-throughwrite-through-cache-for-dynamodb/

What Is a Graph Database?

https://aws.amazon.com/nosql/graph/

Amazon Neptune User Guide:

https://docs.aws.amazon.com/neptune/latest/userguide/intro.html

AWS Database Migration Service Documentation:

https://docs.aws.amazon.com/dms/index.html

Cloud Data Migration:

https://aws.amazon.com/cloud-data-migration/

AWS Database Migration Service User Guide:

http://docs.aws.amazon.com/dms/latest/userguide/

AWS Database Migration Service Step-by-Step Walkthroughs:

http://docs.aws.amazon.com/dms/latest/sbs/DMS-SBS-Welcome.html

AWS Schema Conversion Tool User Guide:

https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/
CHAP_Welcome.html

242 Chapter 4 ■ Hello, Databases

Exercises
In the following exercises, you will launch two types of databases: the first database is an
SQL database on Amazon RDS, and the second is Amazon DynamoDB (NoSQL). For these
sets of exercises, you will use the Python 3 SDK. You can download the Python 3 SDK at
https://aws.amazon.com/sdk-for-python/.

e x e r C i S e 4 .1

Create a Security group for the Database Tier on Amazon rDS

Before you can create your first Amazon RDS database, you must create a security group
so that you can allow traffic from your development server to communicate with the
database tier. To do this, you must use an Amazon EC2 client to create the security group.
Security groups are a component of the Amazon EC2 service, even though you can use
them as part of Amazon RDS to secure your database tier.

To create the security group, run the following script:

Excercise 4.1
import boto3
import json
import datetime

Let's create some variables we'll use throughout these Excercises in Chapter 4
NOTE: Here we are using a CIDR range for incoming traffic. We have set it to
 0.0.0.0/0 which means
ANYONE on the internet can access your database if they have the username and
 the password
If possible, specify you're own CIDR range. You can figure out your CIDR range
 by visiting the following link
https://www.google.com/search?q=what+is+my+ip
In the variable don't forget to add /32!
If you aren't sure, leave it open to the world

Variables
sg_name = 'rds-sg-dev-demo'
sg_description = 'RDS Security Group for AWS Dev Study Guide'
my_ip_cidr = '0.0.0.0/0'

Create the EC2 Client to create the Security Group for your Database
ec2_client = boto3.client('ec2')

First we need to create a security group

Exercises 243

response = ec2_client.create_security_group(
 Description=sg_description,
 GroupName=sg_name)
print(json.dumps(response, indent=2, sort_keys=True))
Now add a rule for the security group
response = ec2_client.authorize_security_group_ingress(
 CidrIp=my_ip_cidr,
 FromPort=3306,
 GroupName=sg_name,
 ToPort=3306,
 IpProtocol='tcp'
)
print("Security Group should be created! Verify this in the AWS Console.")

After running the Python code, verify that the security group was created successfully
from the AWS Management Console. You can find this confirmation under the VPC or
Amazon EC2 service.

e x e r C i S e 4 . 2

Spin up the mariaDb Database instance

Use the Python SDK to spin up your MariaDB database hosted on Amazon RDS.

To spin up the MariaDB database, run the following script and update the Variables
section to meet your needs:

Excercise 4.2
import boto3
import json
import datetime

Just a quick helper function for date time conversions, in case you want to
 print the raw JSON
def date_time_converter(o):
 if isinstance(o, datetime.datetime):
 return o.__str__()

Variables
sg_name = 'rds-sg-dev-demo'
rds_identifier = 'my-rds-db'
db_name = 'mytestdb'

(continued)

244 Chapter 4 ■ Hello, Databases

user_name = 'masteruser'
user_password = 'mymasterpassw0rd1!'
admin_email = 'myemail@myemail.com'
sg_id_number = ''
rds_endpoint = ''

We need to get the Security Group ID Number to use in the creation of the RDS
 Instance
ec2_client = boto3.client('ec2')
response = ec2_client.describe_security_groups(
 GroupNames=[
 sg_name
])

sg_id_number = json.dumps(response['SecurityGroups'][0]['GroupId'])
sg_id_number = sg_id_number.replace('"','')

Create the client for Amazon RDS
rds_client = boto3.client('rds')

This will create our MariaDB Database
NOTE: Here we are hardcoding passwords for simplicity and testing purposes
 only! In production
you should never hardcode passwords in configuration files/code!
NOTE: This will create an MariaDB Database. Be sure to remove it when you are
 done.
response = rds_client.create_db_instance(
 DBInstanceIdentifier=rds_identifier,
 DBName=db_name,
 DBInstanceClass='db.t2.micro',
 Engine='mariadb',
 MasterUsername='masteruser',
 MasterUserPassword='mymasterpassw0rd1!',
 VpcSecurityGroupIds=[
 sg_id_number
],
 AllocatedStorage=20,
 Tags=[
 {

e x e r C i S e 4 . 2 (c ont inue d)

Exercises 245

 'Key': 'POC-Email',
 'Value': admin_email
 },
 {
 'Key': 'Purpose',
 'Value': 'AWS Developer Study Guide Demo'
 }
]
)

We need to wait until the DB Cluster is up!
print('Creating the RDS instance. This may take several minutes...')
waiter = rds_client.get_waiter('db_instance_available')
waiter.wait(DBInstanceIdentifier=rds_identifier)

print('Okay! The Amazon RDS Database is up!')

After the script has executed, the following message is displayed:

Creating the RDS instance. This may take several minutes.

After the Amazon RDS database instance has been created successfully, the following
confirmation is displayed:

Okay! The Amazon RDS Database is up!

You can also view these messages from the Amazon RDS console.

e x e r C i S e 4 . 3

obtain the endpoint value for the Amazon rDS instance

Before you can start using the Amazon RDS instance, you must first specify your end-
point. In this exercise, you will use the Python SDK to obtain the value.

To obtain the Amazon RDS endpoint, run the following script:

Exercise 4.3
import boto3
import json
import datetime

Just a quick helper function for date time conversions, in case you want to
 print the raw JSON

(continued)

246 Chapter 4 ■ Hello, Databases

def date_time_converter(o):
 if isinstance(o, datetime.datetime):
 return o.__str__()

Variables
rds_identifier = 'my-rds-db'

Create the client for Amazon RDS
rds_client = boto3.client('rds')

print("Fetching the RDS endpoint...")
response = rds_client.describe_db_instances(
 DBInstanceIdentifier=rds_identifier
)

rds_endpoint = json.dumps(response['DBInstances'][0]['Endpoint']['Address'])
rds_endpoint = rds_endpoint.replace('"','')
print('RDS Endpoint: ' + rds_endpoint)

After running the Python code, the following status is displayed:

Fetching the RDS endpoint.. RDS Endpoint:<endpoint_name>

If the endpoint is not returned, from the AWS Management Console, under the RDS service,
verify that your Amazon RDS database instance was created.

e x e r C i S e 4 . 4

Create a SQl Table and Add records to it

You now have all the necessary information to create your first SQL table by using
Amazon RDS. In this exercise, you will create a SQL table and add a couple of records.
Remember to update the variables for your specific environment.

To update the variables, run the following script:

Exercise 4.4
import boto3
import json
import datetime
import pymysql as mariadb

Variables
rds_identifier = 'my-rds-db'

e x e r C i S e 4 . 3 (c ont inue d)

Exercises 247

db_name = 'mytestdb'
user_name = 'masteruser'
user_password = 'mymasterpassw0rd1!'
rds_endpoint = 'my-rds-db.****.us-east-1.rds.amazonaws.com'

Step 1 - Connect to the database to create the table
db_connection = mariadb.connect(host=rds_endpoint, user=user_name,
 password=user_password, database=db_name)
cursor = db_connection.cursor()
try:
 cursor.execute("CREATE TABLE Users (user_id INT NOT NULL AUTO_INCREMENT,

user_fname VARCHAR(100) NOT NULL, user_lname VARCHAR(150) NOT NULL, user_
email VARCHAR(175) NOT NULL, PRIMARY KEY (`user_id`))")

 print('Table Created!')
except mariadb.Error as e:
 print('Error: {}'.format(e))
finally:
 db_connection.close()

Step 2 - Connect to the database to add users to the table
db_connection = mariadb.connect(host=rds_endpoint, user=user_name,
password=user_password, database=db_name)
cursor = db_connection.cursor()
try:
 sql = "INSERT INTO `Users` (`user_fname`, `user_lname`, `user_email`) VALUES

(%s, %s, %s)"
 cursor.execute(sql, ('CJ', 'Smith', 'casey.smith@somewhere.com'))
 cursor.execute(sql, ('Casey', 'Smith', 'sam.smith@somewhere.com'))
 cursor.execute(sql, ('No', 'One', 'no.one@somewhere.com'))
No data is saved unless we commit the transaction!
 db_connection.commit()
 print('Inserted Data to Database!')
except mariadb.Error as e:
 print('Error: {}'.format(e))
 print('Sorry, something has gone wrong!')
finally:
 db_connection.close()

After running the Python code, the following confirmation is displayed:

Table Created! Inserted Data to the Database!

Your Amazon RDS database now has some data stored in it.

(continued)

248 Chapter 4 ■ Hello, Databases

 In this exercise, you are hardcoding a password into your application code
for demonstration purposes only. In a production environment, refrain
from hard-coding application passwords. Instead, use services such as
AWS Secrets Manager to keep your secrets secure.

 e x e r C i S e 4 . 5

Query the items in the SQl Table

 After adding data to your SQL database, in this exercise you will be able to read or query
the items in the Users table.

 To read the items in the SQL table, run the following script:

 # Exercise 4.5
 import boto3
 import json
 import datetime
 import pymysql as mariadb

 # Variables
 rds_identifier = 'my-rds-db'
 db_name = 'mytestdb'
 user_name = 'masteruser'
 user_password = 'mymasterpassw0rd1!'
 rds_endpoint = 'my-rds-db.*****.us-east-1.rds.amazonaws.com'

 db_connection = mariadb.connect(host=rds_endpoint, user=user_name,
password=user_password, database=db_name)
 cursor = db_connection.cursor()
 try:
 sql = "SELECT * FROM `Users`"
 cursor.execute(sql)
 query_result = cursor.fetchall()
 print('Querying the Users Table...')
 print(query_result)
 except mariadb.Error as e:
 print('Error: {}'.format(e))
 print('Sorry, something has gone wrong!')

e x e r C i S e 4 . 4 (c ont inue d)

Exercises 249

finally:
 db_connection.close()

After running the Python code, you will see the three records that you inserted in the
previous exercise.

e x e r C i S e 4 . 6

remove Amazon rDS Database and Security group

You’ve created an Amazon RDS DB instance and added data to it. In this exercise, you will
remove a few resources from your account. Remove the Amazon RDS instance first.

To remove the Amazon RDS instance and the security group, run the following script:

Exercise 4.6
import boto3
import json
import datetime

Variables
rds_identifier = 'my-rds-db'
sg_name = 'rds-sg-dev-demo'
sg_id_number = ''

Create the client for Amazon RDS
rds_client = boto3.client('rds')

Delete the RDS Instance
response = rds_client.delete_db_instance(
 DBInstanceIdentifier=rds_identifier,
 SkipFinalSnapshot=True)

print('RDS Instance is being terminated...This may take several minutes.')

waiter = rds_client.get_waiter('db_instance_deleted')
waiter.wait(DBInstanceIdentifier=rds_identifier)

We must wait to remove the security groups until the RDS database has been
 deleted, this is a dependency.
print('The Amazon RDS database has been deleted. Removing Security Groups')

Create the client for Amazon EC2 SG

(continued)

250 Chapter 4 ■ Hello, Databases

ec2_client = boto3.client('ec2')

Get the Security Group ID Number
response = ec2_client.describe_security_groups(
 GroupNames=[
 sg_name
])
sg_id_number = json.dumps(response['SecurityGroups'][0]['GroupId'])
sg_id_number = sg_id_number.replace('"','')

Delete the Security Group!
response = ec2_client.delete_security_group(
 GroupId=sg_id_number
)

print('Cleanup is complete!')

After running the Python code, the following message is displayed:

Cleanup is complete!

The Amazon RDS database and the security group are removed. You can verify this from
the AWS Management Console.

e x e r C i S e 4 . 7

Create an Amazon DynamoDb Table

Amazon DynamoDB is a managed NoSQL database. One major difference between
DynamoDB and Amazon RDS is that DynamoDB doesn’t require a server that is running
in your VPC, and you don’t need to specify an instance type. Instead, create a table.

To create the table, run the following script:

Exercise 4.7
import boto3
import json
import datetime

e x e r C i S e 4 . 6 (c ont inue d)

Exercises 251

dynamodb_resource = boto3.resource('dynamodb')

table = dynamodb_resource.create_table(
 TableName='Users',
 KeySchema=[
 {
 'AttributeName': 'user_id',
 'KeyType': 'HASH'
 },
 {
 'AttributeName': 'user_email',
 'KeyType': 'RANGE'
 }
],
 AttributeDefinitions=[
 {
 'AttributeName': 'user_id',
 'AttributeType': 'S'
 },
 {
 'AttributeName': 'user_email',
 'AttributeType': 'S'
 }
],
 ProvisionedThroughput={
 'ReadCapacityUnits': 5,
 'WriteCapacityUnits': 5
 }
)

print("The DynamoDB Table is being created, this may take a few minutes...")
table.meta.client.get_waiter('table_exists').wait(TableName='Users')
print("Table is ready!")

After running the Python code, the following message is displayed:

Table is ready!

From the AWS Management Console, under DynamoDB, verify that the table was created.

252 Chapter 4 ■ Hello, Databases

e x e r C i S e 4 . 8

Add users to the Amazon DynamoDb Table

With DynamoDB, there are fewer components to set up than there are for Amazon RDS.
In this exercise, you’ll add users to your table. Experiment with updating and changing
some of the code to add multiple items to the database.

To add users to the DynamoDB table, run the following script:
Exercise 4.8
import boto3
import json
import datetime
In this example we are not using uuid; however, you could use this to
autogenerate your user IDs.
i.e. str(uuid.uuid4())
import uuid

Create a DynamoDB Resource
dynamodb_resource = boto3.resource('dynamodb')
table = dynamodb_resource.Table('Users')

Write a record to DynamoDB
response = table.put_item(
 Item={
 'user_id': '1234-5678',
 'user_email': 'someone@somewhere.com',
 'user_fname': 'Sam',
 'user_lname': 'Samuels'
 }
)

Just printing the raw JSON response, you should see a 200 status code
print(json.dumps(response, indent=2, sort_keys=True))

After running the Python code, you receive a 200 HTTP Status Code from AWS. This
means that the user record has been added.

From the AWS Management Console, under DynamoDB, review the table to verify that
the user record was added.

Exercises 253

e x e r C i S e 4 . 9

look up a user in the Amazon DynamoDb Table

In this exercise, you look up the one user you’ve added so far.

To look up users in the DynamoDB table, run the following script:

Exercise 4.9
import boto3
from boto3.dynamodb.conditions import Key
import json
import datetime

Create a DynamoDB Resource
dynamodb_resource = boto3.resource('dynamodb')
table = dynamodb_resource.Table('Users')

Query a some data
response = table.query(
 KeyConditionExpression=Key('user_id').eq('1234-5678')
)

Print the data out!
print(json.dumps(response['Items'], indent=2, sort_keys=True))

After running the Python code, the query results are returned in JSON format showing a
single user.

e x e r C i S e 4 .10

Write Data to the Table as a batch process

In this exercise, you will write data to the table through a batch process.

To write data using a batch process, run the following script:

Exercise 4.10
import boto3
import json
import datetime
import uuid

Create a DynamoDB Resource

(continued)

254 Chapter 4 ■ Hello, Databases

dynamodb_resource = boto3.resource('dynamodb')
table = dynamodb_resource.Table('Users')

Generate some random data
with table.batch_writer() as user_data:
 for i in range(100):
 user_data.put_item(
 Item={
 'user_id': str(uuid.uuid4()),
 'user_email': 'someone' + str(i) + '@somewhere.com',
 'user_fname': 'User' + str(i),
 'user_lname': 'UserLast' + str(i)
 }
)
 print('Writing record # ' + str(i+1) + ' to DynamoDB Users Table')
 print('Done!')

After running the Python code, the last few lines read as follows:

Writing record # 300 to DyanmoDB Users Table Done!

From the AWS Management Console, under DynamoDB Table, verify that the users were
written to the table.

e x e r C i S e 4 .11

Scan the Amazon DynamoDb Table

In this exercise, you will scan the entire table.

To scan the table, run the following script:

Exercise 4.11
import boto3
import json
import datetime
import uuid

Create a DynamoDB Resource
dynamodb_resource = boto3.resource('dynamodb')

e x e r C i S e 4 .10 (c ont inue d)

Exercises 255

table = dynamodb_resource.Table('Users')

Let's do a scan!
response = table.scan()

print('The total Count is: ' + json.dumps(response['Count']))
print(json.dumps(response['Items'], indent=2, sort_keys=True))

As you learned in this chapter, scans return the entire dataset located in the table. After
running the script, all of the users are returned.

e x e r C i S e 4 .12

remove the Amazon DynamoDb Table

In this exercise, you will remove the DynamoDB table that you created in Exercise 4.7.

To remove the table, run the following script:

Exercise 4.12
import boto3
import json
import datetime
import uuid

Create a DynamoDB Resource
dynamodb_client = boto3.client('dynamodb')

Delete the Table
response = dynamodb_client.delete_table(TableName='Users')
print(json.dumps(response, indent=2, sort_keys=True))

The DynamoDB table is deleted, or it is in the process of being deleted. Verify the deletion
from the AWS Management Console, under the DynamoDB service.

256 Chapter 4 ■ Hello, Databases

Review Questions
1. Which of the following does Amazon Relational Database Service (Amazon RDS) manage

on your behalf? (Select THREE.)

A. Database settings

B. Database software installation and patching

C. Query optimization

D. Hardware provisioning

E. Backups

2. Which AWS database service is best suited for managing highly connected datasets?

A. Amazon Aurora

B. Amazon Neptune

C. Amazon DynamoDB

D. Amazon Redshift

3. You are designing an ecommerce web application that will scale to potentially hundreds of
thousands of concurrent users. Which database technology is best suited to hold the session
state for large numbers of concurrent users?

A. Relational database by using Amazon Relational Database Service (Amazon RDS)

B. NoSQL database table by using Amazon DynamoDB

C. Data warehouse by using Amazon Redshift

D. MySQL on Amazon EC2

4. How many read capacity units (RCUs) do you need to support 25 strongly consistent reads
per seconds of 15 KB?

A. 100 RCUs

B. 25 RCUs

C. 10 RCUs

D. 15 RCUs

5. How many read capacity units (RCUs) do you need to support 25 eventually consistent
reads per seconds of 15 KB?

A. 10 RCUs

B. 25 RCUs

C. 50 RCUs

D. 15 RCUs

Review Questions 257

6. How many write capacity units (WCUs) are needed to support 100 writers per second of
512 bytes?

A. 129 WCUs

B. 25 WCUs

C. 10 WCUs

D. 100 WCUs

7. Your company is using Amazon DynamoDB, and they would like to implement a write-
through caching mechanism. They would like to get everything up and running in only
a few short weeks. Additionally, your company would like to refrain from managing any
additional servers. You are the lead developer on the project; what should you recommend?

A. Build your own custom caching application.

B. Implement Amazon DynamoDB Accelerator (DAX).

C. Run Redis on Amazon EC2.

D. Run Memcached on Amazon EC2.

8. Your company would like to implement a highly available caching solution for its SQL
database running on Amazon RDS. Currently, all of its services are running in the AWS
Cloud. As their lead developer, what should you recommend?

A. Implement your own caching solution on-premises.

B. Implement Amazon ElastiCache for Redis.

C. Implement Amazon ElastiCache for Memcached.

D. Implement Amazon DynamoDB Accelerator (DAX).

9. A company is looking to run analytical queries and would like to implement a data
warehouse. It estimates that it has roughly 300 TB worth of data, which is expected to
double in the next three years. Which AWS service should you recommend?

A. Relational database by using Amazon Relational Database Service (Amazon RDS)

B. NoSQL database table by using Amazon DynamoDB

C. Data warehouse by using Amazon Redshift

D. Amazon ElastiCache for Redis

10. A company is experiencing an issue with Amazon DynamoDB whereby the data is taking
longer than expected to return from a query. You are tasked with investigating the problem.
After looking at the application code, you realize that a Scan operation is being called for a
large DynamoDB table. What should you do or recommend?

A. Implement a query instead of a scan, if possible, as queries are more efficient than a
scan.

B. Do nothing; the problem should go away on its own.

C. Implement a strongly consistent read.

D. Increase the write capacity units (WCUs).

Encryption on AWS

ThE AWS CErTifiEd dEvElopEr –
ASSoCiATE ExAm TopiCS CovErEd in
ThiS ChApTEr mAy inCludE, buT ArE
noT limiTEd To, ThE folloWing:

Domain 2: Security

 ✓ 2.2 Implement encryption using AWS services.

Domain 3: Development with AWS Services

 ✓ 3.4 Write code that interacts with AWS services by using
APIs, SDKs, and AWS CLI.

Chapter

5

AWS® Certified Developer Official Study Guide
By Nick Alteen, Jennifer Fisher, Casey Gerena, Wes Gruver, Asim Jalis,
Heiwad Osman, Marife Pagan, Santosh Patlolla and Michael Roth

 Amazon Web Services, Inc.

Introduction to Encryption
AWS delivers a secure, scalable cloud computing platform with high availability, offering
the flexibility for you to build a wide range of applications. If you require an additional
layer of security for the data you store in the AWS Cloud, there are several options for
encrypting data at rest. These options range from automated AWS encryption solutions to
manual, client-side options. Choosing the right solutions depends on which AWS service
you’re using and your requirements for key management. This chapter provides an over-
view of various methods for encrypting data at rest in AWS. Specifically, it covers three
options and compares and contrasts the advantages of each option.

Before exploring the different ways that you can use encryption in AWS, the follow-
ing section describes two services that you can use for your encryption strategy: AWS Key
Management Service and AWS CloudHSM.

AWS Key Management Service
AWS Key Management Service (AWS KMS) is a managed AWS service that makes it easy to
create and manage encryption keys to encrypt your data across a wide range of AWS services
and in your applications. As a secure, resilient service, AWS KMS uses FIPS 140-2 validated
cryptographic modules, known as a hardware security module (HSM), to protect your mas-
ter keys. The Federal Information Processing Standards (FIPS) are responsible for defining
security requirements for cryptographic modules. For more information about FIPS 140-2
validation, see https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf.

You can take advantage of a number of AWS KMS features and benefits when develop-
ing your applications. You can use AWS KMS to make the applications and data more
secure while still enabling you to innovate quickly through an API.

AWS KMS offers the following features:

 ■ Centralized key management

 ■ Integration with other AWS services

 ■ Audit capabilities and high availability

 ■ Custom key store

 ■ Compliance

AWS Key Management Service 261

Centralized Key Management
AWS KMS provides you with a centralized view of your encryption keys. You can create a
customer master key (CMK) to control access to your data encryption keys (data keys) and
to encrypt and decrypt your data. AWS KMS uses an Advanced Encryption Standard (AES)
in 256-bit mode to encrypt and secure your data.

You can use AWS KMS to create keys in one of three ways: by using AWS KMS, by using
AWS CloudHSM, or by importing your own key material. Regardless of the method you use
to store your keys, you can manage them with AWS KMS through the AWS Management
Console or by using the AWS SDK or the AWS CLI. AWS KMS also automatically rotates
your keys once a year, without having to re-encrypt data that was previously encrypted.

Integration with Other AWS Services
AWS KMS provides seamless integration with other AWS services. This integration means
that, as a developer, you can quickly create keys to encrypt data that is stored in other AWS
services, such as Amazon Simple Storage Service (Amazon S3).

AWS KMS provides an AWS managed master key for a variety of AWS services that
integrate with AWS KMS. You can track the AWS managed CMKs in your account, but
the service itself manages the keys. For greater control over the encryption process, you can
generate your own CMK.

At the time of this writing, AWS KMS supports 51 AWS services, as shown in Figure 5.1.

f i gu r E 5 .1 Supported AWS services

AWS Services Integrated with KMS

Alexa for Business* Amazon EMR Amazon SageMaker AWS CodeDeploy

Amazon Athena Amazon FSx for Windows
File Server

Amazon Simple Email Service
(Amazon SES)

AWS CodePipeline

Amazon Aurora Amazon Simple Storage
Service Glacier

Amazon Simple Notification
Service (Amazon SNS)

AWS Database
Migration Service

Amazon CloudWatch logs Amazon Kinesis Data Streams Amazon Simple Queue Service
(Amazon SQS)

AWS Glue

Amazon Comprehend* Amazon Kinesis Data Firehouse Amazon Translate AWS Lambda

Amazon Connect Amazon Kinesis Video Streams Amazon WorkMail AWS Secrets Manager

Amazon DocumentDB Amazon Lex Amazon WorkSpaces AWS Systems Manager

Amazon DynamoDB* Amazon Lightsail* AWS Backup AWS Snowball

Amazon DynamoDB
Accelerator (DAX)*

Amazon Managed Streaming for
Kafka (MSK)

AWS Certificate Manager* AWS Snowball Edge

Amazon Elastic Block Store
(Amazon EBS)

Amazon Neptune AWS Cloud9* AWS Snowmobile

Amazon Elastic File System
(Amazon EFS)

Amazon Redshift AWS CloudTrail AWS Storage Gateway

Amazon Elastic Transcoder Amazon Relational Database
Service (RDS)

AWS CodeBuild AWS X-Ray

Amazon Elasticsearch Service Amazon Simple Storage Service
(Amazon S3)

AWS CodeCommit*

262 Chapter 5 ■ Encryption on AWS

Auditing Capabilities and High Availability
If AWS CloudTrail is enabled for your AWS account and Region, API requests and other
activity in your AWS account are recorded to log files. With CloudTrail, you can see
who has used a particular AWS KMS CMK, the API call that was sent, and when they
attempted to use that particular key.

In addition to auditing capabilities, AWS KMS is a fully managed service, which means
that as your encryption needs grow or change, AWS KMS can scale automatically to meet
those needs. Additionally, because this is a managed service, AWS KMS stores encrypted
copies or versions of your keys inside systems that are designed for 99.999999999 percent
durability.

The AWS CMKs do not leave the CloudHSM instances. Your keys are stored securely
within the AWS Region so that no one, including AWS employees, can retrieve your plain-
text keys from AWS KMS. AWS KMS uses FIPS 140-2 validated HSMs to protect your
keys and to help ensure the confidentiality and integrity of your data.

Custom Key Store
You can create your own custom key store in an CloudHSM cluster that you control,
enabling you to store your AWS KMS keys in a single-tenant environment instead of the
default multi-tenant environment of AWS KMS. The use of a custom key store incurs an
additional cost for the CloudHSM cluster.

Compliance
Achieving compliance for your applications can be a lengthy and difficult process. The
security and quality controls in AWS KMS have been validated and certified by a number
of industry-specific compliance and regulatory standards. For a full list of compliance stan-
dards that have been met, see https://aws.amazon.com/compliance/services-in-scope/.

AWS CloudHSM
AWS CloudHSM offers third-party, validated FIPS 140-2, level-three hardware security
modules in the AWS Cloud. The hardware security module is a computing device that
provides a dedicated infrastructure to support cryptographic operations. You can use
CloudHSM to support encryption for your application while running in your own Amazon
Virtual Private Cloud (Amazon VPC). This means that your Amazon Elastic Compute
Cloud (Amazon EC2) instances can access the CloudHSM device quickly while isolating
them from other networks.

CloudHSM provides both asymmetric and symmetric encryption capabilities.
Additionally, you can use the CloudHSM software libraries to integrate applications with
HSMs in your cluster. The libraries include PKCS #11, Sun Java JCE (Java Cryptography
Extension), and Cryptography API: Next Generation (CNG) providers for Microsoft. By
using these libraries, you can perform cryptographic operations on the HSMs.

Controlling the Access Keys 263

Controlling the Access Keys
Encryption on any system requires three components: data to encrypt, a method to
encrypt the data using a cryptographic algorithm, and the use of encryption keys with
the data and the algorithm. Most modern programming languages provide librar-
ies with a wide range of available cryptographic algorithms, such as the Advanced
Encryption Standard (AES). Choosing the right algorithm involves evaluating security,
performance, and compliance requirements specific to your application. Although the
selection of an encryption algorithm is important, protecting the keys from unauthor-
ized access is critical. Managing the security of encryption keys is often performed
using a key management infrastructure (KMI). A KMI is composed of two subcompo-
nents: the storage layer that protects the plaintext keys and the management layer that
authorizes key use. A common way to protect keys in a KMI is to use a hardware secu-
rity module. An HSM is a dedicated storage and data processing device that performs
cryptographic operations using keys on the device. An HSM typically provides tamper
evidence, or resistance, to protect keys from unauthorized use. A software-based autho-
rization layer controls who can administer the HSM and which users or applications
can use which keys in the HSM.

As you deploy encryption for various data classifications in AWS, it is important to
understand exactly who has access to your encryption keys or data and under what condi-
tions. As shown in Figure 5.2, there are three different options for how you and AWS pro-
vide the encryption method and the KMI:

 ■ You control the encryption method and the entire KMI.

 ■ You control the encryption method, AWS provides the storage component of the KMI,
and you provide the management layer of the KMI.

 ■ AWS controls the encryption method and the entire KMI.

f i gu r E 5 . 2 Encryption options in AWS

Customer Managed

Encryption Method

Keys Storage

Key Management

KMI

Option 1

Encryption Method

Keys Storage

Key Management

KMI

Option 2

Encryption Method

Keys Storage

Key Management

KMI

Option 3

AWS Managed

264 Chapter 5 ■ Encryption on AWS

Option 1: You Control the Encryption Method
and the Entire KMI
In this option, you use your own KMI to generate, store, and manage access to keys in
addition to controlling all the encryption methods in your applications. This physical loca-
tion of the KMI and the encryption method can be outside of AWS or in an Amazon EC2
instance that you own. The encryption method can be a combination of open source tools,
AWS SDKs, or third-party software and hardware. The important security property of this
option is that you have full control over the encryption keys and the execution environment
that uses those keys in the encryption code. AWS has no access to your keys and cannot
perform encryption or decryption on your behalf. You are responsible for the proper stor-
age, management, and use of keys to ensure the confidentiality, integrity, and availability of
your data. You can encrypt data in AWS services, as described in the following sections.

Amazon Simple Storage Service
You can encrypt data by using any encryption method you want and then upload the
encrypted data using the Amazon Simple Storage Service (Amazon S3) API. Most com-
mon application languages include cryptographic libraries that enable you to perform
encryption in your applications. There are many commonly available open source tools
for data encryption; however, they go beyond the scope of this study guide. After you have
encrypted an object and safely stored the key in your KMI, you can upload the encrypted
object to Amazon S3 directly with a PUT request. To decrypt this data, issue the GET request
in the Amazon S3 API and then pass the encrypted data to your local application for
decryption.

AWS provides an alternative to these open source encryption tools with the Amazon S3
encryption client, which is an open source set of APIs embedded in the AWS SDKs. This
client lets you supply a key from your KMI that can be used to encrypt or decrypt your
data as part of the call to Amazon S3. The SDK leverages Java Cryptography Extensions
(JCEs) in your application to take your symmetric or asymmetric key as input and encrypt
the object before uploading it to Amazon S3. The process is reversed when the SDK is used
to retrieve an object. The downloaded encrypted object from Amazon S3 is passed to the
client along with the key from your KMI. The underlying JCE in your application decrypts
the object.

The Amazon S3 encryption client is integrated into the AWS SDKs for Java, Ruby, and
.NET. It provides a transparent drop-in replacement for any cryptographic code that you
might have used previously with your application that interacts with Amazon S3. Although
AWS provides the encryption method, you control the security of your data because you
control the keys for that engine to use. If you’re using the Amazon S3 encryption client on-
premises, AWS does not have access to your keys or unencrypted data. If you’re using the
client in an application running in Amazon EC2, a best practice is to pass keys to the client
by using secure transport (for example, Secure Sockets Layer [SSL] or Secure Shell [SSH])
from your KMI to help ensure confidentiality. Figure 5.3 shows an example of Amazon S3

Controlling the Access Keys 265

client-side encryption from an on-premises system compared with encryption within an
Amazon EC2 application.

f i gu r E 5 . 3 Amazon S3 client-side encryption

Your Applications in Your
Data Center

Your Key Management
Infrastructure Your Applications in

Amazon EC2

Your Encryption
Client

Your Encrypted Data
in an Amazon S3 Bucket

AWS SDK with
Amazon S3

Encryption Client

OR

Amazon Elastic Block Store
Amazon Elastic Block Store (Amazon EBS) provides block-level storage volumes for use
with Amazon EC2 instances. Amazon EBS volumes are network-attached and persist inde-
pendently from the life of an instance.

System-level or block-level encryption Because Amazon EBS volumes are presented to an
instance as a block device, you can leverage most standard encryption tools for file system-
level or block-level encryption. Some common block-level open source encryption solutions
for Linux are Loop-AES, dm-crypt (with or without LUKS extension), and TrueCrypt.
Each of these operates below the file system layer using kernel space device drivers to per-
form the encryption and decryption of data. These tools are useful when you want all data
written to a volume to be encrypted regardless of what directory the data is stored in.

File-system encryption You can use file system-level encryption, which works by stacking
an encrypted file system on top of an existing file system. This method is typically used to
encrypt a specific directory. eCryptfs and EncFs are two Linux-based open source examples
of file system-level encryption tools.

These solutions require you to provide keys either manually or from your KMI. An
important caveat with both block-level and file system-level encryption tools is that you
can use them only to encrypt data volumes that are not Amazon EBS boot volumes. This is
because these tools do not allow you to make a trusted key available automatically to the
boot volume at startup.

AWS partner solutions help automate the process of encrypting Amazon EBS volumes
in addition to supplying and protecting the necessary keys. Trend Micro SecureCloud and

266 Chapter 5 ■ Encryption on AWS

SafeNet ProtectV are two such partner products that encrypt Amazon EBS volumes and
include a KMI. Figure 5.4 shows how you can use the SafeNet and Trend Micro solutions
to encrypt data stored on Amazon EBS using keys managed on-premises, via SaaS, or in
applications running on Amazon EC2

f i gu r E 5 . 4 Encryption in Amazon EBS using SafeNet ProtectV or Trend Micro
SecureCloud

Alternative 1:
On-Premises or SaaS

SafeNet/Trend Micro Key
Management Server Your Applications in

Amazon EC2

SafeNet ProtectV or
Trend Micro SecureCloud

Client for Amazon EC2

Your Encrypted Data
in Amazon EBS

Alternative 2:
SafeNet/Trend Micro

Virtual Key Management
Server on Amazon EC2

AWS Storage Gateway
AWS Storage Gateway is a service connecting an on-premises software appliance with
Amazon S3. You can expose it to your network as an iSCSI disk to facilitate copying data
from other sources. Data on disk volumes attached to the Storage Gateway are automati-
cally uploaded to Amazon S3 based on policy. You can encrypt source data on the disk
volumes by using any of the file encryption methods described previously, such as Bouncy
Castle or OpenSSL, before it is written to the disk. To encrypt all the data on the disk vol-
ume, you can also use a block-level encryption tool, such as BitLocker or dm-crypt/LUKS,
on the iSCSI endpoint exposed by Storage Gateway.

Amazon Relational Database Service
To encrypt data in Amazon Relational Database Service (Amazon RDS) using client-side
technology, you must consider how you want data queries to work. Because Amazon RDS
does not expose the attached disk it uses for data storage, transparent disk encryption
using techniques described in the previous Amazon EBS section is not available. However,
you can encrypt database fields in your application selectively by using any of the standard
encryption libraries mentioned previously, such as Bouncy Castle and OpenSSL, before the
data passes to your Amazon RDS instance.

Controlling the Access Keys 267

Although this specific field data does not easily support range queries in the database,
queries based on unencrypted fields can still return useful results. The encrypted fields
of the returned results can be decrypted by your local application for presentation. To
support more efficient querying of encrypted data, you can store a keyed-hash message
authentication code (HMAC) of an encrypted field in your schema, and you can sup-
ply a key for the hash function. Subsequent queries of protected fields that contain the
HMAC of the data being sought would not disclose the plaintext values in the query.
This allows the database to perform a query against the encrypted data in your database
without disclosing the plaintext values in the query. Any of the encryption methods you
choose must be performed on your own application instance before data is sent to the
Amazon RDS instance.

Amazon EMR
Amazon EMR provides an easy-to-use Hadoop implementation running on Amazon EC2.
Performing encryption throughout the Hadoop operation involves encryption and key man-
agement at the following distinct phases:

 ■ Source data

 ■ Hadoop Distributed File System (HDFS)

 ■ Shuffle phase

 ■ Output data

If the source data is not encrypted, then this step can be skipped, and SSL can be used
to help protect data in transit to the Amazon EMR cluster. If the source data is encrypted,
then your Hadoop job must decrypt the data as it is ingested. If your job flow uses Java
and the source data is in Amazon S3, you can use any of the client decryption methods
described in the previous Amazon S3 sections.

The storage used for the HDFS mount point is the ephemeral storage of the cluster
nodes. Depending on the instance type, there might be more than one mount. To encrypt
these mount points, you must use an Amazon EMR bootstrap script that will do the
following:

1. Stop the Hadoop service.

2. Install a file-system-encryption tool on the instance.

3. Create an encrypted directory to mount the encrypted file system on top of the existing
mount points.

4. Restart the Hadoop service.

For example, you can perform these steps on each of the HDFS mounts by using the
open source eCryptfs package and an ephemeral key generated in your code. You don’t
need to worry about persistent storage of this encryption key because the data it encrypts
does not persist beyond the life of the HDFS instance.

268 Chapter 5 ■ Encryption on AWS

The shuffle phase involves passing data between cluster nodes before the reduce step. To
encrypt this data in transit, when you create your cluster, you can enable SSL with a config-
ure Hadoop bootstrap option.

Finally, to enable encryption of the output data, your Hadoop job should encrypt the
output using a key sourced from your KMI. This data can be sent to Amazon S3 for storage
in encrypted form.

Option 2: You Control the Encryption Method,
AWS Provides the KMI Storage Component, and
You Provide the KMI Management Layer
This option is similar to option 1 in that you manage the encryption method, but it differs
from option 1 in that the keys are stored in an AWS CloudHSM appliance rather than in
a key storage system that you manage on-premises. While the keys are stored in the AWS
environment, they are inaccessible to any employee at AWS because only you have access to
the cryptographic partitions within the dedicated HSM to use the keys.

The CloudHSM appliance is a FIPS 140-2, level 3 HSM that has both physical and logi-
cal tamper detection and response mechanisms that trigger zeroization of the appliance.
Zeroization erases the HSM’s volatile memory where any decrypted keys were stored.
Zeroization destroys the key that encrypts stored objects, effectively causing all keys on the
HSM to be inaccessible and unrecoverable.

CloudHSM
To help you decide whether CloudHSM is appropriate for your deployment, it is impor-
tant to understand the role that an HSM plays in encrypting data. You can use an HSM
to generate and store key material and perform encryption and decryption operations.
However, an HSM does not perform any key lifecycle management functions (such as
access control policy, key rotation). This means you might need a compatible KMI, in
addition to the CloudHSM appliance, before deploying your application. You can deploy
the KMI either on-premises or within Amazon EC2. To help protect data and encryption
keys, the KMI can communicate to the CloudHSM instance securely over SSL.

Amazon Virtual Private Cloud
Applications must be able to access your CloudHSM appliance in an Amazon Virtual
Private Cloud (Amazon VPC). The CloudHSM client interacts with the CloudHSM appli-
ance to encrypt data from your application. You can then send encrypted data to any
AWS service for storage. CloudHSM and your custom application support database, disk
volume, and file encryption applications. Figure 5.5 shows how the CloudHSM solution
works with your applications running on Amazon EC2 in an Amazon VPC.

Controlling the Access Keys 269

f i gu r E 5 .5 Deploying AWS CloudHSM in an Amazon VPC

AWS Admin Access to Only
Manage Device, Not
Encryption Keys

Your Admin Access to
Manage Encryption Keys

Optional:
Your KMI

AWS
CloudHSM

AWS CloudHSM
Client

Your Applications
in Your Amazon VPC

Instance

To achieve the highest availability and durability of keys in your CloudHSM appliance,
AWS recommends deploying multiple CloudHSM applications across different Availability
Zones or with an on-premises HSM appliance that you manage.

Option 3: AWS Controls the Encryption Method
and the Entire KMI
AWS provides server-side encryption of your data, transparently managing the encryption
method and keys.

AWS Key Management Service
AWS Key Management Service (AWS KMS) is a managed encryption service that lets you
provision and use keys to encrypt your data in AWS services and your applications. Master
keys in AWS KMS are used in a similar way to how master keys in an HSM are used.
Master keys are designed never to be exported from the service. You can send data to the
service to be encrypted or decrypted using a specific master key under your account. This

270 Chapter 5 ■ Encryption on AWS

design gives you centralized control over who can access your master keys to encrypt and
decrypt data, and it gives you the ability to audit this access.

AWS KMS is natively integrated with other AWS services, including Amazon EBS,
Amazon S3, and Amazon Redshift, to simplify encryption of your data within those ser-
vices. AWS SDKs are integrated with AWS KMS to enable you to encrypt data in your
custom applications. For applications that must encrypt data, AWS KMS provides global
availability, low latency, and a high level of durability for your keys.

AWS KMS and other services that encrypt your data directly use a method called enve-
lope encryption to balance performance and security. Figure 5.6 describes the flow of enve-
lope encryption.

f i gu r E 5 .6 Flow of envelope encryption

1.

Key
Generator

Plaintext
Data

Encrypted
Data

Encrypted
Data

AWS Storage
Services

Encrypted Data
Key

Encrypted Data
Key

Existing Key
Encrypting Key

Data Key

Data Key

Data Key

A data key is generated by the AWS service at the time you request your data to be encrypted.

2. Data key is used to encrypt your data.

3. The data key is then encrypted with a key-encrypting key unique to the service storing your data.

4. The encrypted data key and the encrypted data are then stored by the AWS storage service on your behalf.

The key-encrypting keys that are used to encrypt data keys are stored and managed
separately from the data and the data keys. Strict access controls are placed on the encryp-
tion keys designed to prevent unauthorized use by AWS employees. When you need access
to your plaintext data, this process is reversed. The encrypted data key is decrypted using
the key-encrypting key; the data key is used to decrypt your data.

The following AWS services offer a variety of encryption features from which you
can choose.

Controlling the Access Keys 271

Amazon S3
There are three ways to encrypt your data in Amazon S3 using server-side encryption.

Server-side encryption You can set an API flag or use the AWS Management Console
to encrypt data before it is written to disk in Amazon S3. Each object is encrypted with
a unique data key. As an additional safeguard, this key is encrypted with a periodically
rotated master key managed by Amazon S3. Amazon S3 server-side encryption uses 256-bit
Advanced Encryption Standard (AES) keys for both object and master keys. This feature is
offered at no additional cost beyond what you pay for using Amazon S3.

Server-side encryption using customer-provided keys You can use your own encryp-
tion key while uploading an object to Amazon S3. Amazon S3 uses this encryption key
to encrypt your data using AES-256. After the object is encrypted, the encryption key is
deleted from the Amazon S3 system that used it to protect your data. When you retrieve
this object from Amazon S3, you must provide the same encryption key in your request.
Amazon S3 verifies that the encryption key matches, decrypts the object, and returns the
object to you. This feature is offered at no additional cost beyond what you pay for using
Amazon S3.

Server-side encryption using AWS KMS You can encrypt your data in Amazon S3 by
defining an AWS KMS master key within your account. This master key is used to encrypt
the unique object key (referred to as a data key, as shown in Figure 5.6) that ultimately
encrypts your object.

When you upload your object, a request is sent to AWS KMS to create an object key. AWS
KMS generates this object key and encrypts it using the master key that you specified ear-
lier; AWS KMS returns this encrypted object key along with the plaintext object key to
Amazon S3. The Amazon S3 web server encrypts your object using the plaintext object key,
stores the now encrypted object (with the encrypted object key), and deletes the plaintext
object key from memory.

To retrieve this encrypted object, Amazon S3 sends the encrypted object key to AWS KMS.
AWS KMS decrypts the object key using the correct master key and returns the decrypted
(plaintext) object key to Amazon S3. With the plaintext object key, Amazon S3 decrypts
the encrypted object and returns it to you.

Amazon S3 also enables you to define a default encryption policy. You can specify that all
objects are encrypted when stored. You can also define a bucket policy that rejects uploads
of unencrypted objects.

Amazon EBS
When creating a volume in Amazon EBS, you can choose to encrypt it using an AWS KMS
master key within your account that encrypts the unique volume key that will ultimately
encrypt your EBS volume. After you make your selection, the Amazon EC2 server sends
an authenticated request to AWS KMS to create a volume key. AWS KMS generates this
volume key, encrypts it using the master key, and returns the plaintext volume key and

272 Chapter 5 ■ Encryption on AWS

the encrypted volume key to the Amazon EC2 server. The plaintext volume key is stored
in memory to encrypt and decrypt all data going to and from your attached EBS volume.
When the encrypted volume (or any encrypted snapshots derived from that volume) needs
to be re-attached to an instance, a call is made to AWS KMS to decrypt the encrypted vol-
ume key. AWS KMS decrypts this encrypted volume key with the correct master key and
returns the decrypted volume key to Amazon EC2.

Amazon EMR
S3DistCp is an Amazon EMR feature that moves large amounts of data from Amazon S3
into HDFS, from HDFS to Amazon S3, and between Amazon S3 buckets. With S3DistCp,
you can request Amazon S3 to use server-side encryption when it writes Amazon EMR
data to an Amazon S3 bucket. This feature is offered at no additional cost beyond what
you pay for using Amazon S3 to store your Amazon EMR data.

Amazon Redshift
When creating an Amazon Redshift cluster, you can choose to encrypt all data in user-
created tables. For server-side encryption of an Amazon Redshift cluster, you can choose
from the following options:

256-bit AES keys Data blocks (included backups) are encrypted using random 256-bit
AES keys. These keys are themselves encrypted using a random 256-bit AES database key,
which is encrypted by a 256-bit AES cluster master key that is unique to your cluster. The
cluster master key is encrypted with a periodically rotated regional master key unique to
the Amazon Redshift service that is stored in separate systems under AWS control. This
feature is offered at no additional cost beyond what you pay for using Amazon Redshift.

CloudHSM cluster master key The 256-bit AES cluster master key used to encrypt
your database keys is generated in your CloudHSM or by using HSM appliance on-
premises. This cluster master key is then encrypted by a master key that never leaves
your HSM.

When the Amazon Redshift cluster starts, the cluster master key is decrypted in your HSM
and used to decrypt the database key. The database key is sent to the Amazon Redshift
hosts and resides only in memory for the life of the cluster. If the cluster ever restarts, the
cluster master key is again retrieved from your HSM—it is not stored on disk in plaintext.
This option lets you more tightly control the hierarchy and lifecycle of the keys used to
encrypt your data. This feature is offered at no additional cost beyond what you pay for
using Amazon Redshift (and CloudHSM, if you choose this option for storing keys).

AWS KMS cluster master key The 256-bit AES cluster master key used to encrypt your
database keys is generated in AWS KMS. This cluster master key is then encrypted by
a master key within AWS KMS. When the Amazon Redshift cluster starts up, the cluster
master key is decrypted in AWS KMS and used to decrypt the database key, which is sent to
the Amazon Redshift hosts to reside only in memory for the life of the cluster. If the cluster
ever restarts, the cluster master key is again retrieved from the hardened security appliance

Exam Essentials 273

in AWS KMS—it is not stored on disk in plaintext. This option lets you define fine-grained
controls over the access and use of your master keys and audit these controls through
AWS CloudTrail. In addition to encrypting data generated within your Amazon Redshift
cluster, you can also load encrypted data into Amazon Redshift from Amazon S3 that
was previously encrypted using the Amazon S3 Encryption Client and keys that you pro-
vide. Amazon Redshift supports the decryption and re-encryption of data going between
Amazon S3 and Amazon Redshift to protect the full lifecycle of your data.

These server-side encryption features across multiple services in AWS enable you to
encrypt your data easily by setting the configuration in the AWS Management Console by
making a CLI or API request for the given AWS service. AWS automatically and securely
manages the authorized use of encryption keys. Because unauthorized access to those keys
could lead to the disclosure of your data, AWS has built systems and processes with strong
access controls that minimize the chance of unauthorized access. AWS had these systems
verified by third-party audits to achieve security certifications, including SOC 1, 2, and 3;
PCI-DSS; and FedRAMP.

Summary
If you take all responsibility for the encryption method and the KMI, you can have granu-
lar control over how your applications encrypt data. However, that granular control comes
at a cost—both in terms of deployment effort and an inability to have AWS services tightly
integrate with your applications’ encryption methods. As an alternative, you can choose a
managed service that enables easier deployment and tighter integration with AWS Cloud
services. This option offers checkbox encryption for several services that store your data,
control over your own keys, secured storage for your keys, and auditability on all data
access attempts.

Exam Essentials
Know how to define key management infrastructure (KMI). A KMI consists of two infra-
structure components. The first component is a storage layer that protects plaintext keys.
The second component is a management layer that authorizes use of stored keys.

Understand the available options for how you and AWS provide encryption using a KMI.
With the first option, you control the encryption method in addition to the entire KMI.
In the second option, you control the encryption method and the management layer of the
KMI, and AWS provides the storage layer. In the third option, AWS controls the encryption
method and both components of the KMI.

Understand the maintenance trade-offs of each key management option. For any options
that involve customers managing the components of the KMI or encryption method,

274 Chapter 5 ■ Encryption on AWS

maintenance increases significantly. The increased maintenance also reduces your ability to
take advantage of built-in integrations between AWS KMS and other services. For options
that involve using built-in AWS functionality, additional maintenance is required only when
migrating legacy applications to take advantage of new features.

Understand the encryption options available in Amazon S3. Regardless of the key man-
agement tools and process, you are able to encrypt any objects before uploading them to an
Amazon S3 bucket. However, any custom encryption logic adds to processing overhead for
the encryption and decryption of the data. AWS provides the Amazon S3 encryption client
to help streamline this process (available in the Java, Ruby, and .NET AWS SDKs). When
encrypting data on-premises, AWS has no visibility into the encryption keys or mechanisms
used. For server-side encryption, Amazon S3 supports AWS-managed keys, customer-
managed keys, and encryption using AWS KMS.

Understand the encryption options available in Amazon EBS. Like any on-premises
block storage, Amazon EBS supports both block-level and file-system encryption.
However, an important caveat with block-level and file-system encryption tools, such as
TrueCrypt and eCryptfs, is that you cannot use them to encrypt the boot volume of an
Amazon EC2 instance. Amazon EBS supports encryption by using customer-managed
keys and AWS KMS.

Understand the encryption options available in Amazon RDS. Because Amazon RDS
does not expose the underlying file system of databases, block-level and file-system encryp-
tion options are not available. However, standard libraries for encryption of database fields
are fully supported. It is important to evaluate the types of queries that will be run against
a database before selecting an encryption process, as this could affect the ability to run
queries on encrypted data.

Resources to Review

AWS Key Management Service FAQs:

https://aws.amazon.com/kms/faqs/

AWS CloudHSM FAQs:

https://aws.amazon.com/cloudhsm/faqs/

Amazon S3: Protecting Data Using Encryption:

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html

Amazon S3 Default Encryption for S3 Buckets:

https://docs.aws.amazon.com/AmazonS3/latest/dev/bucket-encryption.html

AWS Security Blog:

https://aws.amazon.com/blogs/security/tag/encryption/

Exercises 275

Encrypting Amazon RDS Resources:

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/
Overview.Encryption.html

Amazon EBS Encryption:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html

Amazon Redshift Database Encryption:

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-
encryption.html

Exercises

E x E r C i S E 5 .1

Configure an Amazon S3 bucket to deny unencrypted uploads

In this exercise, you will enforce object encryption for an Amazon S3 bucket by using a
bucket policy to reject PUT requests without encryption headers.

1. Sign in to the AWS Management Console, and open the Amazon S3 console at
https://console.aws.amazon.com/s3/.

2. Create a new bucket with a name of your choice.

3. Apply the following policy to the bucket:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyIncorrectEncryption",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::<bucket_name>/*",
 "Condition": {
 "StringNotEquals": {
 "s3:x-amz-server-side-encryption": "AES256"
 }
 },
 {
 "Sid": "DenyMissingEncryption",
 "Effect": "Deny",

(continued)

276 Chapter 5 ■ Encryption on AWS

 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::<bucket_name>/*",
 "Condition": {
 "Null": {
 "s3:x-amz-server-side-encryption": true
 }
 }
]
}

4. From the AWS Identity and Access Management (IAM) console, open the policy simulator.

5. Select an existing policy with access to the bucket that you created.

6. Test the PutObject Amazon S3 action with and without the x-amz-server-side-
encryption header.

When you are uploading a new object or making a copy of an existing object, you can
specify whether you want Amazon S3 to encrypt your data by adding the header to the
API request.

E x E r C i S E 5 . 2

Create and disable an AWS Key management Service (AWS KmS) Key

In this exercise, you will create a customer master key (CMK) in the AWS Management
Console and then disable it. You can disable and re-enable the AWS KMS CMKs that
you manage.

1. Sign in to the AWS Management Console and open the AWS Key Management Ser-
vice (AWS KMS) console at https://console.aws.amazon.com/kms.

2. Choose Create key.

3. Provide values for the key alias, description, and tag(s), and then choose Next.

The alias name cannot begin with aws. The aws prefix is reserved by AWS to repre-
sent AWS managed CMKs in your account.

4. Select one or more IAM users who can administer the CMK and then choose Next.
Make sure to select your IAM user.

5. Select one or more IAM users to use the CMK for cryptographic operations.
Make sure to select your IAM user.

E x E r C i S E 5 .1 (c ont inue d)

Exercises 277

6. Choose Finish to create the CMK.

7. Locate the key in the AWS KMS console.

8. Select the check box next to the alias of the CMK that you want to disable.

9. Choose Key actions ➢ Disable.

If you disable a CMK, you cannot use it to encrypt or decrypt data until you re-enable it.

E x E r C i S E 5 . 3

Create an AWS KmS Customer master Key with the python SdK

In this exercise, you will create a new AWS KMS customer master key (CMK) using the
AWS Command Line Interface (AWS CLI). You will use Python as one of the supported
programming languages.

1. To create the AWS KMS CMK, run the following Python script:

import boto3
import json

kms_client = boto3.client('kms', region_name='us-west-1')

response = kms_client.create_key(
 Description='My KMS Key',
 KeyUsage='ENCRYPT_DECRYPT',
 Origin='AWS_KMS',
 Tags=[
 {
 'TagKey': 'KeyPurpose',
 'TagValue': 'dev-on-aws-key'
 },
]
)

print(response)

2. To list the CMKs and describe the available keys, run the following script:

import boto3
import json
List the KMS Keys by ID
kms_client = boto3.client('kms', region_name='us-west-1')
try:
 response = kms_client.list_keys()

(continued)

278 Chapter 5 ■ Encryption on AWS

except ClientError as e:
 logging.error(e)

print(json.dumps(response, indent=4, sort_keys=True))

3. To describe the keys inside AWS KMS, run the following script:

import boto3
import json
List the KMS Keys by ID
kms_client = boto3.client('kms', region_name='us-west-1')

Describe the Keys
for key in response['Keys']:
 try:
 key_info = kms_client.describe_key(KeyId=key['KeyArn'])
 key_id = key_info['KeyMetadata']['KeyId']
 key_arn = key_info['KeyMetadata']['Arn']
 key_state = key_info['KeyMetadata']['KeyState']
 key_description = key_info['KeyMetadata']['Description']
 print('Key ID: ' + key_id)
 print('Key ARN: ' + key_arn)
 print('Key State: ' + key_state)
 print('Key Description: ' + key_description)
 print('-------------------------------------')
 except ClientError as e:
 logging.error(e)

4. To delete the AWS KMS key, run the following script:

import boto3

kms_client = boto3.client('kms', region_name='us-west-1')
response = kms_client.schedule_key_deletion(
 KeyId='fasdf1-2451b-151-bea2-easdfg8',
 PendingWindowInDays=7
)

print(response, indent=4, sort_keys=True)

E x E r C i S E 5 . 3 (c ont inue d)

Review Questions 279

Review Questions
1. Which components are required in an encryption system? (Select THREE.)

A. A user to upload data

B. Data to encrypt

C. A database to store encryption keys

D. A method to encrypt data

E. A cryptographic algorithm

2. Which are the components of key management infrastructure (KMI)? (Select TWO.)

A. Storage layer

B. Data layer

C. Management layer

D. Encryption layer

3. Which of the following are methods for you and AWS to provide an encryption method and
key management infrastructure (KMI)? (Select THREE.)

A. You control the encryption method and key management, and AWS provides the
storage component of the KMI.

B. You control the storage component of the KMI, and AWS provides the encryption
method and key management.

C. You control the encryption method and KMI.

D. AWS controls the encryption method and the entire KMI.

E. None of the above.

4. Which option uses AWS Key Management Service (AWS KMS) to manage keys to provide
server-side encryption to Amazon Simple Storage Service (Amazon S3)?

A. Amazon S3 managed encryption keys (SSE-S3)

B. Customer-provided encryption keys (SSE-C)

C. Use client-side encryption

D. None of the above

5. Which AWS encryption service provides asymmetric encryption capabilities?

A. AWS Key Management Service (AWS KMS).

B. AWS CloudHSM.

C. AWS does not provide asymmetric encryption services.

D. None of the above.

280 Chapter 5 ■ Encryption on AWS

6. Which AWS encryption service provides symmetric encryption capabilities? (Select TWO.)

A. AWS Key Management Service (AWS KMS).

B. AWS CloudHSM.

C. AWS does not provide symmetric encryption services.

D. None of the above.

7. An organization is using Amazon Simple Storage Service (Amazon S3), and it would like
to ensure that all objects that are stored in Amazon S3 are encrypted. However, it does not
want to be responsible for managing any of the encryption keys. As their lead developer,
which service and feature should you recommend?

A. Server-side encryption with AWS Key Management Service (SSE-KMS).

B. Customer-provided encryption keys (SSE-C).

C. Amazon S3 managed encryption keys (SSE-S3).

D. This is not possible in AWS.

8. Which feature of AWS Key Management Service (AWS KMS) enables you to use an AWS
CloudHSM cluster for the storage of your encryption keys?

A. Centralized key management

B. AWS CloudHSM

C. Custom key stores

D. S3DistCp

9. An organization is using AWS Key Management Service (AWS KMS) to support encryption
and would like to encrypt Amazon Elastic Block Store (Amazon EBS) volumes. It wants
to encrypt its volumes quickly, with little development time. As their lead developer, what
should you recommend?

A. Implement AWS KMS to encrypt the Amazon EBS volumes.

B. Use open source or third-party encryption tooling.

C. Use AWS CloudHSM.

D. AWS does not provide a mechanism to encrypt Amazon EBS volumes.

10. Which of the following AWS services does not integrate with AWS Key Management
Service (AWS KMS)?

A. Amazon Elastic Block Store (Amazon EBS)

B. Amazon Simple Storage Service (Amazon S3)

C. Amazon Redshift

D. None of the above

Deployment
Strategies

The AWS CerTifieD Developer –
ASSoCiATe exAm TopiCS CovereD in
ThiS ChApTer mAy inCluDe, buT Are
noT limiTeD To, The folloWing:

Domain 1: Deployment

 ✓ 1.1 Deploy written code in AWS using existing
CI/CD pipelines, processes, and patterns.

 ✓ 1.2 Deploy applications using AWS Elastic Beanstalk.

Content may include the following:

 ■ Environments and architectures

 ■ Environment variables

 ■ Software Development Lifecycle (SDLC)

 ■ AWS services for automating deployments

 ■ AWS Cloud tiers: Web servers, worker applications, and

databases

 ■ Deployment strategies

Domain 2: Security

 ✓ 2.3 Implement application authentication and
authorization.

Content may include the following:

 ■ AWS Identity and Access Management (IAM) Roles in AWS

Elastic Beanstalk

Domain 5: Monitoring and Troubleshooting

Content may include the following:

 ■ Monitoring AWS Elastic Beanstalk

 ■ Troubleshooting AWS Elastic Beanstalk

Chapter

6

AWS® Certified Developer Official Study Guide
By Nick Alteen, Jennifer Fisher, Casey Gerena, Wes Gruver, Asim Jalis,
Heiwad Osman, Marife Pagan, Santosh Patlolla and Michael Roth

 Amazon Web Services, Inc.

Deployments on the AWS Cloud
As a developer in the cloud, you will often create three-tier architectures that consist
of a web tier, an application tier, and a database tier. To enable your customers to
use your application immediately, you must rapidly deploy both your infrastructure
and code. The AWS Cloud environment offers several deployment options and several
ways to provision AWS services to set up highly available and reliable applications.
Ideally, deployments are seamless streams of automated processes that create, build,
deploy, monitor, and modify code throughout the entire software development lifecycle
(SDLC). This stream of processes must be continuous and fully integrated with your
AWS services.

In a traditional environment, deployments can require substantial time to push the code
to multiple environments. AWS helps to speed up this process by automating the actions
required to deploy code to your environments. When you need to upload and demonstrate a
code project in the cloud, you can launch an application in minutes.

Phases of the Release Lifecycle
Each team’s release lifecycle is different based on the needs of the team. Nearly all tradi-
tional release lifecycles are composed of five major phases, as shown in Figure 6.1: Source,
Build, Test, Production, and Monitor. Each phase of the cycle provides increased confidence
that the code will work in the intended way for customers. This also translates to a release
lifecycle implemented in the AWS Cloud environment.

Deployments on the AWS Cloud 283

f i gu r e 6 .1 Major phases of the release lifecycle

Source Build Test Deploy Monitor

• Check in source
 code such as .java
 files
• Peer review new
 code

• Compile code
• Perform unit testing
• Use style checkers
• Use code metrics
• Create container
 images

• Perform integration
 tests with other
 systems
• Conduct load tests
• Perform UI tests
• Conduct penetration
 tests

• Deploy to
 production
 environments

• Monitor code in
 production to
 quickly detect
 unusual activity
 or errors

Source Phase
During the Source phase, developers check changes into a source code repository. Many
teams require peer feedback on code changes before delivering code to production or target
environments. Teams may use several methods for code reviews, such as pair programming
and tool-assisted options.

Build Phase
During the Build phase, an application’s source code is built, and the quality of the code is
tested on the build machine. The most common types of quality checks are automated tests
that do not require a server to execute and can be initiated from a test harness. Some teams
extend their quality tests to include code metrics and style checks. There is an opportunity
for automation any time a human must decide on the code.

Test Phase
The goal of the Test phase is to perform tests that cannot be done during the Build phase
and that require the software to be deployed to production-like stages. Often, these tests
include testing integration with other live systems, load testing, user interface (UI) testing,
and penetration testing. AWS has many different stages to which it deploys. Teams deploy
to preproduction stages where their application interacts with other systems to ensure that
the newly changed software works in an integrated environment.

Deployment Phase
In the Deployment phase, code is deployed to production. Different teams have different
deployment strategies, though it is common to set goals to reduce risk when deploying new
changes and minimize the impact when a bad change is rolled into production.

284 Chapter 6 ■ Deployment Strategies

Monitor Phase
During the Monitor phase, you must check the application to detect unusual activities and
errors quickly.

You can automate each of these phases without automating the entire release lifecycle.

Environment Variables
Before you deploy your infrastructure and code, first determine the environmental vari-
ables. The SDLC in a traditional infrastructure contains manual implementations to
release, test, and deploy code, in addition to the corresponding required documentation.
Most SDLC models would benefit from an efficient lifecycle with accurate execution and no
administration.

In traditional deployments, operating system patching, updates, language versioning,
and infrastructure changes frequently do not occur in synchronization and may not always
match between environments. It is often difficult to replicate configurations between envi-
ronments in a traditional infrastructure. Unit tests, user acceptance tests, and load tests can
produce different results in test and production environments. These results differ because
of differences in environment variables, such as unapplied patches or nonupdated configu-
rations. An ideal test environment matches the production environment exactly, providing
the capability to test an application as if it were running in production and to receive accu-
rate results.

Additionally, the SDLC requires the maintenance of phases that you customize to meet
business requirements. This includes configurations to audit and perform quality assur-
ance. AWS Cloud solutions automatically align the phases and environments. You can
choose an AWS service to automate deployments seamlessly, saving you hours that you
would normally spend managing your infrastructure and code. Although certain environ-
mental variables are clearly defined as business requirements, others evolve as you commit
changes. Code modifications are also inherently environment-based and focused on the
configuration of the modification itself.

AWS services enable you to deploy applications rapidly and manage environments and
the multiple tiers of your infrastructure (web servers, worker applications, and databases)
automatically. You can automatically provision and manage resources for the environments
and configurations that you create. Your configurations can include Auto Scaling groups,
security groups, Amazon Elastic Compute Cloud (Amazon EC2) instances, other AWS
resources, and AWS Identity and Access Management (IAM) roles to manage resources
from AWS deployment services.

Software Development Lifecycle with AWS Cloud
Determine how to manage the SDLC with AWS services based on environment variables,
infrastructure tiers, and the type of applications or services you launch. Each of the AWS
services you use in a deployment has its own configuration, or service-specific settings,

Deployments on the AWS Cloud 285

which affect your deployment implementation. Consider the types of deployments that
you will perform so that you can implement the most appropriate services into your
seamless chain of events or a pipeline. This seamless or “continuous” chain of events on
the AWS Cloud is the continuous integration/continuous deployment (CI/CD) pipeline.

 Continuous Integration/Continuous Deployment
 The CI/CD pipeline helps developers implement continuous builds, tests, and code deploy-
ments with multiple AWS resources and a continuous integration server. You can integrate
AWS Elastic Beanstalk with the CI/CD pipeline as one of the deployment resources. You
can also use AWS CodeCommit as a CI/CD resource paired with a Git repository, from
which Elastic Beanstalk can extract and deploy code.

Continuous integration (CI) is the software development practice in which you continu-
ously integrate (or check in) all code changes into a main branch of a central repository.
This practice enables you to verify your code changes early and often with an automated
build and test process. Whenever you check in code changes, engineers can automate
various processes, such as building assets and testing code syntax. By implementing con-
tinuous integration practices, teams become more productive and develop new features
more quickly. Teams also write scripts to validate the functionality and improve the quality
of the software being released.

Continuous delivery (CD) is the software development practice in which all code
changes are automatically prepared and always deployable (ready to go into production) at
a single step.

 Continuous delivery extends continuous integration to include testing production-like
stages and running verifi cation testing against those deployments. Although continuous
delivery can extend to a production deployment, it requires manual intervention between a
code check-in and when that code is available for customer use.

 Practicing continuous delivery means that teams gain a greater level of certainty that
their software will work in production.

 Continuous deployment extends continuous delivery and is the automated release of
software to customers, from check-in through production, without human intervention.
Continuous deployment helps customers gain value quickly from the code base, with the
development team getting faster feedback on the changes made.

 An important distinction between continuous delivery and continuous
deployment is that in continuous deployment, changes are automatically
released to production after build/test stages; there is no manual approval
step.

 Figure 6.2 displays the CI/DI pipeline.

286 Chapter 6 ■ Deployment Strategies

f i gu r e 6 . 2 CI/DI pipeline

Source

Continuous Integration

Continuous Delivery

Continuous Deployment

Build Test Deploy Monitor

The CI/DI pipeline integrates with other AWS Code services, as illustrated in Figure 6.3.

f i gu r e 6 . 3 AWS Code services

AWS CodeCommit AWS CodeBuild

AWS CodePipeline

AWS CodeDeploy AWS X-RayCustomer’s Favorite
Tools

Amazon
CloudWatch

Source Build Test Production Monitor

AWS CodePipeline AWS CodePipeline is a service for fast and reliable application
updates. You can model and visualize the software release process. To build, test, and
deploy your code every time there is a code change, integrate this service with third-party
tools and AWS.

AWS CodeCommit AWS CodeCommit is a secure, highly scalable, managed source-
control service that hosts private Git repositories. It enables you to store and manage assets
(such as documents, source code, and binary files) privately in the AWS Cloud.

AWS CodeBuild AWS CodeBuild compiles source code, runs tests, and produces ready-
to-deploy software packages. There is no need to manage build servers.

Deployments on the AWS Cloud 287

AWS CodeDeploy AWS CodeDeploy automates code deployments to any instance.
It handles the complexity of updating your applications, which avoids downtime
during application deployment. It deploys to Amazon EC2 or on-premises servers, in
any language and on any operating system. It also integrates with third-party tools
and AWS.

Deploying Highly Available and Scalable Applications
Load balancing is an integral part to directing and managing traffic among your instances.
As you launch applications in your environments, you will want them to have high perfor-
mance and high availability for your users. To enable both of these features, a load bal-
ancer will be necessary.

Elastic Load Balancing (ELB) supports three types of load balancers: Application Load
Balancers, Network Load Balancers, and Classic Load Balancers. You select a load bal-
ancer based on your application needs.

 ■ The Application Load Balancer provides advanced request routing targeted at deliv-
ery of modern application architectures, including microservices and container-based
applications. It simplifies and improves the security of your application by ensuring
that the latest Secure Sockets Layer (SSL)/Transport Layer Security (TLS) ciphers and
protocols are used at all times. The Application Load Balancer operates at the request
level (Layer 7) to route HTTP/HTTPS traffic to its targets: Amazon EC2 instances,
containers, and IP addresses based on the content of the request. It is ideal for
advanced load balancing of HTTP and HTTPS traffic.

 ■ The Network Load Balancer operates at the connection level (Layer 4) to route
TCP traffic to targets: Amazon EC2 instances, containers, and IP addresses based
on IP protocol data. It is the best option for load balancing of TCP traffic because
it’s capable of handling millions of requests per second while maintaining ultra-low
latencies. Network Load Balancer is optimized to handle sudden and volatile traffic
 patterns while using a single static IP address per Availability Zone. It is integrated
with other popular AWS services, such as AWS Auto Scaling, Amazon Elastic Con-
tainer Service (Amazon ECS), and AWS CloudFormation. Amazon ECS provides
management for deployment, scheduling, and scaling, and management of contain-
erized applications.

 ■ The Classic Load Balancer provides basic load balancing across multiple Amazon
EC2 instances and operates at both the request level and the connection level. The
Classic Load Balancer is intended for applications that were built within the
EC2-Classic network. When you’re using Amazon Virtual Private Cloud (Amazon
VPC), AWS recommends the Application Load Balancer for Layer 7 and Network
Load Balancer for Layer 4).

Figure 6.4 displays the flow for deploying highly available and scalable applications.

288 Chapter 6 ■ Deployment Strategies

 f i gu r e 6 . 4 Deploying highly available and scalable applications

AWS Auto
Scaling

Application Application

Availability

Zone A

Region
Amazon DynamoDB
State Information

AWS

Application

ELB

Application

Availability

Zone B

 The fl ow for deploying highly available and scalable applications includes the following
components:

 ■ Multiple Availability Zones and AWS Regions.

 ■ Health check and failover mechanism.

 ■ Stateless application that stores the session state in a cache server or database.

 ■ AWS services that help you to achieve your goal. For example, Auto Scaling helps you
maintain high availability and scalability.

 Elastic Load Balancing and Auto Scaling are designed to work together.

 Deploying and Maintaining Applications
 AWS provides several services to manage your application and resources, as shown in
Figure 6.5 .

Deployments on the AWS Cloud 289

 f i gu r e 6 .5 Deployment and maintenance services

• Deploy Code in the Cloud

AWS Elastic Beanstalk

• Manage Infrastructure

AWS OpsWorks

• Define the Infrastructure

AWS CloudFormation

 With AWS Elastic Beanstalk, you do not have to worry about managing the infrastruc-
ture for your application. You deploy your application, such as a Ruby application, in a
Ruby container, and Elastic Beanstalk takes care of scaling and managing it.

AWS OpsWorks is a confi guration and deployment management tool for your Chef
or Puppet resource stacks. Specifi cally, OpsWorks for Chef Automate enables you to
manage the lifecycle of your application in layers with Chef recipes. It provides custom
Chef cookbooks for managing many different types of layers so that you can write
custom Chef recipes to manage any layer that AWS does not support.

AWS CloudFormation is infrastructure as code. The service helps you model and set up AWS
resources so that you can spend less time managing them. It is a template-based tool, with for-
matted text fi les in JSON or YAML. You can create templates to defi ne what AWS infrastructure
you want to build and any relationships that exist among the parts of your AWS infrastructure.

 Use AWS CloudFormation templates to provision and configure your stack
resources.

 Automatically Adjust Capacity
 Use AWS Auto Scaling to monitor the AWS resources that are part of your application. The
service automatically adjusts capacity to maintain steady, predictable performance. You
can build scaling plans to manage your resources, including Amazon EC2 instances and
Spot Fleets, Amazon Elastic Container Registry (Amazon ECR) tasks, Amazon DynamoDB
tables and indexes, and Amazon Aurora Replicas.

 AWS Auto Scaling makes scaling simple, with recommendations that allow you to opti-
mize performance, costs, or balance between them. If you are already using EC2 Auto
Scaling to scale your Amazon EC2 instances dynamically, you can now combine it with
AWS Auto Scaling to scale additional resources for other AWS services. With AWS Auto
Scaling, your applications have the right resources at the right time.

 Auto Scaling Groups
 An Auto Scaling group contains a collection of Amazon EC2 instances that share similar
characteristics. This collection is treated as a logical grouping to manage the scaling of
instances. For example, if a single application operates across multiple instances, you might
want to increase the number of instances in that group to improve the performance of the
application or decrease the number of instances to reduce costs when demand is low.

290 Chapter 6 ■ Deployment Strategies

 You can use the Auto Scaling group to scale the number of instances automatically based
on criteria that you specify or maintain a fi xed number of instances even if an instance
becomes unhealthy. This automatic scaling and maintaining the number of instances in an
Auto Scaling group make up the core functionality of the EC2 Auto Scaling service.

 An Auto Scaling group launches enough Amazon EC2 instances to meet its desired
capacity. The Auto Scaling group maintains this number of instances by performing peri-
odic health checks on the instances in the group. If an instance becomes unhealthy, the
group terminates the unhealthy instance and launches another instance to replace it.

 You can use scaling policies to increase or decrease the number of instances in your
group dynamically to meet changing conditions. When the scaling policy is in effect, the
Auto Scaling group adjusts the desired capacity of the group and launches or terminates
the instances as needed. You can also manually scale or scale on a schedule.

 AWS Elastic Beanstalk
AWS Elastic Beanstalk is an AWS service that you can use to deploy applications, services,
and architecture. It provides provisioned scalability, load balancing, and high availability.
It uses common languages, including Java, .NET, PHP, Node.js, Python, Ruby, Go, and
Docker, on common-type web servers, such as Apache, NGINX, Passenger, and IIS.

 Elastic Beanstalk charges only for the resources you use to run your
application.

 Elastic Beanstalk is a solution that enables the automated deployments and management
of applications on the AWS Cloud. Elastic Beanstalk can launch AWS resources automati-
cally with Amazon Route 53, AWS Auto Scaling, Elastic Load Balancing, Amazon EC2,
and Amazon Relational Database Service (Amazon RDS) instances, and it allows you to
customize additional AWS resources.

 Deploy applications without worrying about managing the underlying technologies,
including the following:

 Components

 ■ Environments

 ■ Application versions

 ■ Environment configurations

 Permission Model

 ■ Service role

 ■ Instance profile

 Figure 6.6 displays the Elastic Beanstalk underlying technologies.

AWS Elastic Beanstalk 291

 f i gu r e 6 .6 AWS Elastic Beanstalk underlying technologies

Elastic Load
Balancing

AmazonEC2

AWS Elastic
Beanstalk

AWS Elastic
Beanstalk

AutoScaling

Web
Application

Package

 Elastic Beanstalk supports customization and N-tier architectures. It mitigates common
manual confi gurations required in a traditional infrastructure deployment model. With
Elastic Beanstalk, you can also create repeatable environments and reduce redundancy,
thus rapidly updating environments and facilitating service-managed application stacks.
You can deploy multiple environments in minutes and use various automated deployment
strategies.

 AWS Elastic Beanstalk allows you to focus on building your application.

 Implementation Responsibilities
 AWS and our customers share responsibility for achieving a high level of software com-
ponent security and compliance. This shared model reduces your operational burden. The
service you select determines the level of your responsibility. For example, Elastic Beanstalk
helps you perform your side of the shared responsibility model by providing a managed
updates feature. This feature automatically applies patch and minor updates for an Elastic
Beanstalk supported platform version.

 Developer Teams
 Using AWS Elastic Beanstalk, you build full-stack environments for web and worker tiers.
The service provides a preconfi gured infrastructure.

 ■ Single-instance (development, low cost)

 ■ Load balanced, AWS Auto Scaling (production)

292 Chapter 6 ■ Deployment Strategies

Elastic Beanstalk Responsibilities
Elastic Beanstalk provisions the necessary infrastructure resources, such as the load bal-
ancer, Auto Scaling group, security groups, and database (optional). It also provides a
unique domain name for your application (for example, yourapp.elasticbeanstalk.com).

Figure 6.7 displays Elastic Beanstalk responsibilities.

f i gu r e 6 .7 AWS Elastic Beanstalk responsibilities

Focus on Building
Your Application

Your Code

Provided by You

Installed and Configured
by AWS

HTTP Server

Application Server

Language Interpreter

Operating System

Host

Provided and Managed by Elastic Beanstalk

Working with Your Source Repository
Developer teams generally begin their SDLC processes by managing their source code in
a source repository. Uploading and managing the multiple changes on application source
code is a repeated process. With Elastic Beanstalk, you can create an application, upload a
version of the application as a source bundle, and provide pertinent information about the
application.

The first step is to integrate Elastic Beanstalk with your source code to create your
source bundle. As your source repository, you can install Git for your applications or use an
existing repository and map your current branch from a local repository in Git to retrieve
the source code.

Alternatively, you can use AWS CodeCommit as a source control system to retrieve
source code. By using Elastic Beanstalk with the AWS CodeCommit repository, you extract
from a current branch on CodeCommit.

To deploy a new application or application version, Elastic Beanstalk works with source
bundles or packaged code. Prepare the code package with all of the necessary code depen-
dencies and components.

Elastic Beanstalk can either retrieve the source bundle from a source repository or
download the bundle from an Amazon Simple Storage Service (Amazon S3) bucket.
You can use the IAM role to grant Elastic Beanstalk access to all services. The service
accesses the source bundle from the location you designate, extracts the components
from the bundle, deploys new application versions by launching the code, creates and

AWS Elastic Beanstalk 293

confi gures the infrastructure, and allocates the platform on Amazon EC2 instances to
run the code.

 The application runs on the resources and instances that the service generates. Your
confi guration for these resources and your application will become your environment
settings, supporting the entire confi guration of your deployment. Each deployment has
an auto-incremented deployment identity (ID), so you are able to manage your multiple
running deployments. Think of these as multiple running code releases in the AWS
Cloud.

 You can also work with different hosting services, such as GitHub
or Bitbucket, with your code source.

 Concepts
 AWS Elastic Beanstalk enables you to manage all the resources that run your application as
environments. This section describes some key Elastic Beanstalk concepts.

 Application
 Elastic Beanstalk focuses on managing your applications as environments and all of the
resources to run them. Each application that launches in the service is a logical collec-
tion of environment variables and components, application versions, and environment
confi gurations.

 Application Versions
 Application versions are iterations of the application’s deployable code. Application versions
in Elastic Beanstalk point to an Amazon S3 object with the code source package. An appli-
cation can have many versions, with each version being unique. You can deploy and access
any application version at any time. For example, you may want to deploy different versions
for different types of tests.

 Environment
 Each Elastic Beanstalk environment is a separate version of the application, and that
version’s AWS Cloud components deploy onto AWS resources to support that version.
Each environment runs one application version at a time, but you can run multiple envi-
ronments, with the same application on each, along with its own customizations and
resources.

 Environment Tier
 To launch an environment, you must fi rst choose an environment tier. Elastic Beanstalk
provisions the required resources to support both the infrastructure and types of requests

294 Chapter 6 ■ Deployment Strategies

the application will support. The environment can launch and access other AWS resources.
For example, it may pull tasks from Amazon Simple Queue Service (Amazon SQS) queues
or store temporary configuration files in Amazon S3 buckets (according to your custom-
izations). Each environment will then have an environment configuration—a collection of
settings and parameters based on your customizations that define associated resources and
how the environment will work.

Environment Configuration
You can change your environment to create, modify, delete, or deploy resources and
change the settings for each. Your environment configuration saves to a configuration
template exclusive to each environment and is accessible by either the Elastic Beanstalk
application programming interface (API) calls or the service’s command line interface
(EB CLI).

In Elastic Beanstalk, you can run either a web server environment or a worker envi-
ronment. Figure 6.8 displays an example of a web server environment running in Elastic
Beanstalk with Amazon Route 53 as the domain name service (DNS) and ELB to route
traffic to the web server instances.

f i gu r e 6 . 8 Application running on AWS Elastic Beanstalk

MyApp.elasticbeanstalk.com

EC2 Instance

Auto Scaling Group

EC2 Instance EC2 Instance EC2 Instance

Security Group Security Group

Availability Zone #1

Web App
Server

HM

Web App
Server

HM

Web App
Server

HM

Web App
Server

HM DB

Elastic Load Balancing

Figure 6.9 shows a worker environment architecture, where AWS resources create con-
figurations, such as Auto Scaling groups, Amazon EC2 instances, and an IAM role, to
manage resources for your worker applications.

AWS Elastic Beanstalk 295

f i gu r e 6 . 9 Worker tier on AWS Elastic Beanstalk

Internet Auto Scaling Amazon CloudWatch

Elastic Load Balancing

EC2 Instance EC2 Instance

SQS
Message

SQS
Message

SQS
Queue

Auto Scaling Group

Elastic Beanstalk Container

Auto Scaling Group

Elastic Beanstalk Container

Web Server Environment Tier Worker Environment Tier

Elastic Beanstalk
Application

Elastic Beanstalk
Application

Sqsd
(daemon)

HTTP POST

For the worker environment tier, Elastic Beanstalk creates and provisions additional
resources and files to support the tier. This includes services like Amazon SQS queues oper-
ating between worker applications, AWS Auto Scaling groups, security groups, and EC2
instances.

The worker environment infrastructure uses all of your customization and provision
resources to determine the types of requests it receives.

Docker Containers

You can also use Docker containers with Elastic Beanstalk to run your applications
from a container. Install Docker, choose the software you require, and select the Docker
images you want to launch. Define your runtime environment, platform, programming
language, and application dependencies and tools. Docker containers are self-contained
and include configurations and software that you specify for your application to run.
Each Docker container restarts automatically if another container crashes. When you
choose to deploy your applications with Docker containers, your infrastructure is provi-
sioned with capacity provisioning, load balancing, scaling, and health monitoring, much
like a noncontainer environment. You can continue to manage your application and the
AWS resources you use.

Docker requires platform configurations that enable you to launch single or multicon-
tainer deployments. A single container deployment launches a single Docker image, and
your application uses a single container configuration for a single Amazon EC2 instance.

296 Chapter 6 ■ Deployment Strategies

A multicontainer deployment uses the Amazon ECS to launch a cluster of containers with
Docker images. A multicontainer configuration is applied to each instance. You can also
run preconfigured Docker platform configurations with generic customization for popular
software stacks that you want to use for your application.

AWS Elastic Beanstalk Command Line Interface
Elastic Beanstalk has its own command line interface separate from the AWS CLI tool.
To create deployments from the command line, you download and install the AWS Elastic
Beanstalk CLI (EB CLI).

Table 6.1 lists common EB CLI commands.

TA b le 6 .1 Common AWS Elastic Beanstalk Commands

Command Definition

eb init application-name Sets default values for Elastic Beanstalk applications with
the EB CLI configuration wizard

eb create Creates a new environment and deploys an application
 version to it

eb deploy Deploys the application source bundle from the initialized
project directory to the running application

eb clone Clones an environment to a new environment so that both
have identical environment settings

eb codesource Configures the EB CLI to deploy from an AWS CodeCommit
repository, or disables AWS CodeCommit integration and
uploads the source bundle from your local machine

Customizing Environment Configurations
You can use Elastic Beanstalk to customize the platforms used to support your application
and your infrastructure. To do so, create a configuration file in the ebextensions directory
(or .ebextensions) to include with your web application’s source code. The configuration
file allows for simple and advanced customizations of your environment and contains set-
tings for your AWS resources. To deploy customized resources to support your application
source bundle, use YAML to configure the file.

The configuration file has several sections. The option_settings section defines your
configuration option values for your AWS resources. The resources section adds further
customization in your application environment beyond the service functionality, which
includes AWS CloudFormation–supported resources that Elastic Beanstalk can access and

AWS Elastic Beanstalk 297

run. The remaining sections allow for fi ne-grained confi gurations to integrate packages,
sources, fi les, and container commands.

 Launch environments from integrated development environment (IDE)
tools to avoid poorly formatted configurations and source bundles that
could cause unrecoverable failures.

 You apply confi guration fi les in the ebextensions directory to Elastic Beanstalk stacks.
The stacks are the AWS resources that you allocate for your infrastructure and application.
If you have any resource, such as Amazon VPC, Amazon EC2, or Amazon S3, that was
updated or confi gured, these fi les deploy with your changes. You can zip your ebextension
fi les, upload, and apply them to multiple application environments. You can view your envi-
ronment variables in option_settings for future evaluation or changes. These are acces-
sible from the AWS Management Console, command line, and API calls.

 You can view Elastic Beanstalk stacks in AWS CloudFormation, but always
use the Elastic Beanstalk service and ebextensions to make modifications.
This way, edits and modifications to the application stacks are simplified
without introducing unrecoverable failures.

 Elastic Beanstalk generates logs that you can view to troubleshoot your environments
and resources. The logs display Amazon EC2 operational logs and logs that are specifi c to
servers running for your applications.

 Integrating with Other AWS Services
 Elastic Beanstalk automatically integrates or manages other AWS services with application
code to provision effi cient working environments. However, you might fi nd it necessary to
add additional services, such as Amazon S3 for content storage or Amazon DynamoDB for
data records, to work with an environment. To grant access between any integrated service
and Elastic Beanstalk, you must confi gure permissions in IAM.

 Amazon S3
 You can use Amazon S3 to store static content you want to integrate with your application
and point directly to objects you store in Amazon S3 from your application or from other
resources. In addition to setting permissions in IAM policies, take advantage of presigned
URLs for controlled Amazon S3 GET and PUT operations.

 Amazon CloudFront
 You can integrate your Elastic Beanstalk environment with Amazon CloudFront, which
provides content delivery and distribution through the use of edge locations throughout the
world. This can decrease the time in which your content is delivered to you, as the content

298 Chapter 6 ■ Deployment Strategies

is cached and routed through the closest edge location serving you. After you deploy your
application on Elastic Beanstalk, use the Amazon CloudFront content delivery network
(CDN) to cache static content from your application. To identify the source of your content
in Amazon CloudFront, you can use URL path patterns to cache your content and then
retrieve it from the cache. This approach serves your content more rapidly and offl oads
requests directly sourced from your application.

 AWS Config
 With AWS Confi g , you can visualize confi guration history and how confi gurations evolve
over time. Tracking changes helps you to fulfi ll compliance obligations and meet auditing
requirements. You can integrate AWS Confi g directly with your application and its ver-
sions or your Elastic Beanstalk environment. You can customize AWS Confi g to record
changes per resource, per region, or globally. In the AWS Confi g console, you can select
Elastic Beanstalk resource types to record specifi c applications and environment resources.
You can view the recorded information in the AWS Confi g dashboard under Resource
Inventory.

 Amazon RDS
 Various options are available for creating databases for your environment, such as Amazon
Relational Database Service (Amazon RDS) for SQL databases and Amazon DynamoDB
for NoSQL databases. Elastic Beanstalk can create a database and store and retrieve data for
any of your environments. Each service has its own features to handle scaling, capacity,
performance, and availability.

 To store, read, or write to your data records, you can set up an Amazon RDS database
instance or an Amazon DynamoDB table by using the same confi guration fi les for your
other service option settings. You must create connections to the database, which require
you to set up password management in Elastic Beanstalk. Your confi gurations are saved in
the ebextensions directory. You can also create direct connections, within your applica-
tion code or application confi guration fi les, to both internal and external databases. When
using Amazon RDS, avoid accidentally deleting and re-creating databases without a prop-
erly installed backup. To reduce the risk of losing data, take a manual snapshot of the mas-
ter Amazon RDS database immediately before deleting.

 If you create periodic tasks with a worker environment, Elastic Beanstalk
automatically creates an Amazon DynamoDB table to perform leader elec-
tion and stores task information.

 Amazon ElastiCache
 For caching capabilities, you can integrate Amazon ElastiCache service clusters with the
Elastic Beanstalk environment. If you use a nonlegacy container, you can set your confi gu-
ration fi les to use the supported container and then offl oad requests to the cache cluster.

Deployment Strategies 299

Doing so enables you to increase the performance of your application and databases running
in your Elastic Beanstalk environment.

 AWS Identity and Access Management Roles
 Elastic Beanstalk integrates with AWS Identity and Access Management (IAM) roles to
enable access to the services you require to run your architecture.

 When you launch the service to create an environment, a default service role and
instance profi le are created for you through the service API. Managed policies for
resources permissions are also attached, including policies for Elastic Beanstalk instance
health monitoring within your infrastructure and platform updates that can be made on
behalf of the service. These policies, called AWSElasticBeanstalkEnhancedHealth and
AWSElasticBeanstalkService , attach to the default service role and enable the default ser-
vice role to specify a trusted entity and trust policy.

 When you use commands from the EB CLI, the role allows automatic management of
the AWS Cloud that services you run. The service creates an environment, if you don’t iden-
tify it specifi cally; creates a service-linked role; and uses it when you spin up a new environ-
ment. To create the environment successfully, the CreateServiceLinkedRole policy must
be available in your IAM account.

 You use IAM roles to automate the management of allocated services for your applica-
tion through Elastic Beanstalk. With IAM, you can also launch code with inline policies. It
is important to understand how the service creates and uses the roles to keep your applica-
tion and data secure.

 For IAM to manage the policies for the account better, create policies at the
account level.

 Deployment Strategies
 A deployment is the process of copying content and executing scripts on instances in your
deployment group. To accomplish this, AWS CodeDeploy performs the tasks outlined in the
AppSpec confi guration fi le. For both Amazon EC2 on-premises instances and AWS Lambda
functions, the deployment succeeds or fails based on whether individual AppSpec tasks
complete successfully.

 After you have created a deployment, you can update it as your application or service
changes. You can update a deployment by adding or removing resources from a deploy-
ment, thus updating the properties of existing resources in a deployment.

 A serverless application is typically a combination of AWS Lambda and
other AWS services.

300 Chapter 6 ■ Deployment Strategies

 To create seamless deployments, choose an effective deployment strategy. Each strategy
has specifi c advantages relative to different use cases. Appropriate strategies help create
deployments where you experience minimal or no downtime, and you can apply the strat-
egy for different purposes within your environments. Each change needs a strategy that
best fi ts your application deployments.

 All-at-Once and In-Place Deployments
 An all-at-once deployment applies updates to all your instances at once. When you execute
this strategy, you experience downtime, as all instances receive the change at the same time.

 This is an appropriate strategy for simple, immediate update requirements when it’s
not critical to have your application always available, and you’re comfortable with the site
being offl ine for a short duration. To enable all-at-once updates, set a deployment policy
either in the AWS Management Console or in the command line (DeploymentPolicy).

 When you perform an in-place deployment , AWS CodeDeploy stops currently running
applications on the target instance, deploys the latest revision, restarts applications, and
validates successful deployment. In-place deployments can support the automatic confi gu-
ration of a load balancer. In this case, the instance is deregistered from the load balancer
before deployment and registered again after the deployment processes successfully.

 In-place updates are also available for your platform updates, such as a coding-language
platform update for a web server. Select the new platform and then run the update from the
AWS Management Console or command line directly as a platform update.

 AWS Lambda does not support in-place deployments.

 Rolling Deployments
 A rolling deployment applies changes to all of your instances by rolling the updates from
one instance to another. Elastic Beanstalk can deploy confi guration changes in batches.
This approach reduces possible downtime during implementation of the change and allows
available instances to run while you deploy.

 As updates are applied in a batch, the batch will be out of service for a short period
while the changes propagate and then relaunch with the new confi guration. When the
change is complete, the service moves on to the next batch of instances to apply the
changes. With this strategy, you can implement both periodic changes and pauses between
updates. For example, you might specify a time to wait between health-based updates so
that instances must pass health checks before moving on to the next batch. If the roll-
ing update fails, the service begins another rolling update for a rollback to the previous
confi guration.

 Rolling updates include changes for Auto Scaling group confi gurations, Amazon EC2
instance confi gurations, and Amazon VPC settings. It is an effective method for updating
an application version on fl eets of instances through the Elastic Beanstalk service. To enable

Deployment Strategies 301

rolling updates, set a deployment policy either in the AWS Management Console or in the
command line (DeploymentPolicy) and choose this strategy along with specifi c options.
You can select Rolling or Rolling with additional batch . By using Rolling with additional
batch , you can launch a new batch of instances before you begin to take instances out of
service for your rolling updates. This option provides an available batch for rollback from
a failed update. After the deployment is successfully executed, Elastic Beanstalk terminates
the instances from the additional batch. This is helpful for a critical application that must
continue running with less downtime than the standard rolling update.

 Blue/Green Deployment
 When high availability is critical for applications, you may want to choose a blue/green
deployment , where your newer environment will be separate from your existing environ-
ment. The running production environment is considered the blue environment , and the
newer environment with your update is considered the green environment . When your
changes are ready and have gone through all tests in your green environment, you can swap
the CNAMEs of the environments to redirect traffi c to the newer running environment.
This strategy provides an instantaneous update with typically zero downtime.

 When you deploy to AWS Lambda functions, blue/green deployments publish new ver-
sions of each function. Traffi c shifting then routes requests to the new functioning versions
according to the deployment confi guration you defi ne.

 If your infrastructure contains Amazon RDS database instances, the data does not auto-
matically transfer to the new environment. Without performing backups, you will experi-
ence data loss when you use the blue/green strategy. If you have Amazon RDS instances in
your infrastructure, implement a different deployment strategy or a series of steps to create
snapshot backups outside of Elastic Beanstalk before you execute this type of deployment.

 Immutable Deployment
 An immutable deployment is best when an environment requires a total replacement of
instances, rather than updates to an existing part of an infrastructure. This approach
implements a safety feature for updates and rollbacks. Elastic Beanstalk creates a tem-
porary Auto Scaling group behind your environment’s load balancer to contain the new
instances with the updates you apply. If the update fails, the rollback process terminates
the Auto Scaling group. Immutable instances implement a number of health checks. If all
instances pass these checks, Elastic Beanstalk transfers the new confi gurations to the origi-
nal Auto Scaling group, providing an additional check before you apply your changes to
other instances. Enhanced health reports evaluate instance health in the update. After the
updates are made, Elastic Beanstalk deletes the temporary Auto Scaling group of the older
instances.

 During this type of deployment, your capacity doubles for a short dura-
tion between the updates and terminations of instances. Before you use
this strategy, verify that your instances have a low on-demand limit and
enough capacity to support immutable updates.

302 Chapter 6 ■ Deployment Strategies

See Table 6.2 for feature comparisons between all deployment strategies. The check
mark indicates options that the deployment strategy supports.

TA b le 6 . 2 Deployment Strategies

Method
Impact of Failed
Deployment

Deploy
Time

Zero
Downtime

No DNS
Change

Rollback
Process

Code
Deployed To

All-at-once Downtime ✓ Redeploy Existing
instances

In-place Downtime ✓ Redeploy Existing
instances

Rolling Single batch
out of service;
any successful
batches before
failure running
new application
version

 ✓ ✓ Redeploy Existing
instances

Rolling with
additional
batch

Minimal if first
batch fails;
otherwise,
similar to
Rolling

 ✓ ✓ Redeploy New and
existing
instances

Blue/Green Minimal ✓ Swap URL New
instances

Immutable Minimal ✓ ✓ Redeploy New
instances

Container Deployments
Elastic Beanstalk enables you to launch your applications with Docker containers. With a
Docker container, you can create a runtime environment with all of the dependencies, pack-
ages, and tools that your application may require to run. Your container can have all of the
configurations necessary for your application. By using Docker with Elastic Beanstalk, you
have the infrastructure for capacity provisioning, scalability, load balancing, and health
monitoring for the instances that run on containers. The containers integrate with your

Monitoring and Troubleshooting 303

Amazon VPC for network requirements and with IAM to enable resource management.
You can launch different software engines with containers to provide various options and
third-party tools to run containers.

You can choose from single container configurations and multicontainer configura-
tions. A single container runs one container per instance. A multicontainer runs multiple
applications or engines on one instance, with all of the software and settings you require.
Preconfigured options are available with Docker, and you can integrate them with instances
that run in your architecture through Elastic Beanstalk.

Monitoring and Troubleshooting
After you launch your code, check on its performance and availability. You can monitor
statistics and view information about the health of your application, its environment,
and specific services from the AWS Management Console. Elastic Beanstalk also creates
alerts that trigger at established thresholds to monitor your environment’s health. In the
AWS Management Console, the AWS Elastic Beanstalk Monitoring page shows aggre-
gated statistics and graphs for your applications and resources. Each environment is
color-coded to indicate the environment’s status. You can see at a glance whether your
environment is available online at any point in time. Metrics gathered by the resources
in your environment are published to Amazon CloudWatch in five-minute intervals.
You can adjust the time range for the statistics and graphs and customize your views of
the metrics.

Figure 6.10 shows an example of the statistics that you can view for your environment.

f i gu r e 6 .10 Health dashboard on AWS Elastic Beanstalk

Figure 6.11 shows an example of the graphs that you can view.

304 Chapter 6 ■ Deployment Strategies

f i gu r e 6 .11 Metrics for monitoring on AWS Elastic Beanstalk

Table 6.3 defines the AWS Elastic Beanstalk Monitoring page colors.

TA b le 6 . 3 AWS Elastic Beanstalk Health Page Color Definitions

Color Description

Gray Your environment is being updated.

Green Your environment has passed the most recent health check. At least one
instance in your environment is available and taking requests.

Yellow Your environment has failed one or more health checks. Requests to your
environment are failing.

Red Your environment has failed three or more health checks, or an environment
resource has become unavailable. Requests are consistently failing.

By default, Elastic Beanstalk displays Amazon EC2, Auto Scaling, and Elastic Load
Balancing metrics for your application environments. These metrics are available to you on
your AWS Elastic Beanstalk Monitoring page as soon as you deploy your application environ-
ment. You can access the health status from the AWS Management Console or the EB CLI.

Basic Health Monitoring
To access the health status from the AWS Management Console, select the Elastic
Beanstalk service and then select the tab for your specific application environment. An

Monitoring and Troubleshooting 305

environment overview shows your architecture’s instance status details, resource details,
and fi lter capabilities. Health statuses are indicated in four distinct colors.

 To access the health status from the EB CLI, enter the eb health command. The output
shows the environment and the health of associated instances. Enhanced health reporting
also provides the following seven health statuses, which are single-word descriptors that
provide a better indication of the state of your environment:

 ok warning degraded severe info pending unknown

 You can also use the eb status command in the EB CLI or the DescribeEnvironments
API call to retrieve the health status for an environment. You can check the health of
the overall environment or the individual services of Amazon EC2 or an Elastic Load
Balancing load balancer. Health checks on your Elastic Load Balancing port execute both
for the default port 80 and a custom Elastic Load Balancing port/path.

 For GET requests with the load balancer, 200 OK is the default success code and indicates
a healthy status. The service can also return 400 level responses. You can also confi gure a
health check URL for custom static page responses.

 Be sure to adjust the caching time to live for any health check static
pages or URLs in Amazon CloudFront or for any caching mechanism you
may use.

 Elastic Beanstalk also reports missing confi gurations or other issues that could affect the
health of the application environment.

 Enhanced Health Monitoring
 There are two types of reporting: the default health information about your resources
and the enhanced health reporting that provides you more information for monitoring
health.

 You can use the enhanced health reporting feature to gather additional resource data
and display graphs and statistics of environment health in greater detail. This is important
when you deploy multiple versions of your application and when you need to analyze fac-
tors that could be degrading your application’s availability or performance. You can view
these details in the AWS Elastic Beanstalk Monitoring page from the AWS Management
Console. These reports require the creation of two IAM roles: a service role to allow access
between the services and Elastic Beanstalk and an instance profi le to write logs into an
Amazon S3 bucket.

 Running the enhanced health report requires a version 2 or newer platform
configuration that supports all platforms except Windows Server with IIS.
The enhanced health reports provide data directly to Elastic Beanstalk and
do not run through Amazon CloudWatch.

306 Chapter 6 ■ Deployment Strategies

By default, health monitoring on Elastic Beanstalk does not publish metrics to
Amazon CloudWatch, so you are not charged for the metrics. There are also custom
metrics that you can run and view, for which you are not charged a fee. You can
enable custom metrics by using the PutMetricData operation in worker environments.
For example, you might have an Amazon SQS daemon that publishes custom metrics
for environment health under the same environment namespace. You can also enable
custom metrics from Amazon CloudWatch, but AWS charges for these additional met-
rics you publish to your monthly Amazon CloudWatch. To save costs, use the available
metrics on the Elastic Beanstalk service, or enable the custom metrics that you need,
paying only for what you use.

Elastic Beanstalk runs a health agent to provide detailed health resource data for
enhanced health monitoring. The health agent runs in the Amazon Machine Image
(AMI) for each instance operating system on a platform configuration for your appli-
cation. The agent analyzes system metrics and logs to communicate the health status
to Elastic Beanstalk. You receive alerts, data, and actionable insights that you can use
to monitor your applications and understand, prevent, and respond to performance
issues.

You can monitor recent health events that you have enabled on Elastic Beanstalk in real
time. There are several health event types that can change as an environment transitions
from the create state to the run state. Figure 6.12 displays the health events available in
the AWS Elastic Beanstalk Monitoring page and examples of the details that allow you to
respond to issues identified.

f i gu r e 6 .12 Events on AWS Elastic Beanstalk

Elastic Beanstalk integrates with AWS CloudTrail to capture Elastic Beanstalk API calls
as log files that you can store in an Amazon S3 bucket. To view additional actions occur-
ring with your running resources, you can also capture AWS API calls in your code using
AWS CloudTrail.

Exam Essentials 307

 Summary
 In this chapter, you learned about the features of Elastic Beanstalk, how to automate
deployments for your multi-tier architectures, and different deployment strategies. You also
discovered options for confi guring your environments and managing your resources with
services such as IAM, Amazon VPC, Amazon EC2, and Amazon S3.

 Exam Essentials
Know how to deploy AWS Elastic Beanstalk. Know how to deploy an application AWS
Elastic Beanstalk and what platforms it supports. To complete the exam successfully, you
should also understand how the architectures and services interact with the web, applica-
tion, and database tiers. Focus on foundational services and how you create and work with
Elastic Beanstalk.

Know about ebextensions . Understand ebextensions and the part they play in the ser-
vice confi guration. Be able to recognize the stacks you create and how to change them.

 Know about Elastic Beanstalk resources. Understand how to manage resources with
Elastic Beanstalk, including IAM. Understand the defi nitions and differentiate between
the functions of the default IAM service role and the instance profi le, which are automat-
ically created. Understand permissions for your AWS resources in your environment.

 Know Elastic Beanstalk deployment strategies. Understand what deployment strategies
you can use, their differences, and which ones would be best for different use cases and
other resources. Know which strategy offers less downtime and which is best suited for
complex changes.

 Know about Elastic Beanstalk components. Understand all of the components of Elastic
Beanstalk, including applications, environments, versions, confi gurations, and the AWS
resources it launches and with which it integrates. Know how to retain or dispose
of resources as needed.

 Know about Elastic Beanstalk different environment tiers. Know the differences
between the single-instance tier and the web-server environment tier and when to choose
one over the other. Understand the services and features used for both.

 On the test itself, do not get sidetracked with small details about Elastic
Beanstalk. Focus your understanding on how it works as a whole and inter-
acts with other services.

308 Chapter 6 ■ Deployment Strategies

Resources to Review
AWS Elastic Beanstalk Install:

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/
eb-cli3-install.html

AWS Elastic Beanstalk Developer Guide:

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/
Welcome.html

AWS Elastic Beanstalk Concepts:

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/
concepts.html

Using the EB CLI with AWS CodeCommit:

https://docs.aws.amazon.com/elasticbeanstalk/latest/
dg/eb-cli-codecommit.html

EB CLI Command Reference:

https://docs.aws.amazon.com/elasticbeanstalk/latest/
dg/eb3-cmd-commands.html

Deploying AWS Elastic Beanstalk Applications from Docker Containers:

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/
create_deploy_docker.html

Using AWS Elastic Beanstalk with Amazon Relational Database Service:

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/
AWSHowTo.RDS.html

Preconfigured Docker Containers:

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/
create_deploy_dockerpreconfig.html

AWS Elastic Beanstalk Supported Platforms:

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/
concepts.platforms.html

Enhanced Health Reporting and Monitoring:

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/
health-enhanced.html

Exercises 309

Exercises

e x e r C i S e 6 .1

Deploy your Application

In this exercise, you will sign up for an AWS account.

1. Verify that your source code is packaged as a .zip file and is ready to be retrieved
from either your source repository directory or an Amazon S3 bucket.

You can choose a sample application available from the AWS Management Console.

2. Launch the AWS Management Console.

3. To select a region in which to launch the application, select
AWS Elastic Beanstalk ➢ Region.

4. Select AWS Elastic Beanstalk Service.

5. Select Get Started or Create New Application. The Get Started option takes you
through a wizard of guided steps to launch your first application. After this initial
start, the Create New Application dialog box will be displayed for future launches.

6. Select the type of application that you want to deploy.

7. Enter an application name.

8. Select the application platform for your code.

9. For your coding language, select the preconfigured platform.

10. Select Upload your application.

11. Locate the file directory where your .zip file of your code resides or choose the
Amazon S3 bucket with the .zip file and select Upload.

12. Choose Next.

13. To use the architecture with high availability, select High Availability.

14. Modify the configurations for your architecture.

15. Select Add databases.

16. Select RDS database.

17. Choose Create App (Application).

You now have successfully deployed an application on Elastic Beanstalk.

310 Chapter 6 ■ Deployment Strategies

e x e r C i S e 6 . 2

Deploy a blue/green Solution

In this exercise, you will deploy a blue/green solution.

1. Sign in to your AWS account.

2. Navigate to your existing AWS Elastic Beanstalk environment and application or
upload the sample.

You can launch a sample application from this location:

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/tutorials.html

3. Clone your environment or launch a new environment with your new version.

4. Deploy the second application version to the new environment. Test that the new
version is running.

5. From the new environment dashboard, select Actions ➢ Swap Environment URLs.

6. Under Select an Environment to Swap, select the current environment name.

7. Choose Swap.

The Elastic Beanstalk service swaps the CNAME records between the two
environments.

8. On the dashboard, under Recent Events, verify the swap.

You have successfully deployed a blue/green solution on AWS Elastic Beanstalk.

e x e r C i S e 6 . 3

Change your environment Configuration on AWS elastic beanstalk

In this exercise, you will change your environment configuration on AWS Elastic
Beanstalk. Use an existing application that is running on Elastic Beanstalk.

1. Sign in to your AWS account.

2. Navigate to your existing AWS Elastic Beanstalk environment and application.

3. Choose Configuration.

4. On the Capacity Configuration tab, choose Modify.

5. Under Auto Scaling Group, select Load balanced.

6. In the Instances row, change Max to 4 and Min to 2.

Exercises 311

7. On the Modify capacity page, choose Save.

8. On the Configuration overview page, choose Apply.

9. On the warning message, choose Confirm.

The environment might take a few minutes to update. After your environment is
updated, verify your changes.

10. Navigate to the Amazon EC2 service dashboard.

11. Choose Load Balancers.

12. Check for the instance-id value that matches your Elastic Beanstalk environment
instance-id value and view the load balancers.

You have successfully changed an environment configuration on AWS Elastic Beanstalk.

e x e r C i S e 6 . 4

update an Application version on AWS elastic beanstalk

In this exercise, you will update an application version on AWS Elastic Beanstalk from the
AWS Management Console.

1. Sign in to your AWS account.

2. Upload a second version your application that matches the configuration for your
current running environment.

If you are using a sample solution application, you can find other versions at the
 following address:

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/GettingStarted
.html#GettingStarted.Walkthrough.DeployApp

3. On the AWS EB applications page, select getting-started-app.

4. Select GettingStartedApp-env.

5. In Overview, choose Upload and Deploy.

6. Select Choose File and upload the next version of your source bundle that you cre-
ated or downloaded.

The console is automatically populated with the version label based on the name
of the archive that you upload. For later deployments, if you use a source bundle with
the same name, you must type a unique version label.

(continued)

312 Chapter 6 ■ Deployment Strategies

e x e r C i S e 6 . 4 (c ont inue d)

7. Choose Deploy. Elastic Beanstalk deploys your application to your Amazon EC2
instances.

You can view the status of the deployment on the environment’s dashboard. The
Environment Health status turns gray while the application version is being updated.
When deployment is complete, Elastic Beanstalk executes an application health
check. The status reverts to green when the application responds to the health check.
The environment dashboard shows the new running version as the new version
label. Your new application version is added to the table of application versions.

8. To view the table, select Application Versions.

You have updated an application version on AWS Elastic Beanstalk.

Review Questions 313

Review Questions
1. Which of the following AWS services enables you to automate your build, test, deploy, and

release process every time there is a code change?

A. AWS CodeCommit

B. AWS CodeDeploy

C. AWS CodeBuild

D. AWS CodePipeline

2. Which of the following resources can AWS Elastic Beanstalk use to create a web server
environment? (Select FOUR.)

A. Amazon Cognito User Pool

B. AWS Serverless Application Model (AWS SAM) Local

C. Auto Scaling group

D. Amazon Elastic Compute Cloud (Amazon EC2)

E. AWS Lambda

3. Which of the following languages is not supported by AWS Elastic Beanstalk?

A. Java

B. Node.js

C. Objective C

D. Go

4. What does the AWS Elastic Beanstalk service do?

A. Deploys applications and architecture

B. Stores static content

C. Directs user traffic to Amazon Elastic Compute Cloud (Amazon EC2) instances

D. Works with dynamic cloud changes as an IP address

5. Which operating systems does AWS Elastic Beanstalk support? (Select TWO.)

A. Amazon Linux

B. Ubuntu

C. Windows Server

D. Fedora

E. Jetty

314 Chapter 6 ■ Deployment Strategies

6. Which of the following components can AWS Elastic Beanstalk deploy? (Select TWO.)

A. Amazon Elastic Compute Cloud (Amazon EC2) instances with write capabilities to
an Amazon DynamoDB table

B. A worker application using Amazon Simple Queue Service (Amazon SQS)

C. An Amazon Elastic Container Service (Amazon ECS) cluster supporting
multiple containers

D. A mixed fleet of Spot and Reserved Instances with four applications running in each
environment

E. A mixed fleet of Reserved Instances scheduled between 9 a.m. to 5 p.m. and On-
Demand Instances used for processing data workloads when needed randomly

7. Which of the following operations can AWS Elastic Beanstalk do? (Select TWO.)

A. Access an Amazon Simple Storage Service (Amazon S3) bucket

B. Connect to an Amazon Relational Database Service (Amazon RDS) database

C. Install agents for Amazon GuardDuty service

D. Create and manage Amazon WorkSpaces

8. Which service can be used to restrict access to AWS Elastic Beanstalk resources?

A. AWS Config

B. Amazon Relational Database Service (Amazon RDS)

C. AWS Identity and Access Management (IAM)

D. Amazon Simple Storage Service (Amazon S3)

9. Which AWS Identity and Access Management (IAM) entities are used when creating an
environment? (Select TWO.)

A. Federated role

B. Service role

C. Instance profile

D. Profile role

E. User name and access keys

10. Which of the following describes how customers are charged for AWS Elastic Beanstalk?

A. A monthly fee based on an hourly rate for use.

B. A one-time upfront cost for each environment running.

C. No additional charges.

D. A fee is charged only when scaling to support traffic changes.

Review Questions 315

11. Which account is billed for user-accessed AWS resources allocated by AWS Elastic
Beanstalk?

A. The account running the services

B. The cross-account able to access the shared services

C. The cross-account with the Amazon Simple Storage Service (Amazon S3) bucket hold-
ing a downloaded copy of the code artifact

D. All accounts involved

12. What can you not do to an Amazon Relational Database Service (Amazon RDS) instance
with AWS Elastic Beanstalk?

A. Create a database connection.

B. Create a supported Oracle edition.

C. Retain a database instance despite the deletion of the environment’s database.

D. Create a snapshot of the existing database (before deletion).

Chapter

7
Deployment as Code

The AWS CerTifieD Developer –
ASSoCiATe exAm TopiCS CovereD in
ThiS ChApTer mAy inCluDe, buT Are
noT limiTeD To, The folloWing:

Domain 1: Deployment

 ✓ 1.1 Deploy written code in AWS using existing CI/CD
pipelines, processes, and patterns.

 ✓ 1.3 Prepare the application deployment package to be
deployed to AWS.

 ✓ 1.4 Deploy serverless applications.

Domain 3: Development with AWS services

 ✓ 3.4 Write code that interacts with AWS services by using
Application Programming Interfaces (APIs),
Software Development Kits (SDKs), and AWS Command
Line Interface (CLI).

AWS® Certified Developer Official Study Guide
By Nick Alteen, Jennifer Fisher, Casey Gerena, Wes Gruver, Asim Jalis,
Heiwad Osman, Marife Pagan, Santosh Patlolla and Michael Roth

 Amazon Web Services, Inc.

Introduction to AWS Code Services
In the previous chapter, you learned about deploying code packages to AWS Elastic
Beanstalk. This is a great way to migrate existing applications to highly available, fault-
tolerant infrastructure. As your experience with Amazon Web Services (AWS) deployment in-
creases over time, you may find a need to customize your deployment workflow further than
what is supported within a single service. AWS provides a number of deployment services
designed for flexibility, empowering customers with complex infrastructure and application
deployment requirements.

This chapter introduces the AWS “Code” services. These services are responsible for
creating the foundation of a repeatable application, infrastructure, and configuration
deployment process. As each service is explained, you will see how they fit into an
“enterprise as code” philosophy. You use this approach with each aspect of an enterprise
to deploy, configure, and maintain over time via versioned code. (This includes the pro-
cess to deploy code.) The primary components of an enterprise as code are application,
infrastructure, and configuration, though you can take advantage of many more, such as
monitoring, compliance, and audit practices.

Continuous Delivery with AWS CodePipeline
The AWS “Code” services lay the foundation to deploy different parts of an enterprise
starting from a source repository. You start with AWS CodePipeline to create a continuous
integration/continuous deployment pipeline (CI/CD) that integrates various sources, tests,
deployments, or other components. AWS CodePipeline implements AWS CodeCommit as a
source in that it acts as the initialization point of your deployment process. AWS CodeBuild
allows you to pull code and packages from various sources to create publishable build
artifacts. Lastly, AWS CodeDeploy allows you to deploy compiled artifacts to infrastructure
in your environment. AWS CodePipeline is not limited to deploying application code; it can
also be used to provision, configure, and manage infrastructure.

In a fully realized enterprise as code, a single commit to a source repository can kick off
processes, such as those shown in Figure 7.1.

Introduction to AWS Code Services 319

f i gu r e 7.1 Branch view

1. Commit Code

Client
AWS

CodeCommit

AWS
CloudFormation

Stack

Instances
AWS

OpsWorks

AWS
CodePipeline

AWS
CodeBuild

AWS
CodeDeploy

3. Configure

4. Deploy Application

2.
Bu

ild
 Ev

iro
nm

en
t

Benefits of Continuous Delivery
Organizations can realize a number of benefits from automating the process of testing and
preparing software changes. First, there is reduced manual effort required to ensure code
changes are tested prior to release. By automating tests, they are consistently run against
every change made to a code repository.

Second, developers are no longer tasked with completing steps other than checking in
code changes. After the change has been pushed to a source repository, initiation of the
build/test process automatically begins. This allows the developers to focus on what they
do best: develop software.

Third, the fact that changes are tested immediately after check-in ensures that more bugs
are caught earlier in the development process. If bugs are not caught soon, the effort and
cost to remediate the errors increases the further they make it in the release process.

Lastly, continuous delivery ensures that quality changes are delivered faster. This
increases quality with decreased time to market. So, before you start considering storage
options, take time to evaluate your data and decide which of these dimensions your data
falls under. This will help you decide what type of storage is best for your data.

320 Chapter 7 ■ Deployment as Code

Using AWS CodePipeline to
Automate Deployments
AWS CodePipeline is a continuous integration and continuous delivery service for fast and
reliable application and infrastructure updates. AWS CodePipeline builds, tests, and deploys
your code every time there is a code change, based on the release process models you define.
This enables you to deliver features and updates rapidly and reliably. You can easily build
an end-to-end solution with prebuilt plugins for popular third-party services like GitHub,
or you can integrate your own custom plugins into any stage of your release process. With
AWS CodePipeline, you pay only for what you use. There are no up-front fees or long-term
commitments.

What Is AWS CodePipeline?
AWS CodePipeline is the underpinning of CI/CD processes in AWS. Because you define your
delivery workflow as a set of stages and actions, multiple changes can be run simultaneously
through the same set of processing steps every time. In Figure 7.2, the developer team is
responsible for committing changes to a source repository. AWS CodePipeline automatically
detects and moves into the source stage. The code change (revision) passes to the build stage,
where changes are built into a package or product ready for deployment. A staging deploy-
ment is done where users can manually review the functionality that the changes introduce
or modify. Before final production release, an authorized user provides a manual approval.
After production release, further code changes can reliably pass through the same pipeline.

f i gu r e 7. 2 AWS CodePipeline workflow

AWS CodePipeline

Source

Developers
commit
changes

Changes,
Updates,

Fixes

Ideas,
Requests,

Bugs

Build

Changes
are built

Staging

Code is
deployed and

tested

Manual
Approval

Production

Code is
deployed to

public servers

Developers Customers

Using AWS CodePipeline to Automate Deployments 321

AWS CodePipeline provides a number of built-in integrations to other AWS services,
such as AWS CloudFormation, AWS CodeBuild, AWS CodeCommit, AWS CodeDeploy,
Amazon Elastic Container Service (ECS), Elastic Beanstalk, AWS Lambda, AWS OpsWorks
Stacks, and Amazon Simple Storage Service (Amazon S3). Some partner tools include
GitHub (https://github.com) and Jenkins (https://jenkins.io). Customers also have
the ability to create their own integrations, which provides a great degree of flexibility.

You define workflow steps through a visual editor within the AWS Management
Console or via a JavaScript Object Notation (JSON) structure for use in the AWS CLI or
AWS SDKs. Access to create and manage release workflows is controlled by AWS Identity
and Access Management (IAM). You can grant users fine-grained permissions, controlling
what actions they can perform and on which workflows.

AWS CodePipeline provides a dashboard where you can review real-time progress of
revisions, attempt to retry failed actions, and review version information about revisions
that pass through the pipeline.

AWS CodePipeline Concepts
There are a number of different components that make up AWS CodePipeline and the work-
flows (pipelines) created by customers. Figure 7.3 displays the AWS CodePipeline concepts.

f i gu r e 7. 3 Pipeline structure

Pipeline

Stage

Action Action

Stage

Action Action

Action

Transition

322 Chapter 7 ■ Deployment as Code

 Pipeline
 A pipeline is the overall workfl ow that defi nes what transformations software changes will
undergo.

 You cannot change the name of a pipeline. If you would like to change the
name, you must create a new pipeline.

 Revision
 A revision is the work item that passes through a pipeline. It can be a change to your source
code or data stored in AWS CodeCommit or GitHub or a change to the version of an archive
in Amazon S3. A pipeline can have multiple revisions fl owing through it at the same time,
but a single stage can process one revision at a time. A revision is immediately picked up by
a source action when a change is detected in the source itself (such as a commit to an AWS
CodeCommit repository).

 If you use Amazon S3 as a source action, you must enable versioning on
the bucket.

 Details of the most recent revision to pass through a stage are kept within the stage itself
and are accessible from the console or AWS CLI. To see the last revision that was passed
through a source stage, for example, you can select the revision details at the bottom of the
stage, as shown in Figure 7.4 .

 f i gu r e 7. 4 Source stage

 Depending on the source type (Amazon S3, AWS CodeCommit, or GitHub), additional
information will be accessible from the revision details pane (such as a link to the commit
on https://github.com), as shown in Figure 7.5 .

Using AWS CodePipeline to Automate Deployments 323

 f i gu r e 7.5 Revision details

 Stage
 A stage is a group of one or more actions. Each stage must have a unique name. Should any
one action in a stage fail, the entire stage fails for this revision.

 Action
 An action defi nes the work to perform on the revision. You can confi gure pipeline actions
to run in series or in parallel. If all actions in a stage complete successfully for a revision, it
passes to the next stage in the pipeline. However, if one action fails in the stage, the revision
will not pass further through the pipeline. At this point, the stage that contains the failed
action can be retried for the same revision. Otherwise, a new revision is able to pass through
the stage.

A pipeline must have two or more stages. The first stage includes one or
more source actions only. Only the first stage may include source actions.

 Every action in the same stage must have a unique name.

 Source
 The source action defi nes the location where you store and update source fi les. Modifi cations
to fi les in a source repository or archive trigger deployments to a pipeline. AWS CodePipeline
supports these sources for your pipeline:

 ■ Amazon S3

 ■ AWS CodeCommit

 ■ GitHub

324 Chapter 7 ■ Deployment as Code

A single pipeline can contain multiple source actions. If a change is
detected in one of the sources, all source actions will be invoked.

 To use GitHub as a source provider for AWS CodePipeline, you must authenticate to
GitHub when you create a pipeline. You provide GitHub credentials to authorize AWS
CodePipeline to connect to GitHub to list and view repositories accessible by the authenticat-
ing account. For this link, AWS recommends that you create a service account user so that the
lifecycle of personal accounts is not tied to the link between AWS CodePipeline and GitHub.

 After you authenticate GitHub, a link is created between AWS CodePipeline for this
AWS region and GitHub. This allows IAM users to list repositories and branches accessible
by the authenticated GitHub user.

 Build
 You use a build action to defi ne tasks such as compiling source code, running unit tests,
and performing other tasks that produce output artifacts for later use in your pipeline. For
example, you can use a build stage to import large assets that are not part of a source bundle
into the artifact to deploy it to Amazon Elastic Compute Cloud (Amazon EC2) instances.
AWS CodePipeline supports the integrations for the following build actions:

 ■ AWS CodeBuild

 ■ CloudBees

 ■ Jenkins

 ■ Solano CI

 ■ TeamCity

 Test
 You can use test actions to run various tests against source and compiled code, such as
lint or syntax tests on source code, and unit tests on compiled, running applications.
AWS CodePipeline supports the following test integrations:

 ■ AWS CodeBuild

 ■ BlazeMeter

 ■ Ghost Inspector

 ■ Hewlett Packard Enterprise (HPE) StormRunner Load

 ■ Nouvola

 ■ Runscope

Using AWS CodePipeline to Automate Deployments 325

 Deploy
 The deploy action is responsible for taking compiled or prepared assets and installing them
on instances, on-premises servers, serverless functions, or deploying and updating infrastruc-
ture using AWS CloudFormation templates. The following services are supported as deploy
actions:

 ■ AWS CloudFormation

 ■ AWS CodeDeploy

 ■ Amazon Elastic Container Service

 ■ AWS Elastic Beanstalk

 ■ OpsWorks Stacks

 ■ Xebia Labs

 Approval
 An approval action is a manual gate that controls whether a revision can proceed to the next
stage in a pipeline. Further progress by a revision is halted until a manual approval by an
IAM user or IAM role occurs.

 Specifically, the codepipeline:PutApprovalResult action must be
included in the IAM policy.

 Upon approval, AWS CodePipeline approves the revision to proceed to the next stage in
the pipeline. However, if the revision is not approved (rejected or the approval expires), the
change halts and will stop progress through the pipeline. The purpose of this action is to
allow manual review of the code or other quality assurance tasks prior to moving further
down the pipeline.

 Approval actions cannot occur within source stages.

 You must approve actions manually within seven days; otherwise, AWS CodePipeline
rejects the code. When an approval action rejects, the outcome is equivalent to when the
stage fails. You can retire the action, which initiates the approval process again. Approval
actions provide several options that you can use to provide additional information about
what you choose to approve.

 Publish approval notifications Amazon Simple Notifi cation Service (Amazon SNS) sends
notices to one or more targets that approval is pending.

326 Chapter 7 ■ Deployment as Code

Specify a Universal Resource Locator (URL) for review You can include a URL in the
approval action notifi cation, for example, to review a website published to a fl eet of test
instances.

 Enter comments for approvers You can add additional comments in the notifi cations for
the reviewer’s reference.

 Invoke
 You can customize the invoke action within AWS CodePipeline if you leverage the power
and fl exibility of AWS Lambda. Invoke actions execute AWS Lambda functions, which al-
lows arbitrary code to be run as part of the pipeline execution. Uses for custom actions in
your pipeline can include the following:

 ■ Backing up data volumes, Amazon S3 buckets, or databases

 ■ Interacting with third-party products, such as posting messages to Slack channels

 ■ Running through test interactions with deployed web applications, such as executing a
test transaction on a shopping site

 ■ Updating IAM Roles to allow permissions to newly created resources

 When you deploy changes to multiple AWS Elastic Beanstalk environ-
ments, for example, you can use AWS Lambda to invoke a stage to swap
the environment CNAMEs (SwapEnvironmentCNAMEs). This effectively
implements blue/green deployments via AWS CodePipeline.

 Artifact
Artifacts are actions that act on a fi le or set of fi les. Artifacts can pass between actions and
stages in a pipeline to provide a fi nal result or version of the fi les. For example, an artifact
that passes from a build action would deploy to Amazon EC2 during a deploy action.

 Multiple actions in a single pipeline cannot output artifacts with the
same name.

 Every stage makes use of the Amazon S3 artifact bucket that you defi ne when you cre-
ate the pipeline. Depending on the type of action(s) in the stage, AWS CodePipeline will
package the output artifact. For example, the output artifact of a source action would be an
archive (.zip) containing the repository contents, which would then act as the input artifact
to a build action.

 For an artifact to transition between stages successfully, you must provide unique input
and output artifact names. In Figure 7.6 , the output artifact name for the source action
must match the input artifact for the corresponding build action.

Using AWS CodePipeline to Automate Deployments 327

f i gu r e 7.6 Artifact transition

Code changes trigger
pipelines to run

Applications deploy to
instances in the AWS

cloud; container-
based applications

deploy to services in
the AWS cloud

Source output artifacts (.zip) Bu
ild

 in
pu

t a
rti

fa
ct

s
(.z

ip
)

Stages

SOURCE

Runs source
action with

source provider

BUILD

Runs build
action with

build provider

STAGING
Runs deploy
action with
deployment

provider

Build output artifacts (.zip) De
pl

oy
 in

pu
t a

rti
fa

ct
s

(.z
ip

)

Amazon S3 Artifact Bucket

Transition
Transitions connect stages in a pipeline and define which stages should transition to one
another. When all actions in a stage complete successfully, the revision passes to the next
stage(s) in the pipeline.

You can manually disable transitions, which stops all revisions in the pipeline once they
complete the preceding stage (successfully or unsuccessfully). Once you enable the transi-
tion again, the most recent successful revision resumes. Other previous successful revisions
will not resume through the pipeline at this time. This concept also applies to stages that
are not yet available by the time the next revision completes. If more than one revision com-
pletes while the next stage is unavailable, they will be batched. This means that the most
current revision will continue through the pipeline once the next stage becomes available.

Managing Approval Actions
Approval actions halt further progress through a pipeline until an authorized IAM user or
IAM rule approves the transition. You can use approvals to review changes manually before
final release into production, or as a code review step.

Figure 7.7 shows a pipeline with three stages: Source, Staging, and LambdaStage. The
Source stage contains a source action referencing an Amazon S3 bucket. The source action
has already completed and passed the source artifact to Staging. In Staging, the deploy
action deploys the source artifact to Amazon EC2 with AWS CodeDeploy. If this action
completes successfully, the LambdaStage stage begins, which also deploys to Amazon EC2
via AWS CodeDeploy.

328 Chapter 7 ■ Deployment as Code

f i gu r e 7.7 Full pipeline

AWS CodePipeline Service Limits
Table 7.1 lists the AWS CodePipeline service limits.

Using AWS CodePipeline to Automate Deployments 329

 TA b le 7.1 AWS CodePipeline Service Limits

Limit Value

Pipelines per region US East (N. Virginia) (us-east-1): 40

 US West (Oregon) (us-west-2): 60

 EU (Ireland) (eu-west-1): 60

 Other supported regions: 20

Stages per pipeline Minimum: 2

 Maximum: 10

Actions per stage Minimum: 1

 Maximum: 20

Parallel actions per stage Maximum: 10

Sequential actions per stage Maximum: 10

Maximum artifact size Amazon S3 source: 2 GB

 AWS CodeCommit source: 1 GB

 GitHub source: 1 GB

 When you deploy to AWS CloudFormation, the maximum artifact size is
256 MB.

 AWS CodePipeline Tasks
 The remainder of this section will focus on the tasks you need to build and execute a simple
pipeline and how to outline the requirements to build cross-account pipelines. This concept
is particularly important for organizations that have multiple AWS accounts, especially when
you separate environments across accounts (such as Account A for development, Account B
for Quality Assurance [QA], and Account C for production), as AWS CodePipeline will need
access to resources in each account to automate deployments successfully.

 Before you start the next steps, make sure that you have an IAM user with
an access key and secret access key and that the user has sufficient AWS
CodePipeline permissions.

330 Chapter 7 ■ Deployment as Code

 Create an AWS CodePipeline
 It is best to name your pipeline something meaningful, such as Dev_S3_Bucket. After you
select a source provider (Amazon S3, AWS CodeCommit, or GitHub), you must enter a full
object path. This corresponds to the .zip archive that will be tracked for changes.

 When you select Amazon S3, AWS CodePipeline creates an Amazon CloudWatch Events
rule, IAM role, and AWS CloudTrail trail. These are the default methods that notify AWS
CodePipeline of changes to the source archive. You can also use AWS CodePipeline to
check regularly for changes. This, however, will provide a slower update experience.

 You select AWS CodeBuild, Jenkins, or Solano CI for a build provider.

 The Jenkins build provider requires you to install the AWS CodePipeline
plugin for Jenkins on the server.

 The Solano CI build provider requires authentication to GitHub with a valid
user. After authenticating to GitHub, you must authenticate to Solano CI.

 If you do not select a build provider, you must select a deployment provider (if you select a
build provider, the deployment step is optional). This option is useful if you desire the pipeline
execution to be a fi nished build artifact, such as the case with custom media transcoding with
AWS CodeBuild. The available providers for the deployment stage are Amazon ECS, AWS
CloudFormation, AWS CodeDeploy, AWS Elastic Beanstalk, and AWS OpsWorks Stacks.

 AWS Elastic Beanstalk allows customers to automate deployment of application archives
to one or more Amazon EC2 instances. It also handles health checks, load balancing, log
gathering, and other important tasks automatically. Since it requires a bundled application
archive to upload to instances for deployment, it is a natural fi t for AWS CodePipeline,
which provides artifacts as archives. To deploy to AWS Elastic Beanstalk from AWS
CodePipeline, simply provide the application and environment name.

 For deployment to AWS Elastic Beanstalk, the maximum application
archive size is 512 MB. The deployment artifact must not exceed this size,
or the deployment will fail.

 You select a service role for AWS CodePipeline to access AWS resources within your
account. You can select an existing IAM role or create a new role.

 You can only select IAM roles with a trust policy that allows AWS
CodePipeline to assume them.

 Start a Pipeline
 After you create a pipeline, the fi rst stage updates the source repository or archive, and then
the pipeline will automatically begin execution. To rerun the pipeline for the most recent

Using AWS CodePipeline to Automate Deployments 331

revision, select Release Change in the AWS CodePipeline console, or invoke the aws
codepipeline start-pipeline-execution AWS CLI command.

 aws codepipeline start-pipeline-execution --name SamplePipeline

 Retry a Failed Action
 If a pipeline action fails for any reason, you can retry that action on the same revision in the
console or use the aws codepipeline retry-stage-execution AWS CLI command. How-
ever, there are certain situations where a failed action may become ineligible for retries.

 ■ The pipeline itself has changed after the action failed.

 ■ Other actions in the same stage have not completed.

 ■ The retry attempt is already in progress.

 Create a Cross-Account Pipeline
 In some architectures, environments may be spread across two or more AWS accounts. You
can implement a single CI/CD workfl ow with AWS CodePipeline that interacts with resourc-
es in multiple AWS accounts.

 If an organization has separate accounts for development, test, and pro-
duction workloads, you can leverage one pipeline to deploy to resources
in all three. To do so, you must create and shard several components
between accounts.

 A source action of Amazon S3 cannot reference buckets in accounts other
than the pipeline account.

 Pipeline Account Steps

 In the following steps, the account that contains the pipeline will be the pipeline account .
The account to deploy resources will be the target account .

 1. Create an AWS Key Management Service (AWS KMS) key in the pipeline account, and
apply it to the pipeline. This key encrypts artifacts that pass between stages, and you
configure it to allow access to the target account in a later step. After you create the
AWS KMS key, you apply a key policy that allows access to the key by both the AWS
CodePipeline service role in the pipeline account and the Amazon Resource Name
(ARN) of the target account.

 2. Apply a bucket policy to the Amazon S3 bucket for the pipeline. This policy must grant
access to the bucket by the target account.

 3. Create a policy that allows the pipeline account to assume a role in the target account.
You attach this policy to the AWS CodePipeline service role.

332 Chapter 7 ■ Deployment as Code

 Target Account Steps

 If you deploy revisions to Amazon EC2 instances (as with AWS CodeDeploy),
you apply a policy to the instance role that allows access to the Amazon
S3 bucket that the AWS CodePipeline uses in the pipeline account. Addi-
tionally, the instance role must also have a policy that allows access to the
AWS KMS key.

 1. Create an IAM role that contains a trust relationship policy that allows the pipeline
account to assume the role.

 2. Create an IAM policy that allows access to deploy to the pipeline’s resources. Attach
this policy to the IAM role.

 3. Create an IAM policy that allows access to the Amazon S3 bucket in the pipeline
account, and attach it to the IAM role. After completing the previous steps, revisions
that pass through the pipeline account will be accessible by the target account.

 Using AWS CodeCommit
as a Source Repository
AWS CodeCommit is a fully managed source control service that makes it easy for compa-
nies to host secure and highly scalable private Git repositories. AWS CodeCommit eliminates
the need to operate your own source control system or worry about scaling its infrastructure.
You can use AWS CodeCommit to store anything securely, from source code to binaries, and
it works seamlessly with your existing Git tools.

 What Is AWS CodeCommit?
 Before any activities can occur to deploy applications, you must fi rst have a location where
you can store and version application code in a reliable fashion. AWS CodeCommit is a
cloud-based, highly available, and redundant version control service. AWS CodeCommit
leverages the Git framework, and it is fully compatible with existing tooling. There are a
number of benefi ts to this service, such as the following:

 ■ Automatic encryption in-transit and at rest.

 ■ Scaling to handle rapid release cycles and large repositories.

 ■ Access control to the repository using IAM users, IAM roles, and IAM policies.

 ■ Hypertext Transfer Protocol Secure (HTTPS) and Secure Shell (SSH) connectivity.

Using AWS CodeCommit as a Source Repository 333

 However, the biggest benefi t of AWS CodeCommit is built-in integration with multiple
other AWS services, like AWS CodePipeline. With these integrations, AWS CodeCommit
acts as the initial step to automate application code releases.

 AWS CodeCommit Concepts
 This section details the concepts behind AWS CodeCommit.

 Credentials
 When you interact with AWS, you specify your AWS security credentials to verify who you
are and whether you have permission to access the resources that you request. AWS uses the
security credentials to authenticate and authorize your requests.

 HTTPS

 HTTPS connectivity to a Git-based repository requires a username and password, which
pass to the repository as part of a request. To use AWS CodeCommit with HTTPS creden-
tials, you must fi rst add them to an IAM user with suffi cient permissions to interact with
the repository. To create Git credentials for your IAM user, you open the IAM console,
and select the user who will need to authenticate to the AWS CodeCommit repository
via HTTPS.

 AWS generates security credentials for the usernames and passwords, and they cannot
be set to custom values.

 Make sure to download or copy the credentials because the password will
be lost after you close the success window.

 After you confi gure your Git CLI/application to use the repository’s HTTPS endpoint
and the username/password, you will have access to the AWS CodeCommit repository.

 SSH

 With SSH authentication, there is no need to install the AWS CLI to connect to your reposi-
tory. However, you perform some additional confi guration tasks.

 ■ Your IAM user must have the ability to manage their own SSH keys. To accomplish
this, you add the IAMUserSSHKeys managed policy to the account.

 ■ Scaling to handle rapid release cycles and large repositories.

 ■ For Windows users, install a bash emulator, such as Git Bash.

 To confi gure SSH authentication to AWS CodeCommit repositories, follow these steps:

 1. In the IAM console, select the user account you want to modify.

 2. Upload the public SSH key on the Security Credentials tab.

 3. Copy the SSH key identity (ID). This follows the form APKAEIGHANK3EXAMPLE .

334 Chapter 7 ■ Deployment as Code

 4. Update the ~/.ssh/config file on your workstation to include these contents:

 Host git-codecommit.*.amazonaws.com
 User YOUR_SSH_KEY_ID
 IdentityFile YOUR_PRIVATE_KEY_FILE

 5. To verify the configuration, test a simple SSH connection to the AWS CodeCommit
endpoint, as shown here:

 # Format: ssh git-codecommit.[REGION_CODE].amazonaws.com
 ssh git-codecommit.us-east-1.amazonaws.com

 Use the Credential Helper

 The previous HTTPS and SSH authentication methods both rely on additional credentials
aside from IAM access/secret keys. It is also possible to authenticate to AWS CodeCom-
mit with IAM credentials and the AWS CodeCommit credential helper . The credential
helper translates IAM credentials to those that AWS CodeCommit can use to perform Git
actions, such as to clone a repository or merge a pull request. To confi gure the credential
helper on your workstation, do the following:

 1. Install and configure the AWS CLI.

 2. Install Git.

 3. Configure Git to leverage the credential helper from the AWS CLI with these commands:

 git config --global \
 credential.helper '!aws codecommit credential-helper $@'

 git config --global credential.UseHttpPath true

 Once complete, HTTPS interactions with the AWS CodeCommit repository should work
as expected.

 The credential helper authentication method is the only one available for
root and federated IAM Users.

 Development Tools and Integrated Development Environment
 AWS CodeCommit integrates automatically with any development tools that support IAM
credentials. Additionally, after you set up HTTPS Git credentials, you are able to use any
tools that support this authentication mechanism instead. Examples of supported integrated
development environment (IDE) include the following:

 ■ AWS Cloud9

 ■ Eclipse

 ■ IntelliJ

 ■ Visual Studio

Using AWS CodeCommit as a Source Repository 335

 Repository
 A repository (repo) is the foundation of AWS CodeCommit. This is the location where you
store source code fi les, track revisions, and merge contributions (commits). When you cre-
ate a repository, it will contain an empty master branch by default. To confi gure additional
branches and commit code changes, you connect the repository to a local workstation where
changes can be made before you upload or push them.

 Repository names must be unique within an individual AWS account;
however, you can change them without re-creating the repository. When
you change a repository name, you need to update any local copies of the
repository to have their remote point to the new HTTPS or SSH URL with
the git remote add command.

 Repository Notifications

 AWS CodeCommit supports triggers via Amazon SNS, which you can use to leverage other
AWS services for post-commit actions, such as fi ring a webhook with AWS Lambda after a
commit is pushed to a development branch. To implement this, AWS CodeCommit uses AWS
CloudWatch Events. You create event rules that trigger for each of the event types that you
select in AWS CodeCommit. Event types that will fi re notifi cations include the following:

 ■ Pull Request Update Events

 ■ Create a Pull Request

 ■ Close a Pull Request

 ■ Update Code in a Pull Request

 ■ Title or Description Changes

 ■ Pull Request Comment Events

 ■ Commit Comment Events

 ■ Comments on Code Changes

 ■ Comments on Files in a Commit

 ■ Comments on the Commit Itself

 If you change the name of the repository through the AWS CLI or SDK,
the notifications cease to function. (This behavior is not present when you
change names in the AWS Management Console.) To restore lost notifica-
tions, delete the settings and configure them a second time.

336 Chapter 7 ■ Deployment as Code

Repository Triggers

Repository triggers are not the same as notifications, as the events that fire each differ
greatly. Use repository triggers to send notifications to Amazon SNS or AWS Lambda during
these events:

 ■ Push to Existing Branch

 ■ Create a Branch or Tag

 ■ Delete a Branch or Tag

Triggers are similar in functionality to webhooks used by other Git providers, like
GitHub. You can use triggers to perform automated tasks such as to start external builds,
to notify administrators of code pushes, or to perform unit tests. There are some restric-
tions on how to configure triggers.

 ■ The trigger destination, Amazon SNS or AWS Lambda, must exist in the same AWS
region as the repository.

 ■ If the destination is Amazon SNS in another AWS account, the Amazon SNS topic
must have a policy that allows notifications from the account that contains the
repository.

Cross-Account Access to a Different Account
In some situations, the repository that contains the application source code may be located
in a separate AWS account from the IAM user/role attempting to access it. In these situa-
tions, there are several steps that you must perform in the repository account and the user
account.

Repository Account Actions

1. Create a policy for access to the repository. This policy should allow users in the user
account to access one or more specific repositories, as well as (optionally) to view a list
of all repositories.

2. Attach this policy to a role in the same account, and allow users in the user account to
assume this role.

User Account Actions

1. Create an IAM user or IAM group. This user or group will be able to access the reposi-
tory after the next step.

2. Assign a policy to the user or group that allows them to assume the role created in the
repository account as part of the previous steps.

Once these steps are complete, the IAM user will first need to assume the cross-account
role before you attempt to clone or otherwise access the repository. You adjust the AWS

Using AWS CodeCommit as a Source Repository 337

credentials file ~/.aws/config (Linux/macOS) or drive:\Users\username\.aws\config
(Windows). A profile will be added to this config file that specifies the cross-account role to
assume.

[profile MyCrossAccountProfile]
region = US East (Ohio)
role_arn=arn:aws:iam:111122223333:role/MyCrossAccountContributorRole
source_profile=default

Lastly, you need to modify the AWS CLI credential helper so that you use
MyCrossAccountProfile.

git config --global credential.helper \
 '!aws codecommit credential-helper --profile MyCrossAccountProfile $@'

From this point, the IAM user in the user account will be able to clone and interact with
the repository in the repository account.

Files
A file is a piece of data that is subject to version control by AWS CodeCommit. AWS
CodeCommit tracks any modifications made to this file on a per-line level. You use the Git
client to push changes in a file to the repository, where it tracks against other changes in
previous commits.

Pull Requests
Pull requests are the primary vehicle on which you review and merge code changes between
branches. Unlike branch merging, pull requests allow multiple users to comment on changes
before they merge with the destination branch. The typical workflow of a pull request is as
follows:

1. Create a new branch off the default branch for the feature or bug fix.

2. Make changes to the branch files, commit, and push to the remote repository.

3. Create a pull request for the changes to integrate them with the default branch, as
shown in Figure 7.8.

4. Other users can review the changes in the pull request and provide comments, as
shown in Figure 7.9.

5. You can push any additional changes from user feedback to the same branch to include
them in the pull request.

6. Once all reviewers provide approval, the pull request merges into the default branch
and closes. You can close pull requests when you merge the branches locally or when
you close the request via the AWS CodeCommit console or the AWS CLI.

338 Chapter 7 ■ Deployment as Code

f i gu r e 7. 8 Creating a pull request

f i gu r e 7. 9 Reviewing changes

Using AWS CodeCommit as a Source Repository 339

Commits
Commits are point-in-time changes to contents of files in a repository. A commit is not a new
copy of the file, but it is instead a way to track changes in the line(s) in a file, by whom, and
when. When you push a commit to the repository, AWS CodeCommit tracks the following
file changes:

 ■ Author Name

 ■ Author Email

 ■ Commit Message

Commits to a repository in AWS CodeCommit can be made in one of two ways. The
most common workflow is to use the Git CLI and update the repository using git push.
The AWS CLI supports the aws codecommit put-file action, which allows you to
update a file on the repository with a local copy and specify a branch, parent commit,
and message.

aws codecommit put-file --repository-name MyDemoRepo \
 --branch-name feature-branch \
 --file-content file://MyDirectory/ExampleFile.txt \
 --file-path /solutions/ExampleFile.txt \
 --parent-commit-id 11112222EXAMPLE \
 --name "Developer" \
 --email developer@myexamplesite.com \
 --commit-message "Fixed a bug”

The AWS CodeCommit console supports viewing differences between commits. To view
differences between a commit and its parent, open the Commits pane on the repository
dashboard and then select the commit ID, as shown in Figure 7.10.

f i gu r e 7.10 Selecting the commit ID

340 Chapter 7 ■ Deployment as Code

After doing so, you can view changes in this commit either side by side (Split view) or in
the same pane (Unified view), as shown in Figure 7.11.

f i gu r e 7.11 Split view

You can also view differences between arbitrary commit IDs in the same repository. In
the Compare window of the repository dashboard, you can choose two commit IDs for
comparison, as shown in Figure 7.12.

f i gu r e 7.12 Select and compare

After you select two commit IDs, click the Compare button. This will provide a similar
split or unified view of changes.

Using AWS CodeCommit as a Source Repository 341

 Branches
Branches are ways to separate and organize groups of commits. This allows developers to
organize work in a meaningful fashion, separating changes into logical groups based on
the feature or bug-fi x being developed. For example, as you can see in Figure 7.13 , a single
repository may have branches for each environment: dev, test, and prod. Or, individual fea-
tures and bug fi xes can have separate branches.

 f i gu r e 7.13 Branch view

 A default branch is the base when you clone the repository. When you clone a repository
to your local machine, the default branch (such as “master” or “prod”) clones. You cannot
delete the default branch until a new branch is set as default, or you will delete the entire
repository.

 You can change the default branch for a repository, but first the new
default branch must exist in the remote repository.

 Migrate to AWS CodeCommit
 This section details how to migrate a Git repository, unversioned fi les, or another repository
type, and it is important when you migrate a high volume of or large fi les.

 Migrate a Git Repository

 You use an AWS CodeCommit to migrate from a Git repository, as shown in Figure 7.14 .

342 Chapter 7 ■ Deployment as Code

f i gu r e 7.14 Migrating from a Git repository

Local
Computer

AWS Console: Create
repository

1

Git Client: Push project to
new repository

AWS
CodeCommit Git Server

2

3

Git Client: Clone project

The first step is to create the AWS CodeCommit repository (via either the AWS
Management Console or the AWS CLI or AWS SDK). After you create the repository, clone
the project to a local workstation. To push this repository to AWS CodeCommit, set the
repository’s remote to the AWS CodeCommit repository’s HTTPS or SSH URL.

git push \
 https://git-codecommit.us-east-2.amazonaws.com/v1/repos/MyClonedRepository \
 --all

If you need to push any tags to the new repository, run the following code:

git push \
 https://git-codecommit.us-east-2.amazonaws.com/v1/repos/MyClonedRepository \
 --tags

Migrate Unversioned Content

You can migrate any local or unversioned content to AWS CodeCommit in a similar manner,
as if the content exists in another Git-based repository service. The primary difference is
that you set up a new repository instead of cloning an existing one to migrate. Refer to
Figure 7.15.

First create the AWS CodeCommit repository (either via the AWS Management Console
or via the AWS CLI or AWS SDK). Next, create a local directory with the files to migrate,
and run git init from the command line or terminal in that directory. This will initial-
ize the directory to work with Git so that any file changes are tracked. After the directory
initializes, run git add . to add all current files to Git. Run git commit -m 'Initial
Commit' to generate a commit. Lastly, push the commit to AWS CodeCommit with git
push https://git-codecommit.us-east-2.amazonaws.com/v1/repos/MyFirstRepo --all.

Using AWS CodeCommit as a Source Repository 343

f i gu r e 7.15 Migrating unversioned content

Local
Computer

AWS Management Console: Create repository

Git Client: Push project to new
repository

Git Client: Git init

AWS
CodeCommit

Migrate Incrementally

For large repositories, you can migrate in incremental steps and push many smaller files.
This prevents any network issues that may cause the entire push to fail. If any smaller
commit fails, it is a trivial matter to restart it when you compare it to a single, mono-
lithic commit.

Additionally, when you push large repositories, AWS recommends that you use SSH over
HTTPS, as there is a chance that the HTTPS connection may terminate because of various
network or firewall issues.

AWS CodeCommit Service Limits
AWS CodeCommit enforces the service limits in Table 7.2. An asterisk (*) indicates limits
that require you to submit a request to AWS Support to increase the limits.

TA b le 7. 2 AWS CodeCommit Service Limits

Limit Value

Repositories per account* 1,000

References per push 4,000

Triggers per repository 10

Git blob size 2 GB

344 Chapter 7 ■ Deployment as Code

Using AWS CodeCommit with AWS CodePipeline
You can use AWS CodeCommit as a source action in your pipeline. This allows you to utilize
a highly available, redundant version control system as the initialization point of your CI/CD
pipeline.

When you select AWS CodeCommit as the source provider, you must provide a
repository name and branch. If you use AWS CodeCommit, it creates an Amazon
CloudWatch Events rule and an IAM role to monitor the repository and branch for
changes, as shown in Figure 7.16.

f i gu r e 7.16 Source location

One issue that can arise is if you store large binary files. Because of the system Git uses
to track file changes, Git creates a new copy of every modification to a binary file within
the repository. Over time, this can cause repositories to grow rapidly in size. Instead of
storing binary files in AWS CodeCommit, add an additional Amazon S3 source action to
the pipeline. If you store large binary files in Amazon S3, you can reduce the overall cost
and development time because of the reduction of time it takes to push/pull commits. Since
Amazon S3 already supports versioning (and requires it for use with AWS CodePipeline),
changes to binary objects will still be tracked so that rollbacks are straightforward.

Using AWS CodeBuild to Create
Build Artifacts
AWS CodeBuild is a fully managed build service that compiles source code, runs tests, and
produces software packages that are ready to deploy. With AWS CodeBuild, you do not need
to provision, manage, and scale your own build servers. AWS CodeBuild scales continuously
and processes multiple builds concurrently, so your builds do not wait in a queue. AWS

Using AWS CodeBuild to Create Build Artifacts 345

CodeBuild has prepackaged build environments, or you can create custom build environ-
ments that use your own build tools. With AWS CodeBuild, AWS charges by the minute for
the compute resources you use.

What Is AWS CodeBuild?
AWS CodeBuild enables you to define the build environment to perform build tasks and the
actual tasks that it will perform. AWS CodeBuild comes with prepackaged build environ-
ments for most common workloads and build tools (Apache Maven, Grade, and others), and
it allows you to create custom environments for any custom tools or processes.

AWS CodePipeline includes built-in integration with AWS CodeBuild, which can act as a
provider for any build or test actions in your pipeline, as shown in Figure 7.17.

f i gu r e 7.17 Using AWS CodeBuild in AWS CodePipeline

AWS CodePipeline

AWS CodeBuild

Source

Build

Test

Deploy

AWS CodeBuild Concepts
AWS CodeBuild initiates build tasks inside a build project, which defines the environmental
settings, build steps to perform, and any output artifacts. The build container’s operating
system, runtime, and build tools make up the build environment.

Build Projects
Build projects define all aspects of a build. This includes the environment in which to per-
form builds, any tools to include in the environment, the actual build steps to perform, and
outputs to save.

346 Chapter 7 ■ Deployment as Code

 Create a Build Project

 When you create a build project, you fi rst select a source provider. AWS CodeBuild supports
AWS CodeCommit, Amazon S3, GitHub, and BitBucket as source providers. When you use
GitHub or BitBucket, a separate authentication fl ow will be invoked. This allows access to
the source repository from AWS CodeBuild. GitHub source repositories also support web-
hooks to trigger builds automatically any time you push a commit to a specifi c repository
and branch.

 After AWS CodeBuild successfully connects to the source repository or location,
you select a build environment . AWS CodeBuild provides preconfigured build environ-
ments for some operating systems, runtimes, and runtime versions, such as Ubuntu
with Java 9.

 Next, you will confi gure the build specifi cation . This can be done in one of two ways.
You can insert build commands in the console or specify a buildspec.yml fi le in your
source code. Both options are valid, but if you use a buildspec.yml fi le, you will see addi-
tional confi guration options.

 If your build creates artifacts you would like to use in later steps of your pipeline/pro-
cess, you can specify output artifacts to save to Amazon S3. Otherwise, you can choose not
to save any artifacts. You will need to specify individual fi lename(s) for AWS CodeBuild to
save on your behalf.

 AWS CodeBuild supports caching, which you can confi gure in the next step. Caching
saves some components of the build environment to reduce the time to create environments
when you submit build jobs.

 Every build project requires an IAM service role that is accessible by AWS CodeBuild.
When you create new projects, you can automatically create a service role that you restrict
to this project only. You can update service roles to work with up to 10 build projects
at a time.

 Lastly, you can confi gure AWS CodeBuild to create build environments with connectiv-
ity to an Amazon Virtual Private Cloud (Amazon VPC) in your account. To do so, specify
the Amazon VPC ID, subnets, and security groups to assign to the build environment. You
can confi gure other settings when you create the build, such as to run the Docker daemon
in privileged mode to build Docker images.

 After you set the build project properties, you can select the compute type (memory and
vCPU settings), any environment variables to pass to the build container, and tags to apply
to the project.

 When you set environment variables, they will be visible in plain text
in the AWS CodeBuild console and AWS CLI or SDK. If there is
sensitive information that you would like to pass to build jobs, consider
using the AWS Systems Manager Parameter Store . This will require
the build project’s IAM role to have permissions to access the
parameter store.

Using AWS CodeBuild to Create Build Artifacts 347

Build Specification (buildspec.yml)

The buildspec.yml file can provide the build specification to your build projects in the
AWS CodeBuild console, the AWS CLI, or the AWS SDK when you create the build project,
or as part of your source repository in a YAML-formatted buildspec.yml file. You can
supply only one build specification to a build project. A build specification’s format is as
follows:

version: 0.2

env:
 variables:
 key: "value"
 parameter-store:
 key: "value"

phases:
 install:
 commands:
 - command
 pre_build:
 commands:
 - command
 build:
 commands:
 - command
 post_build:
 commands:
 - command
artifacts:
 files:
 - location
 discard-paths: yes
 base-directory: location
cache:
 paths:
 - path

Version

AWS supports multiple build specification versions; however, AWS recommends you use the
latest version whenever possible.

348 Chapter 7 ■ Deployment as Code

 Environment Variables (env)

 You can add optional environment variables to build jobs. Any key/value pairs that you pro-
vide in the variables section are available as environment variables in plain text.

 Any environment variables that you define here will overwrite those you
define elsewhere in the build project, such as those in the container itself
or by Docker.

 The parameter-store mapping specifi es parameters to query in AWS Systems Manager
Parameter Store.

 Phases

 The phases mapping specifi es commands to run at each stage of the build job. When you
specify build settings in the AWS CodeBuild console, AWS CLI, or AWS SDK, you are not
able to separate commands into phases . With a build specifi cations fi le, you can separate
commands into phases.

 install Commands to execute during installation of the build environment.

 pre_build Commands to be run before the build begins.

 build Commands to be run during the build.

 post_build Commands to be run after the build completes.

 If a command fails in any stage, subsequent stages will not run.

 Artifacts

 The artifacts mapping specifi es where AWS CodeBuild will place output artifacts, if any.
This is required only if your build job produces actual outputs. For example, unit tests
would not produce output artifacts for later use in a pipeline. The files list specifi es individ-
ual fi les in the build environment that will act as output artifacts. You can specify individual
fi les, directories, or recursive directories. You can use discard-paths and base-directory
to specify a different directory structure to package output artifacts.

 Cache

 If you confi gure caching for the build project, the cache map specifi es which fi les to upload
to Amazon S3 for use in subsequent builds.

Using AWS CodeBuild to Create Build Artifacts 349

Build Project Cache

This example sets the JAVA_HOME and LOGIN_PASSWORD environment variables (the latter
is retrieved from AWS Systems Manager Parameter Store), installs updates in the build
environment, runs a Maven installation, and saves the .jar output to Amazon S3 as
a build artifact. For future builds, the content of the /root/.m2 directory (and any
subdirectories) is cached to Amazon S3.

version: 0.2

env:
 variables:
 JAVA_HOME: "/usr/lib/jvm/java-8-openjdk-amd64"
 parameter-store:
 LOGIN_PASSWORD: "dockerLoginPassword"

phases:
 install:
 commands:
 - echo Entered the install phase...
 - apt-get update -y
 - apt-get install -y maven
 pre_build:
 commands:
 - echo Entered the pre_build phase...
 - docker login –u User –p $LOGIN_PASSWORD
 build:
 commands:
 - echo Entered the build phase...
 - echo Build started on 'date'
 - mvn install
 post_build:
 commands:
 - echo Entered the post_build phase...
 - echo Build completed on 'date'
artifacts:
 files:
 - target/messageUtil-1.0.jar
 discard-paths: yes
cache:
 paths:
 - '/root/.m2/**/*'

350 Chapter 7 ■ Deployment as Code

 Build Environments
 A build environment is a Docker image with a preconfi gured operating system, program-
ming language runtime, and any other tools that AWS CodeBuild uses to perform build
tasks and communicate with the service, along with other metadata for the environment,
such as the compute settings. AWS CodeBuild maintains its own repository of preconfi g-
ured build environments. If these environments do not meet your requirements, you can use
public Docker Hub images. Alternatively, you can use container images in Amazon Elastic
Container Registry (Amazon ECR).

 AWS CodeBuild Environments

 AWS CodeBuild provides build environments for Ubuntu and Amazon Linux operating sys-
tems, and it supports the following:

 ■ Android

 ■ Docker

 ■ Golang

 ■ Java

 ■ Node.js

 ■ PHP

 ■ Python

 ■ Ruby

 ■ .NET Core

 Not all programming languages support both Ubuntu and Amazon Linux
build environments.

 Compute Types

 Table 7.3 lists the memory, virtual central processing unit (vCPU), and disk space confi gura-
tions for build environments.

 TA b le 7. 3 Compute Configurations for Build Environments

Compute Type Memory vCPUs Disk Space

 BUILD_GENERAL1_SMALL 3 GB 2 64 GB

 BUILD_GENERAL1_MEDIUM 7 GB 4 128 GB

 BUILD_GENERAL1_LARGE 15 GB 8 128 GB

Using AWS CodeBuild to Create Build Artifacts 351

 Environment Variables

 AWS CodeBuild provides several environment variables by default, such as AWS_REGION ,
CODEBUILD_BUILD_ID , and HOME .

 When you create your own environment variables, AWS CodeBuild
reserves the CODEBUILD_ prefix.

 Builds
 When you initiate a build, AWS CodeBuild copies the input artifact(s) into the build environ-
ment. AWS CodeBuild uses the build specifi cation to run the build process, which includes
any steps to perform and outputs to provide after the build completes. Build logs are made
available to Amazon CloudWatch Logs for real-time monitoring.

 When you run builds manually in the AWS CodeBuild console, AWS CLI, or AWS SDK,
you have the option to change several properties before you run a build job.

 ■ Source version (Amazon S3)

 ■ Source branch, version, and Git clone depth (AWS CodeCommit, GitHub, and
 Bitbucket)

 ■ Output artifact type, name, or location

 ■ Build timeout

 ■ Environment variables

 AWS CodeBuild Service Limits
 AWS CodeBuild enforces service limits in Table 7.4 . An asterisk (*) indicates that you can
increase limits if you submit a request to AWS Support.

 TA b le 7. 4 AWS CodeBuild Service Limits

Limit Value

Build projects per region per account* 1,000

Build timeout 8 hours

Concurrently running builds* 20

352 Chapter 7 ■ Deployment as Code

Using AWS CodeBuild with AWS CodePipeline
AWS CodePipeline enables you to build jobs for both build and test actions. Both action
types require exactly one input artifact and may return zero or one output artifacts. When
you create a build or test actions in your pipeline with your build projects, the only input
that you require is the build project name. The AWS CodePipeline console also has the
option to create new build projects when you create the action, as shown in Figure 7.18.

f i gu r e 7.18 Build provider

Using AWS CodeDeploy to
Deploy Applications
AWS CodeDeploy is a service that automates software deployments to a variety of compute
services, such as Amazon EC2, AWS Lambda, and instances running on-premises. AWS
CodeDeploy makes it easier for you to release new features rapidly, helps you avoid down-
time through application deployment, and handles the complexity to update your applica-
tions. You can use AWS CodeDeploy to automate software deployments and eliminate the
need for error-prone manual operations. The service scales to match your deployment needs,
from a single AWS Lambda function to thousands of Amazon EC2 instances.

Using AWS CodeDeploy to Deploy Applications 353

What Is AWS CodeDeploy?
AWS CodeDeploy standardizes and automates deployments of any types of content or
configuration to Amazon EC2 instances, on-premises servers, or AWS Lambda functions. Be-
cause of its flexibility, it is not restricted to deploy only application code, and it can perform
various administrative tasks that are part of your deployment process. Additionally, you can
create custom deployment configurations tailored to your specific infrastructure needs.

AWS CodeDeploy and NGINX

You can install and enable NGINX as part of a deployment of configuration files to reverse
proxy instances. The service itself does not involve any changes to your current source
code, and it only requires you to install a lightweight agent on any managed instances or
on-premises servers.

Should deployments fail in your environment, you can configure AWS CodeDeploy with
a predetermined failure tolerance. Once this tolerance is breached, deployment will auto-
matically roll back to the last version that works.

You can automate deployment of AWS CodeDeploy with AWS Lambda functions
through traffic switching. When updates to functions deploy, AWS CodeDeploy will cre-
ate new versions of each updated function and gradually route requests from the previous
version to the updated function. AWS Lambda functions also support custom deployment
configurations, which can specify the rate and percentage of traffic to switch.

AWS CodeDeploy Concepts
When you deploy to Amazon EC2 on-premises instances, a revision occurs.

Revision
A revision is an artifact that contains both application files to deploy and an AppSpec con-
figuration file. Application files can include compiled libraries, configuration files, installa-
tion packages, static media, and other content. The AppSpec file specifies what steps AWS
CodeDeploy will follow when it performs deployments of an individual revision.

A revision must contain any source files and scripts to execute on the target instance
inside a root directory. Within this root directory, the appspec.yml file must exist at the
topmost level and not in any subfolders.

/tmp/ or c:\temp (root folder)
 |--content (subfolder)
 | |--myTextFile.txt
 | |--mySourceFile.rb
 | |--myExecutableFile.exe
 | |--myInstallerFile.msi

354 Chapter 7 ■ Deployment as Code

 | |--myPackage.rpm
 | |--myImageFile.png
 |--scripts (subfolder)
 | |--myShellScript.sh
 | |--myBatchScript.bat
 | |--myPowerShellScript.ps1
 |--appspec.yml

 When you deploy to AWS Lambda, a revision contains only the AppSpec fi le. It con-
tains information about the functions to deploy, as well as the steps to validate that the
deployment was successful.

 In either case, when a code revision is ready to deploy, you package it into an archive fi le
and store it in one of these three repositories:

 ■ Amazon S3

 ■ GitHub

 ■ Bitbucket

 When you use GitHub or Bitbucket, the source code does not need to be a .zip archive,
as AWS CodeDeploy will package the repository contents on your behalf. Amazon S3, how-
ever, requires a .zip archive fi le.

 AWS Lambda deployments support only Amazon S3 buckets as a source
repository.

 Deployments
 A deployment is the process of copying content and executing scripts on instances in your
deployment group. To accomplish this, AWS CodeDeploy performs the tasks outlined in the
AppSpec confi guration fi le. For both Amazon EC2 on-premises instances and AWS Lambda
functions, the deployment succeeds or fails based on whether individual AppSpec tasks
complete successfully . There are two types of deployments supported by AWS CodeDeploy:
in-place and blue/green.

 In-Place Deployments

 In in-place deployments , revisions deploy to new infrastructure instead of an existing one.
After deployment completes successfully, the new infrastructure gradually replaces old code
in a phased rollout. After all traffi c routes to the new infrastructure, you can keep the old
code for review or discard it.

 On-premises instances do not support blue/green deployments.

Using AWS CodeDeploy to Deploy Applications 355

 Blue/Green Deployments

 When you deploy to AWS Lambda functions, blue/green deployments publish new versions
of each function, after which traffi c shifting routes requests to the new function versions ac-
cording to the deployment confi guration that you defi ne.

 Stop Deployments

 You can stop deployments via the AWS CodeDeploy console or AWS CLI. If you stop de-
ployments to Amazon EC2 on-premises instances, this can result in some deployment groups
being left in an undesired deployment state. For example, when you deploy to instances in an
Auto Scaling group, if you stop the deployment, it may result in some instances having dif-
ferent application versions. In situations where this occurs, you can confi gure the application
to roll back to the last valid deployment automatically. To do this, you submit a new deploy-
ment to the instances with the previous revision, and they appear as a new deployment in
the console.

 Some instances that fail the most recent deployment may still have scripts
run or files placed that are part of the failed deployment. If you configure
automatic rollbacks, AWS CodeDeploy will attempt to remove any success-
fully created files.

 Rollbacks

 AWS CodeDeploy achieves automatic rollbacks by redeploying the last working revision to
any instances in the deployment group (this will generate a new deployment ID). If you do
not confi gure automatic rollbacks for the application, you can perform a manual rollback by
redeploying a previous revision as a new deployment. This will accomplish the same result as
an automatic rollback.

 During the rollback process, AWS CodeDeploy will attempt to remove any fi le(s) that
were created on the instance during the failed deployment. A record of the created fi les is
kept in the location on your instances.

 Linux: /opt/codedeploy-agent/deployment-root/deployment-instructions/
[deployment-group-id]-cleanup

 Windows: C:\ProgramData\Amazon\CodeDeploy\deployment-instructions\
[deployment-group-id]-cleanup

 The AWS CodeDeploy agent that runs on the instance will reference this cleanup fi le as
a record of what fi les were created during the last deployment.

 By default, AWS CodeDeploy will not overwrite any files that were not
created as part of a deployment. You can override this setting for new
deployments.

356 Chapter 7 ■ Deployment as Code

 AWS CodeDeploy tracks cleanup fi les; however, script executions are not tracked. Any
confi guration or modifi cation to the instance that is done by scripts run on your instance
cannot be rolled back automatically by AWS CodeDeploy. As an administrator, you will
be responsible for implementing logic in your deployment scripts to ensure that the desired
state is reached during deployments and rollbacks.

 Test Deployments Locally

 If you would like to test whether a revision will successfully deploy to an instance you are
able to access, you can use the codedeploy-local command in the AWS CodeDeploy agent.
This command will search the execution path for an AppSpec fi le and any content to deploy.
If this is found, the agent will attempt a deployment on the instance and provide feedback on
the results. This provides a useful alternative to executing the full workfl ow when you want
simply to validate the deployment package.

 The following example command attempts to perform a local deployment of an archive
fi le located in Amazon S3:

 codedeploy-local --bundle-location s3://mybucket/bundle.tgz --type tgz

 The codedeploy-local command requires the AWS CodeDeploy agent
that you install on the instance or on-premises server where you execute
the command.

 Deployment Group
 A deployment group designates the Amazon EC2 on-premises instances that a revision
deploys. When you deploy to AWS Lambda functions, this specifies what functions will
deploy new versions. Deployment groups also specify alarms that trigger automatic
rollbacks after a specified number or percentage of instances, or functions fail their
deployment.

 For Amazon EC2 on-premises deployments, you can add instances to a deployment
group based on tag name/value pairs or Amazon EC2 Auto Scaling group names. An indi-
vidual application can have one or more deployment groups defi ned. This allows you to
separate groups of instances into environments so that changes can be progressively rolled
out and tested before going to production. You can identify instances by individual tags or
tag groups. If an instance matches one or more tags in a tag group, it is associated with the
deployment group. If you would like to require that an instance match multiple tags, each
tag must be in a separate tag group. A single deployment group supports up to 10 tags in up
to three tag groups.

 In Figure 7.19 , if tags Environment , Region , and Type are present in tag groups 1, 2, and
3 respectively, then instances must have at least one tag in each tag group to identify with
the deployment group.

Using AWS CodeDeploy to Deploy Applications 357

f i gu r e 7.19 Selecting instances with multiple tags

When you create deployment groups, you can also configure the following:

Amazon SNS notifications Any recipients that subscribe to the topic will receive notifica-
tions when deployment events occur. You must create the topic before you configure this
notification, and the AWS CodeDeploy service role must have permission to publish mes-
sages to the topic.

358 Chapter 7 ■ Deployment as Code

Amazon CloudWatch alarms You can configure alarms to trigger cancellation and roll-
back of deployments whenever the metric has passed a certain threshold. For example, you
could configure an alarm to trigger when CPU utilization exceeds a certain percentage for
instances in an AWS Auto Scaling group. If this alarm triggers, the deployment automatical-
ly rolls back. For AWS Lambda deployments, you can configure alarms to monitor function
invocation errors.

Automatic rollbacks You can configure rollbacks to initiate automatically when a deploy-
ment fails or based on Amazon CloudWatch alarms. To test deployments, you can disable
automatic rollbacks when you create a new deployment.

On-Premises Instances

You can host instances for an Amazon EC2 on-premises deployment group in either
an AWS account or your own data center. To configure an on-premises instance to work with
AWS CodeDeploy, you must complete several tasks. Before you begin, you need to ensure
that the instance has the ability to communicate with AWS CodeDeploy service endpoints
over HTTPS (port 443). You will also need to create an IAM user that the instance assumes
and has permissions to interact with AWS CodeDeploy.

1. Install the AWS CLI on the instance.

2. Configure the AWS CLI with an IAM user. Call the aws configure command, and
specify the secret key ID and secret access key of the IAM user.

3. Register the instance with AWS CodeDeploy. Call the aws codedeploy register
AWS CLI command from the on-premises instance. Provide a unique name with the
--instance-name property. When you execute this command, include an IAM user to
associate with the instance and tags to apply.

aws deploy register --instance-name AssetTag12010298EX \
--iam-user-arn arn:aws:iam::8039EXAMPLE:user/CodeDeployUser-OnPrem \
--tags Key=Name,Value=CodeDeloyDemo-OnPrem \
--region us-west-2

4. Register the instance with AWS CodeDeploy. Install the AWS CodeDeploy agent. Run
the aws codedeploy install AWS CLI command. By default, it will install a basic
configuration file with preconfigured settings. If you would like to override this, you
can provide your own configuration file with the --config-file parameter. If you
specify the --override-config parameter, this will override the current configuration
file on the instance.

aws deploy install --override-config \
--config-file /tmp/codedeploy.onpremises.yml \
--region us-west-2

After you complete the previous steps, the instance will be available for deployments to
the deployment group(s).

Using AWS CodeDeploy to Deploy Applications 359

Deploy to Amazon EC2 Auto Scaling Groups

When you deploy to Amazon EC2 Auto Scaling groups, AWS CodeDeploy will automatical-
ly run the latest successful deployment on any new instances created when the group scales
out. If the deployment fails on an instance, it updates to maintain the count of healthy in-
stances. For this reason, AWS does not recommend that you associate the same Auto Scaling
group with multiple deployment groups (for example, you want to deploy multiple applica-
tions to the same Auto Scaling group). If both deployment groups perform a deployment at
roughly the same time and the first deployment fails on the new instance, it terminates by
AWS CodeDeploy. The second deployment, unaware that the instance terminated, will not
fail until the deployment times out (the default timeout value is 1 hour). Instead, you should
combine your application deployments into one or consider the use of multiple Auto Scal-
ing groups with smaller instance types.

Deployment Configuration
You use deployment configurations to drive how quickly Amazon EC2 on-premises instances
update by AWS CodeDeploy. You can configure deployments to deploy to all instances in a
deployment group at once or subgroups of instances at a time, or you can create an entire
new group of instances (blue/green deployment). A deployment configuration also specifies
the fault tolerance of deployments, so you can roll back changes if a specified number or
percentage of instances or functions in your deployment group fail to complete their deploy-
ments and signal success back to AWS CodeDeploy.

Amazon EC2 On-Premises Deployment Configurations
When you deploy to Amazon EC2 on-premises instances, you can configure either in-place
or blue/green deployments.

In-Place deployments These deployments recycle currently running instances and deploy
revisions on existing instances.

Blue/Green deployments These deployments replace currently running instances with sets
of newly created instances.

In both scenarios, you can specify wait times between groups of deployed instances
(batches). Additionally, if you register the deployment group with an elastic load balancer,
newly deployed instances also register with the load balancer and are subject to its health
checks.

The deployment configuration specifies success criteria for deployments, such as the
minimum number of healthy instances that must pass health checks during the deployment
process. This is done to maintain required availability during application updates. AWS
CodeDeploy provides three built-in deployment configurations.

CodeDeployDefault.AllAtOnce

For in-place deployments, AWS CodeDeploy will attempt to deploy to all instances in the
deployment group at the same time. The success criteria for this deployment configuration

360 Chapter 7 ■ Deployment as Code

requires that at least once instance succeed for the deployment to be successful. If all in-
stances fail the deployment, then the deployment itself fails.

For blue/green deployments, AWS CodeDeploy will attempt to deploy to the entire set
of replacement instances at the same time and follows the same success criteria as in-place
deployments. Once deployment to the replacement instances succeeds (at least one instance
deploys successfully), traffic routes to all replacement instances at the same time. The
deployment fails only if all traffic routing to replacement instances fails.

CodeDeployDefault.HalfAtATime

For in-place deployments, up to half of the instances in the deployment group deploy at the
same time (rounded down). Success criteria for this deployment configuration requires that
at least half of the instances (rounded up) deploy successfully.

Blue/green deployments use the same rules for the replacement environment, with the
exception that the deployment will fail if less than half of the instances in the replacement
environment successfully handle rerouted traffic.

CodeDeployDefault.OneAtATime

For in-place and blue/green deployments, this is the most stringent of the built-in deploy-
ment configurations, as it requires all instances to deploy the new application revision
successfully, with the exception of the final instance in the deployment. For deployment
groups with only one instance, the instance must complete successfully for the deploy-
ment to complete.

For blue/green deployments, the same rule applies for traffic routing. If all but the last
instance registers successfully, the deployment is successful (with the exception of
single-instance environments, where it must register without error).

CodeDeployDefault.AllAtOnce

For in-place deployments, AWS CodeDeploy will attempt to deploy to all instances in the
deployment group at the same time. The success criteria for this deployment configuration
requires that at least one instance succeed for the deployment to be successful. If all instances
fail the deployment, then the deployment itself fails.

For blue/green deployments, AWS CodeDeploy will attempt to deploy to the entire set
of replacement instances at the same time and follows the same success criteria as in-place
deployments. Once deployment to the replacement instances succeeds (at least one instance
deploys successfully), traffic routes to all replacement instances at the same time. The
deployment fails only if all traffic routing to replacement instances fails.

CodeDeployDefault.HalfAtATime

For in-place deployments, up to half of the instances in the deployment group deploy at the
same time (rounded down). Success criteria for this deployment configuration requires that
at least half of the instances (rounded up) deploy successfully.

Blue/green deployments use the same rules for the replacement environment, with the
exception that the deployment will fail if less than half of the instances in the replacement
environment successfully handle rerouted traffic.

Using AWS CodeDeploy to Deploy Applications 361

CodeDeployDefault.OneAtATime

This is the most stringent of the built-in deployment configurations, as it requires that all
instances successfully deploy the new application revision (both in-place and blue/green
deployments), with the exception of the final instance in the deployment. For deployment
groups with only one instance, the instance must complete successfully for the deploy-
ment to complete.

For blue/green deployments, the same rule applies for traffic routing. If all but the
last instance registers successfully, the deployment is successful (with the exception of
single-instance environments, where it must register without error).

AWS Lambda Deployment Configurations
AWS CodeDeploy handles updates to AWS Lambda functions differently than to Amazon
EC2 or on-premises instances. When you deploy to AWS Lambda, the deployment configu-
ration specifies the traffic switching policy to follow, which stipulates how quickly to route
requests from the original function versions to the new versions. You can configure AWS
CodeDeploy to deploy instances only in a blue/green fashion. AWS Lambda does not support
in-place deployments. This is because AWS CodeDeploy will deploy updates to new functions.

AWS CodeDeploy supports three methods for handling traffic switching in an AWS
Lambda environment.

Canary

Traffic shifts in two percentage-based increments. The first increment routes to the new
function version, and it is monitored for the number of minutes you define. After this
time period, the remainder of traffic routes to the new version if the initial increment of
request executes.

AWS CodeDeploy provides a number of built-in canary-based deployment configura-
tions, such as CodeDeployDefault.LambdaCanary10Percent15Minutes. If you use this
deployment configuration, 10 percent of traffic shifts in the first increment and is moni-
tored for 15 minutes. After this time period, the 90 percent of traffic that remains shifts to
the new function version. You can create additional configurations as needed.

Linear

Traffic can be shifted in a number of percentage-based increments, with a set number of
minutes between each increment. During the waiting period between each increment, the
requests routed to the new function versions must complete successfully for the deployment
to continue.

AWS CodeDeploy provides a number of built-in linear deployment configurations, such
as CodeDeployDefault.LambdaLinear10PercentEvery1Minute. With this configuration,
10 percent of traffic is routed to the new function version every minute, until all traffic is
routed after 10 minutes.

All-at-Once

All traffic is shifted at once to the new function versions.

362 Chapter 7 ■ Deployment as Code

Application
An application is a logical grouping of a deployment group, revision, and deployment
configuration. This serves as a reference to the entire set of objects needed to complete a
deployment to your instances or functions.

AppSpec File
The AppSpec configuration file is a JSON or YAML file that manages deployments on in-
stances or functions in your environment. The actual format and purpose of an AppSpec file
differs between Amazon EC2/on-premises and AWS Lambda deployments.

Amazon EC2 On-Premises AppSpec

For Amazon EC2 on-premises deployments, the AppSpec file must be YAML formatted
and follow the YAML specifications for spacing and indentation. You place the AppSpec file
(appspec.yml) in the root of the revision’s source code directory structure (it cannot be in a
subfolder).

When you deploy to Amazon EC2 on-premises instances, the AppSpec file defines the
following:

 ■ A mapping of files from the revision and location on the instance

 ■ The permissions of files to deploy

 ■ Scripts to execute throughout the lifecycle of the deployment

The AppSpec file specifies scripts to execute at each stage of the deployment lifecycle.
These scripts must exist in the revision for AWS CodeDeploy to call them successfully;
however, they can call any other scripts, commands, or tools present on the instance. The
AWS CodeDeploy agent uses the hooks section of the AppSpec file to reference which
scripts must execute at specific times in the deployment lifecycle. When the deployment is at
the specified stage (such as ApplicationStop), the AWS CodeDeploy agent will execute any
scripts in that stage in the hooks section of the AppSpec file. All scripts must return an exit
code of 0 to be successful.

For any files to place on the instance, the AWS CodeDeploy agent refers to the files
section of the AppSpec file, where a mapping of files and directories in the revision dictates
where on the instance these files reside and with what permissions. Here’s an example of an
appspec.yml file:

version: 0.0
os: linux
files:
 - source: /
 destination: /var/www/html/WordPress
hooks:
 BeforeInstall:
 - location: scripts/install_dependencies.sh
 timeout: 300
 runas: root

Using AWS CodeDeploy to Deploy Applications 363

 AfterInstall:
 - location: scripts/change_permissions.sh
 timeout: 300
 runas: root
 ApplicationStart:
 - location: scripts/start_server.sh
 - location: scripts/create_test_db.sh
 timeout: 300
 runas: root
 ApplicationStop:
 - location: scripts/stop_server.sh
 timeout: 300
 runas: root

In the previous example, the following events occur during deployment:

 ■ During the install phase of the deployment, all files from the revision (source: /) are
placed on the instance in the /var/www/html/WordPress directory.

 ■ The install_dependencies.sh script (located in the scripts directory of the revision)
executes during the BeforeInstall phase.

 ■ The change_permissions.sh script executes in the AfterInstall phase.

 ■ The start_server.sh and create_test_db.sh scripts execute in the
ApplicationStart phase.

 ■ The stop_server.sh script executes in the ApplicationStop phase.

The high-level structure of an Amazon EC2 on-premises AppSpec file is as follows:

version: 0.0
os: operating-system-name
files:
 source-destination-files-mappings
permissions:
 permissions-specifications
hooks:
 deployment-lifecycle-event-mappings

version Currently the only supported version number is 0.0.

os The os section defines the target operating system of the deployment group. Either
windows or linux (Amazon Linux, Ubuntu, or Red Hat Enterprise Linux) is supported.

files The files section defines the mapping of revision files and their location to deploy
on-instance during the install lifecycle event. This section is not required if no files are being

364 Chapter 7 ■ Deployment as Code

copied from the revision to your instance. The files section supports a list of source/
destination pairs.

 files:
 - source: source-file-location
 destination: destination-file-location

 The source key refers to a fi le or a directory’s local path within the revision (use / for all
fi les in the revision). If source refers to a fi le, the fi le copies to destination , specifi ed as the
fully qualifi ed path on the instance. If source refers to a directory, the directory contents
copy to the instance.

 permissions For any deployed fi les or directories, the permissions section specifi es
the permissions to apply to fi les and directories on the target instance. You can also apply
permissions to fi les on the instance by AWS CodeDeploy using the files directive of the
AppSpec confi guration.

 permissions:
 - object: object-specification
 pattern: pattern-specification
 except: exception-specification
 owner: owner-account-name
 group: group-name
 mode: mode-specification
 acls:
 - acls-specification
 context:
 user: user-specification
 type: type-specification
 range: range-specification
 type:
 - object-type

 Each object specifi cation includes a set of fi les or directories to which the permissions will
apply. You can select fi les based on a pattern expression and ignore them with a comma-
delimited list in the except property. The owner , group , and mode properties correspond to
their Linux equivalents. You can apply access control lists with the acls property, providing
a list of user/group permissions assignments (such as u:ec2-user:rw). The context property
is reserved for SELinux-enabled instances. This property corresponds to a set of context la-
bels to apply to objects. Lastly, you use the type property to specify to which types of objects
(file or directory) the specifi ed permissions will apply.

 Windows instances do not support permissions .

Using AWS CodeDeploy to Deploy Applications 365

hooks The hooks section specifies the scripts to run at each lifecycle event and under what
user context to execute them.

One or more scripts can execute for each lifecycle hook.

ApplicationStop Before the application revision downloads to the instance, this lifecycle
event can stop any running services on the instance that would be affected by the update. It
is important to note that, since the revision has not yet been downloaded, the scripts execute
from the previous revision. Because of this, the ApplicationStop hook does not run on the
first deployment to an instance.

DownloadBundle The AWS CodeDeploy agent uses this lifecycle event to copy application
revision files to a temporary location on the instance.

Linux /opt/codedeploy-agent/deployment-root/[deployment-group-id]/
[deployment-id]/deployment-archive

Windows C:\ProgramData\Amazon\CodeDeploy\[deployment-group-id]\
[deployment-id]\deployment-archive

This event cannot run custom scripts, as it is reserved for the AWS CodeDeploy agent.

BeforeInstall Use this event for any pre-installation tasks, such as to clear log files or to
create backups.

Install This event is reserved for the AWS CodeDeploy agent.

AfterInstall Use this event for any post-installation tasks, such as to modify the
application configuration.

ApplicationStart Use this event to start any services that were stopped during the
 ApplicationStop event.

ValidateService Use this event to verify deployment completed successfully.

If your deployment group is registered with a load balancer, additional lifecycle events
become available. These can be used to control certain behaviors as the instance is regis-
tered or deregistered from the load balancer.

BeforeBlockTraffic Use this event to run tasks before the instance is deregistered from
the load balancer.

BlockTraffic This event is reserved for the AWS CodeDeploy agent.

AfterBlockTraffic Use this event to run tasks after the instance is deregistered from the
load balancer.

BeforeAllowTraffic Similar in concept to BeforeBlockTraffic, this event occurs
before instances register with the load balancer.

AllowTraffic This event is reserved for the AWS CodeDeploy agent.

AfterAllowTraffic Similar in concept to AfterBlockTraffic, this event occurs after
instances register with the load balancer.

366 Chapter 7 ■ Deployment as Code

hooks:
 deployment-lifecycle-event-name:
 - location: script-location
 timeout: timeout-in-seconds
 runas: user-name

In the hooks section, the lifecycle name must match one of the previous event names,
which are not reserved for the AWS CodeDeploy agent. The location property refers to
the relative path in the revision archive where the script is located. You can configure an
optional timeout to limit how long a script can run before it is considered failed. (Note that
this does not stop the script’s execution.) The maximum script duration is 1 hour (3,600
seconds) for each lifecycle event. Lastly, the runas property can specify the user to execute
the script. This user must exist on the instance and cannot require a password.

Figure 7.20 displays lifecycle hooks and their availability for in-place deployments with
and without a load balancer.

f i gu r e 7. 20 Lifecycle hook availability with load balancer

Without Classic load
balancer in deployment

group

With Classic load balancer in
deployment group

Start

BeforeBlockTraffic

AfterBlockTraffic

BlockTraffic

End

ApplicationStop

DownloadBundle

BeforeInstall

AfterInstall

ApplicationStart

ValidateService

BeforeAllowTraffic

AfterAllowTraffic

AllowTraffic

Install

Start

ApplicationStop

BeforeInstall

DownloadBundle

End

Install

AfterInstall

ApplicationStart

ValidateService

Using AWS CodeDeploy to Deploy Applications 367

 Figure 7.21 displays lifecycle hooks and their availability for blue/green deployments.

 f i gu r e 7. 21 Lifecycle hook availability with blue/green deployments

Start

ApplicationStop

BeforeInstall

Replacement environment
instances

Original environment
instances

DownloadBundle

End

Install

AllowTraffic

ApplicationStart

AfterInstall

ValidateService

BeforeAllowTraffic

AfterAllowTrafficBlockTraffic

BeforeBlockTraffic

AfterBlockTraffic

 AWS Lambda AppSpec

 When you deploy to AWS Lambda functions, the AppSpec fi le can be in JSON or YAML
format, and it specifi es the function versions to deploy as well as other functions to execute
for validation testing.

 AWS Lambda deployments do not use the AWS CodeDeploy agent.

368 Chapter 7 ■ Deployment as Code

 The high-level structure of an AWS Lambda deployment AppSpec fi le is as follows:

 version: 0.0
 resources:
 lambda-function-specifications
 hooks:
 deployment-lifecycle-event-mappings

version Currently the only supported version number is 0.0.

 resources The resources section defi nes the AWS Lambda functions to deploy.

 resources:
 - name-of-function-to-deploy:
 type: "AWS::Lambda::Function"
 properties:
 name: name-of-lambda-function-to-deploy
 alias: alias-of-lambda-function-to-deploy
 currentversion: lambda-function-version-traffic-currently-points-to
 targetversion: lambda-function-version-to-shift-traffic-to

 Name each function in the resources list both as the list item name and in the name
property. The alias property specifi es the function alias, which maps from the version
specifi ed in currentversion to the version specifi ed in targetversion after the update
deploys.

hooks The hooks section specifi es the additional AWS Lambda functions to run at specifi c
stages of the deployment lifecycle to validate success. The following lifecycle events support
hooks in AWS Lambda deployments:

 BeforeAllowTraffic For running any tasks prior to traffi c shifting taking place

 AfterAllowTraffic For any tasks after all traffi c shifting has completed

 hooks:
 - BeforeAllowTraffic: BeforeAllowTrafficHookFunctionName
 - AfterAllowTraffic: AfterAllowTrafficHookFunctionName

 Figure 7.22 displays the lifecycle hook availability for AWS Lambda deployments.

 AWS CodeDeploy reserves the Start , AllowTraffic , and End lifecycle
events.

Using AWS CodeDeploy to Deploy Applications 369

f i gu r e 7. 22 Lifecycle hook availability for AWS Lambda deployments

Start

BeforeAllowTraffic

AllowTraffic

AfterAllowTraffic

End

For any functions in the hooks section, the function is responsible for notifying AWS
CodeDeploy of success or failure with the PutLifecycleEventHookExecutionStatus call
API from within your validation function. Here’s an example for Node.js:

CodeDeploy the prepared validation test results.
codedeploy.putLifecycleEventHookExecutionStatus(params, function(err, data) {
 if (err) {
 // Validation failed.
 callback('Validation test failed');
 } else {
 // Validation succeeded.
 callback(null, 'Validation test succeeded');
 }
});

AWS CodeDeploy Agent
The AWS CodeDeploy agent is responsible for driving and validating deployments on
Amazon EC2 on-premises instances. The agent currently supports Amazon Linux (Amazon
EC2 only), Ubuntu Server, Microsoft Windows Server, and Red Hat Enterprise Linux,
and it is available as an open source repository on GitHub (https://github.com/aws/
aws-codedeploy-agent).

370 Chapter 7 ■ Deployment as Code

When the agent installs, a codedeployagent.yml configuration file copies to the instances.
You can use this file to adjust the behavior of the AWS CodeDeploy agent on instances
throughout various deployments. This configuration file is stored in /etc/codedeploy-
agent/conf on Linux instances and C:\ProgramData\Amazon\AWS CodeDeploy on Windows
Server instances.

The most common settings are as follows:

max_revisions Use this to configure how many application revisions to archive on an
instance. If you are experiencing storage limitations on your instances, turn this value down
and release some storage space consumed by the agent.

root_dir Use this to change the default storage location for revisions, scripts, and archives.

verbose Set this to true to enable verbose logging output for debugging purposes.

proxy_url For environments that use an HTTP proxy, this specifies the URL and creden-
tials to authenticate to the proxy and connect to the AWS CodeDeploy service.

AWS CodeDeploy Service Limits
AWS CodeDeploy enforces the service limits, as shown in Table 7.5. An asterisk (*) indicates
limits that you can increase with a request to AWS Support.

TA b le 7.5 AWS CodeDeploy Service Limits

Limit Value

Applications per account per region 100

Allowed revision file types .zip, .tar, .tar, and.gz

Concurrent deployments per deployment group 1

Concurrent deployments per account 100

Maximum deployment lifecycle event duration 3600 seconds

Custom deployment configurations per account 25

Deployment groups per application* 100

Tags per deployment group 10

Auto Scaling groups per deployment group 10

Instances per deployment 500

Summary 371

Using AWS CodeDeploy with AWS CodePipeline
AWS CodeDeploy can integrate automatically with AWS CodePipeline as a deployment
action to deploy changes to Amazon EC2 on-premises instances or AWS Lambda functions.
You can configure applications, deployment groups, and deployments directly in the AWS
CodePipeline console when you create or edit a pipeline, or you can do this ahead of time
with the AWS CodeDeploy console or the AWS CLI or AWS SDK.

After you define the deployment provider, application name, and deployment group in the AWS
CodePipeline console, the pipeline will automatically configure to pass a pipeline artifact to
AWS CodeDeploy for deployment to the specified application/group, as shown in Figure 7.23.

f i gu r e 7. 23 Deployment provider

AWS CodeDeploy monitors the progress of any revisions to deploy and report success or
failure to AWS CodePipeline.

Summary
In this chapter, you learned about these deployment services:

 ■ AWS CodePipeline

 ■ AWS CodeCommit

 ■ AWS CodeBuild

 ■ AWS CodeDeploy

372 Chapter 7 ■ Deployment as Code

AWS CodePipeline drives application deployments starting with a source repository
(AWS CodeCommit), performing builds with AWS CodeBuild, and finally deploying to
Amazon EC2 instance or AWS Lambda functions using AWS CodeDeploy. You can use
AWS CloudFormation to provision and manage infrastructure in your environment. By
integrating this with AWS CodePipeline, you can automate the entire process of creating
development, testing, and production environments into a fully hands-off process. In a fully
realized enterprise as code, a single commit to a source repository can kick off processes
such as those shown in Figure 7.1.

Exam Essentials
Know the difference between continuous integration, continuous delivery, and continuous
deployment. Continuous integration is the practice where all code changes merge into a re-
pository. Continuous delivery is the practice where all code changes are prepared for release.
Continuous deployment is the practice where all code is prepared for release and automati-
cally released to production environments.

Know the basics of AWS CodePipeline. AWS CodePipeline contains the steps in the con-
tinuous integration and deployment pipeline (CI/CD) workflow, driving automation between
different tasks after assets have been committed to a repository or saved in a bucket. AWS
CodePipeline uses stages, which correspond to different steps in a workflow. Within each
stage, different actions can perform tasks in series or in parallel. Transitions between stages
can be automatic or require manual approval by an authorized user.

Understand how revisions can move through a pipeline. Revisions move automatically
between stages in a pipeline, provided that all actions in the preceding stage complete. If a
manual approval is required, the revision will not proceed until an authorized user allows it
to do so. When two changes are pushed to a source repository in a short time span, the latest
of the two changes will proceed through the pipeline.

Know the different pipeline actions that are available. A pipeline stage can include one or
more actions: build, test, deploy, and invoke. You can also create custom actions.

Know how to deploy a cross-account pipeline. The account containing the pipeline must
create a KMS key that can be used by both AWS CodePipeline and the other account. The
pipeline account must also specify a bucket policy on the assets bucket that the pipeline
uses, which allows the second account to access assets. The AWS CodePipeline service IAM
role must include a policy that allows it to assume a role in the second account. The second
account must have a role that can be assumed by the pipeline account, which allows the
pipeline account to deploy resources and access the assets bucket.

Know the basic concepts of AWS CodeCommit. AWS CodeCommit is a Git-based reposi-
tory service. It is fully compatible with existing Git tooling. AWS CodeCommit provides vari-
ous benefits, such as encryption in transit and at rest; automatic scaling to handle increases
in activity; access control using IAM users, roles, and policies; and HTTPS/SSH connectivity.
AWS CodeCommit supports normal Git workflows, such as pull requests.

Resources to Review 373

Know how to use the credential helper to connect to repositories. It is possible to connect
to AWS CodeCommit repositories using IAM credentials. The AWS CodeCommit credential
helper translates an IAM access key and secret access key into valid Git credentials. This
requires the AWS CLI and a Git configuration file that specifies the credential helper.

Understand the different strategies for migrating to AWS CodeCommit. You can migrate an
existing Git repository by cloning to your local workstation and adding a new remote, point-
ing to the AWS CodeCommit repository you create. You can push the repository contents
to the new remote. You can migrate unversioned content in a similar manner; however, you
must create a new local Git repository (instead of cloning an existing one). Large repositories
can be migrated incrementally because large pushes may fail because of network issues.

Know the basics of AWS CodeBuild. AWS CodeBuild allows you to perform long-running
build tasks repeatedly and reliably without having to manage the underlying infrastructure.
You are responsible only for specifying the build environment settings and the actual tasks to
perform.

Know the basics of AWS CodeDeploy. AWS CodeDeploy standardizes and automates
deployments to Amazon EC2 instances, on-premises servers, and AWS Lambda functions.
Deployments can include application/static files, configuration tasks, or arbitrary scripts to
execute. For Amazon EC2 on-premises deployments, a lightweight agent is required.

Understand how AWS CodeDeploy works with Amazon EC2 Auto Scaling groups. When
you deploy to Amazon EC2 Auto Scaling groups, AWS CodeDeploy will automatically run
the last successful deployment on any new instances that you add to the group. If the deploy-
ment fails on the instance, it will be terminated and replaced (to maintain the desired count
of healthy instances). If two deployment groups for separate AWS CodeDeploy applications
specify the same Auto Scaling group, issues can occur. If both applications deploy at roughly
the same time and one fails, the instance will be terminated before success/failure can be
reported for the second application deployment. This will result in AWS CodeDeploy waiting
until the timeout period expires before taking any further action.

Resources to Review
What is DevOps?

https://aws.amazon.com/devops/what-is-devops/

AWS DevOps Blog:

https://aws.amazon.com/blogs/devops/

Introduction to DevOps on AWS:

https://d1.awsstatic.com/whitepapers/AWS_DevOps.pdf

Practicing Continuous Integration and Continuous Delivery on AWS:

https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-
integration-continuous-delivery-on-AWS.pdf

374 Chapter 7 ■ Deployment as Code

AWS CodePipeline User Guide:

https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html

Set Up a CI/CD Pipeline on AWS:

https://aws.amazon.com/getting-started/projects/set-up-ci-cd-pipeline/

AWS CodePipeline:

https://aws.amazon.com/codepipeline/

AWS CodeCommit:

https://aws.amazon.com/codecommit/

AWS CodeBuild:

https://aws.amazon.com/codebuild/

AWS CodeDeploy:

https://aws.amazon.com/codedeploy/

Exercises

e x e r C i S e 7.1

Create an AWS CodeCommit repository and Submit a pull request

This exercise demonstrates how to use AWS CodeCommit to submit and merge pull
requests to a repository.

1. Create an AWS CodeCommit repository with a name and description. You do not
need to configure email notifications for repository events.

2. In the AWS CodeCommit console, select Create File to add a simple markdown file to
test the repository.

3. Clone the repository to your local machine with HTTPS or SSH authentication.

4. Create a file locally, commit it to the repository, and push it to test the AWS
CodeCommit.

5. Create a feature branch from the master branch in the repository.

6. Edit the file and commit the changes to the feature branch.

7. Use the AWS CodeCommit console to create a pull request. Use the master branch of
the repository as the destination and the feature branch as the source.

8. After the pull request successfully creates, merge the changes from the feature
branch with the master branch.

The pull request has been merged with the master branch, which can be confirmed by
viewing the source code of the markdown file in the master branch.

Exercises 375

e x e r C i S e 7. 2

Create an Application in AWS CodeDeploy

This exercise demonstrates how to use AWS CodeDeploy to perform an in-place
deployment to Amazon EC2 instances in your account.

1. Create a new application in the AWS CodeDeploy console.

For the compute platform type, select EC2 On-premises.

2. Create a new deployment group for your application. Specify the following values:

Deployment type In-place

Environment configuration Amazon EC2 instances

Tag group Create a tag group that is easy to identify, such as a “Name” for the key,
and “CodeDeployInstance” as the value.

Load balancer Clear the Enable load balancing check box.

3. Launch new Amazon EC2 instance.

Make sure to specify the tag value chosen in the previous step.

4. Download the sample application bundle to your local machine for future updates.

Sample application bundles for each operating system can be found using the follow-
ing links:

Windows Server https://docs.aws.amazon.com/codedeploy/latest/userguide/
tutorials-windows.html

Amazon Linux or Red Hat Enterprise Linux (RHEL) https://docs.aws.amazon.com/
codedeploy/latest/userguide/tutorials-wordpress.html

5. Create a deployment group, and verify that the sample application deploys.

6. Update the application code, and submit a new deployment to the deployment group.

7. Verify your changes after the deployment completes.

e x e r C i S e 7. 3

Create an AWS Codebuild project

This exercise demonstrates how to use AWS CodeBuild to perform builds and the compi-
lation of artifacts prior to deployment to Amazon EC2 instances.

1. Create an Amazon S3 bucket to hold artifacts.

2. Upload two or more arbitrary files to the bucket.

(continued)

376 Chapter 7 ■ Deployment as Code

e x e r C i S e 7. 3 (c ont inue d)

3. Use the AWS CodeBuild console to create a build project with the following settings:

Project name Provide a name of your choice.

Source Use Amazon S3.

Bucket Provide the name of the bucket you created.

S3 object key Provide the name of one of the objects you uploaded.

Environment image Select the Managed Image type.

Operating system Use Ubuntu.

Runtime Use Python.

Runtime version Select a version of your choice.

Service role Select New Service Role.

Role name Provide a name for your service role.

Build specifications Select Insert Build Commands.

Build commands Select Switch To Editor and enter the following. Replace the
Amazon S3 object paths with paths to the objects you uploaded to your bucket.

version: 0.2

phases:
 build:
 commands:
 - aws s3 cp s3://yourbucket/file1 /tmp/file1
 - aws s3 cp s3://yourbucket/file2 /tmp/file2
artifacts:
 files:
 - /tmp/file1
 - /tmp/file2

Artifact Type Use Amazon S3.

Bucket name Select your Amazon S3 bucket.

Artifacts packaging Select Zip.

4. Save your build project.

5. Run your build project, and observe the output archive file created in your Amazon
S3 bucket.

Review Questions 377

Review Questions
1. You have two AWS CodeDeploy applications that deploy to the same Amazon EC2 Auto

Scaling group. The first deploys an e-commerce app, while the second deploys custom
administration software. You are attempting to deploy an update to one application but
cannot do so because another deployment is already in progress. You do not see any
instances undergoing deployment at this time. What could be the cause of this?

A. If both deployment groups reference the same Auto Scaling group, a failure of the
first group’s deployment can block the second until the deployment times out. Since the
instance that failed deployment has been terminated from the Auto Scaling group, the AWS
CodeDeploy agent is unable to provide results to the service.

B. The AWS CodeDeploy agent is not installed on the instances as part of the launch
configuration user data script.

C. If both deployment groups reference the same Auto Scaling group, a failure of the first
group’s deployment can block the second until the deployment times out. Since the instance
that failed deployment has been terminated from the Auto Scaling group, the AWS
CodeDeploy service is unable to request status updates from the Amazon EC2 API.

D. The AWS CodeDeploy agent is not installed in the Amazon Machine Image (AMI)
being used.

2. If you specify a hook script in the ApplicationStop lifecycle event of an AWS CodeDeploy
appspec.yml, will it run on the first deployment to your instance(s)?

A. Yes

B. No

C. The ApplicationStop lifecycle event does not exist.

D. It will run only if your application is running.

3. If a single pipeline contains multiple sources, such as an AWS CodeCommit repository and
an Amazon S3 archive, under what circumstances will the pipeline be triggered?

A. When either a commit is pushed to the repository or the archive is updated, regardless
of timing.

B. When a commit is pushed to the repository and the archive is updated at the same time.

C. When either a commit is pushed to the repository or the archive is updated, but not
when both are updated at the same time.

D. AWS CodePipeline does not support multiple sources in the same pipeline.

4. If you want to implement a deployment pipeline that deploys both source files and large binary
objects to instance(s), how would you best achieve this while taking cost into consideration?

A. Store both the source files and binary objects in AWS CodeCommit.

B. Build the binary objects into the AMI of the instance(s) being deployed. Store the
source files in AWS CodeCommit.

C. Store the source files in AWS CodeCommit. Store the binary objects in an Amazon S3
archive.

378 Chapter 7 ■ Deployment as Code

D. Store the source files in AWS CodeCommit. Store the binary objects on an Amazon
Elastic Block Store (Amazon EBS) volume, taking snapshots of the volume whenever a
new one needs to be created.

E. Store the source files in AWS CodeCommit. Store the binary objects in Amazon S3 and
access them from an Amazon CloudFront distribution.

5. Your team is building a deployment pipeline to a sensitive application in your environment
using AWS CodeDeploy. The application consists of an Amazon EC2 Auto Scaling group
of instances behind an Elastic Load Balancing load balancer. The nature of the application
requires 100 percent availability for both successful and failed deployments. The development
team want to deploy changes multiple times per day.

How would this be achieved at the lowest cost and with the fastest deployments?

A. Rolling deployments with an additional batch

B. Rolling deployments without an additional batch

C. Blue/green deployments

D. Immutable updates

6. What would cause an access denied error when attempting to download an archive file
from Amazon S3 during a pipeline execution?

A. Insufficient user permissions for the user initiating the pipeline

B. Insufficient user permissions for the user uploading the Amazon S3 archive

C. Insufficient role permissions for the Amazon S3 service role

D. Insufficient role permissions for the AWS CodePipeline service role

7. How do you output build artifacts from AWS CodeBuild to AWS CodePipeline?

A. Write the outputs to STDOUT from the build container.

B. Specify artifact files in the buildspec.yml configuration file.

C. Upload the files to Amazon S3 from the build environment.

D. Output artifacts are not supported with AWS CodeBuild.

8. What would be the most secure means of providing secrets to an AWS CodeBuild
environment?

A. Create a custom build environment with the secrets included in configuration files.

B. Upload the secrets to Amazon S3 and download the object when the build job runs.
Protect the bucket and object with an appropriate bucket policy.

C. Save the secrets in AWS Systems Manager Parameter Store and query them as needed.
Encrypt the secrets with an AWS Key Management Service (AWS KMS) key. Include
appropriate AWS KMS permissions to your build environment’s IAM role.

D. Include the secrets in the source repository or archive.

9. In which of the pipeline actions can you execute AWS Lambda functions?

A. Invoke

B. Deploy

Review Questions 379

C. Build

D. Approval

E. Test

10. In what ways can pipeline actions be ordered in a stage? (Select TWO.)

A. Series

B. Parallel

C. Stages support only one action each

D. First-in-first-out (FIFO)

E. Last-in-first-out (LIFO)

11. If you would like to delete an AWS CloudFormation stack before you deploy a new one in
your pipeline, what would be the correct set of actions?

A. One action that specifies “Create or update a stack.”

B. Two actions: the first specifies “Create or update a stack,” and the second specifies
“Delete a stack.”

C. Three actions: the first specifies “Delete a stack,” the second specifies “Create or
update a stack,” and the third specifies “Replace a failed stack.”

D. Two actions: the first specifies “Delete a stack,” and the second specifies “Create or
update a stack.”

12. How can you connect to an AWS CodeCommit repository without Git credentials?

A. It is not possible.

B. HTTPS

C. SSH

D. AWS CodeCommit credential helper

13. Of the following, which event cannot be used to generate notifications to an Amazon
Simple Notification Service (SNS) topic from AWS CodeCommit without using a trigger?

A. Pull Request Creation

B. Commit Comments

C. Commit Creation

D. Pull Request Comments

14. Which pipeline actions support AWS CodeBuild projects? (Select TWO.)

A. Invoke

B. Deploy

C. Build

D. Approval

E. Test

380 Chapter 7 ■ Deployment as Code

15. Can data passed to build projects using environment variables be encrypted or protected?

A. Yes, this is supported natively by AWS CodeBuild.

B. No, it is not supported.

C. No, but this can be enabled in the console.

D. No, but this can be supported using other AWS products and services.

16. What is the only deployment type supported by on-premises instances?

A. In-place

B. Blue/green

C. Immutable

D. Progressive

17. If your AWS CodeDeploy configuration includes creation of a file, nginx.conf, but the
file already exists on the server (prior to the use of AWS CodeDeploy), what is the default
behavior that will occur during deployment?

A. The file will be replaced.

B. The file will be renamed nginx.conf.bak, and the new file will be created.

C. The deployment will fail.

D. The deployment will continue, but the file will not be modified.

18. How does AWS Lambda support in-place deployments?

A. Function versions are overwritten during the deployment.

B. New function versions are created, and then version numbers are switched.

C. AWS Lambda does not support in-place deployments.

D. Function aliases are overwritten during the deployment.

19. What is the minimum number of stages required by a pipeline in AWS CodePipeline?

A. 0

B. 1

C. 2

D. 3

20. If an instance is running low on storage, and you find that there are a large number of
deployment revisions stored by AWS CodeDeploy, what can be done to free up this space
permanently?

A. Delete the old revisions.

B. Add an additional Amazon EBS volume.

C. Configure the AWS CodeDeploy agent to store fewer revisions.

D. Delete all of the revisions, and push all new code.

Chapter

8
Infrastructure as
Code

The AWS CerTIfIed developer –
ASSoCIATe exAm TopICS Covered In
ThIS ChApTer mAy InClude, buT Are
noT lImITed To, The folloWIng:

Domain 1: Deployment

 ✓ 1.1 Infrastructure as Code (IaC).

 ✓ 1.2 Use AWS CloudFormation to Deploy Infrastructure.

Domain 5: Monitoring and Troubleshooting

 ✓ 5.1 Custom Resource Success/Failure.

AWS® Certified Developer Official Study Guide
By Nick Alteen, Jennifer Fisher, Casey Gerena, Wes Gruver, Asim Jalis,
Heiwad Osman, Marife Pagan, Santosh Patlolla and Michael Roth

 Amazon Web Services, Inc.

 Introduction to Infrastructure as Code
 Chapter 7 covered deployment tools, processes, and methodologies in AWS services. These servic-
es can leverage and be read by AWS CloudFormation to provision and manage AWS infrastruc-
ture from Amazon Elastic Compute Cloud (Amazon EC2) instances to Amazon API Gateway
REST APIs. For all intents and purposes, if you provision and update code with an AWS API, you
can use AWS CloudFormation to move this process entirely to template code updates.

 If you create an AWS Auto Scaling group of instances with the AWS
Management Console, you must perform a number of steps. You
can launch and test multiple instances of the user data script with Amazon
EC2 launch configurations, you can use Amazon CloudWatch alarms
to scale your application, and finally you can implement the AWS Auto
Scaling group itself. A better solution is to use AWS CloudFormation
to create and manage all of the aforementioned resources over time with a
simple, declarative template syntax.

 Infrastructure as Code
 Using an infrastructure as code (IaC) model, instead of manually provisioning or using
scripting languages, helps remove the dependency on human intervention when you create
and manage infrastructure over time. You can use tools such as AWS CloudFormation to
deploy infrastructure from a declarative template syntax. For example, a typical provision-
ing script that uses the AWS Command Line Interface (AWS CLI) includes many procedural
steps that are prone to error because of invalid inputs, incorrect command syntax, and re-
source dependency confl icts. AWS CloudFormation templates provide the ability to validate
inputs and automatically detect dependencies between resources.

 Provisioning infrastructure with AWS CloudFormation templates provides some built-in
benefi ts, such as the ability to track changes with a “source of truth,” such as a Git-based
repository. Since repositories track changes over time, you can roll back an undesired
change by resubmitting the last working version of the template(s). This can signifi cantly
reduce the time needed to roll back undesired changes.

Using AWS CloudFormation to Deploy Infrastructure 383

 You can view users’ resources with appropriate permissions within an AWS account. An
issue can arise where, as your infrastructure grows over time, it can be diffi cult to determine
what resources belong to what functional group, application, team, and so on. Use of tags
can alleviate this somewhat, but this is not possible for resources that do not yet support
tags. AWS CloudFormation organizes resources into stacks, which you describe in the AWS
Management Console, the AWS CLI, or AWS software development kits (AWS SDKs).
AWS CloudFormation stacks provide a comprehensive list of any infrastructures in a
 functional group.

 Using AWS CloudFormation
to Deploy Infrastructure

AWS CloudFormation provides a common language for you to describe
and provision all of the infrastructure resources in your cloud environment.

 AWS CloudFormation allows you to use a simple text fi le to model and provision, in an
 automated and secure manner, all of the resources for your applications across all regions
and accounts. This fi le serves as the single source of truth for your cloud environment.

 AWS CloudFormation is available at no additional charge, and you pay only for the
AWS resources required to run your applications.

 What Is AWS CloudFormation?
 Before you deploy any application code, the fi rst requirement is that infrastructure exists
where you will deploy the code. AWS CloudFormation aims to alleviate previous deploy-
ment issues with the use of a service that allows you to describe your infrastructure with
standardized JSON or YAML template syntax. The template contains the infrastructure that
AWS will deploy and all the related confi guration properties. When you submit this template
to the AWS CloudFormation service, it creates a stack, which is a logical group of resources
that the template describes.

 When you manually create resources with the AWS Management Console or AWS CLI
or AWS SDK, you cannot easily defi ne relationships between resources.

 If you manually create an AWS Auto Scaling Group (ASG) and attach this
to an Elastic Load Balancing (ELB) load balancer, it requires several API
calls or console actions—one for each resource and one to attach the ASG
to the ELB. With AWS CloudFormation, you define the resources and any
relationships in one location for easy deployment and updates over time.

 Two key benefi ts of AWS CloudFormation over procedural scripting or manual console
actions are that your infrastructure is now repeatable and that it is versionable .

384 Chapter 8 ■ Infrastructure as Code

 Any template that you deploy one time in an account you can deploy again (either in the
same account and/or region or in others). This offers you an opportunity for dynamically
provisioning short-lived environments to test or roll over to a new production environment
(blue/green deployment). Since templates describe your infrastructure, you check the tem-
plates themselves into a source code repository. With this, you can track changes over time,
and updates roll back when they revert commits and redeploy the previous template(s).
Over time, this creates self-documenting infrastructure that shows changes over the life-
cycle of an environment.

 AWS CloudFormation Concepts
 This section details AWS CloudFormation concepts, such as stacks, change sets, permissions,
templates, and instinct functions.

 Stacks
 A stack represents a collection of resources to deploy and manage by AWS CloudFormation.
When you submit a template, the resources you confi gure are provisioned and then make up
the stack itself. Any modifi cations to the stack affect underlying resources. For example, if
you remove an AWS::EC2::Instance resource from the template and update the stack, AWS
CloudFormation causes the referred instance to terminate.

 AWS CloudFormation manages all of the resources you declare in a stack
when the stack updates. If you manually update the resource outside
of AWS CloudFormation, the result will be inconsistencies between the
state AWS CloudFormation expects and the actual resource state. This can
cause future stack operations to fail.

 Change Sets
 There may be times where you would like to see what changes will occur to resources
when you update a template, before the update occurs. Instead of submitting the update
directly, you can generate a change set. A change set is a description of the changes that
will occur to a stack, should you submit the template. If the changes are acceptable, the
change set itself can execute on the stack and implement the proposed modifi cations. This is
especially important in situations where there is a potential for data loss.

 Amazon relational database Service Instances

 There are several properties in Amazon Relational Database Service (Amazon RDS)
instances that AWS CloudFormation modifi es and requires replacement in the underlying
database instance resource. If backups are not being taken, data loss will occur. You use a
change set to preview the replacement event, make the necessary backups, and take the
required precautions before you update the resources.

Using AWS CloudFormation to Deploy Infrastructure 385

 Permissions
 AWS CloudFormation, unless otherwise specifi ed, functions within the context of the IAM
user or AWS role to invoke a stack action. This means that if you submit a template that cre-
ates an Amazon EC2 instance (or instances), AWS CloudFormation will fail unless your IAM
user or AWS role has permissions to create instances. Any action that AWS CloudFormation
performs is done on your behalf, with your authorizations. With this, you can control what
stack actions perform (create, update, or delete) and what actions are performed on the
underlying resources.

 If there is a need to restrict what permissions a single IAM user or AWS role can
have, you can provide a service role the stack uses for the create, update, or delete
actions. When the role passes to AWS CloudFormation, it will use the role’s credentials
to determine what operations it performs. To create an AWS CloudFormation service
role, make sure that the role as a trust policy allows cloudformation.amazonaws.com to
assume the role.

 As a user, your IAM credentials will need to include the ability to pass the role to AWS
CloudFormation, using the iam:PassRole permission. An additional benefi t when you use
a service role is that it will extend the default timeout for stack create, update, and delete
actions. This is especially important when you work with resources that take a longer time
because of their size or distribution. Certain services can time out in AWS CloudFormation,
returning a Resource failed to stabilize error.

 ■ AWS::AutoScaling::AutoScalingGroup

 ■ AWS::CertificateManager::Certificate

 ■ AWS::CloudFormation::Stack

 ■ AWS::ElasticSearch::Domain

 ■ AWS::RDS::DBCluster

 ■ AWS::RDS::DBInstance

 ■ AWS::Redshift::Cluster

 After a service role passes to AWS CloudFormation, other users with the
ability to perform updates will be able to do so with the same role, regard-
less of whether they have the ability to pass it. Make sure that the service
role follows least-privilege practices.

 When you assign permissions for IAM users or AWS roles, you have the ability to spec-
ify conditions to control whether policies are in effect. For example, you can allow your
users to create stacks only with certain names. However, do not use the aws:SourceIp
condition. This is because AWS CloudFormation actions originate from AWS IP addresses,
not the IP address of the request.

386 Chapter 8 ■ Infrastructure as Code

When you create a stack, you can submit a template from a local file or via a URL that
points to an object in Amazon S3. If you submit the template as a local file, it uploads to
Amazon S3 on your behalf. Because of this, you must add these permissions to create a stack:

 ■ cloudformation:CreateUploadBucket

 ■ s3:PutObject

 ■ s3:ListBucket

 ■ s3:GetObject

 ■ s3:CreateBucket

Template Structure
AWS CloudFormation uses specific template syntax in JSON or YAML. (The primary dif-
ference is YAML’s support of comments using the # symbol.) The high-level structure of a
template is as follows:

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "String Description",
 "Metadata": { },
 "Parameters": { },
 "Mappings": { },
 "Conditions": { },
 "Transform": { },
 "Resources": { },
 "Outputs": { }
}

Of the previous properties, AWS CloudFormation requires only the Resources section.
Each property can be in any order, with the exception that Description must follow the
AWSTemplateFormatVersion command.

AWSTemplateFormatVersion

AWSTemplateFormatVersion corresponds to the template version to which this template
adheres. Do not confuse this with an API version or the version of the developer’s
template draft. Currently, AWS CloudFormation only supports the value "2010-09-09",
which you must provide as a literal string.

Description

The Description section allows you to provide a text explanation of the template’s purpose
or other arbitrary information. The maximum length of the Description field is 1,024 bytes.
Similar to the AWSTemplateFormatVersion section, Description supports only literal text.

Using AWS CloudFormation to Deploy Infrastructure 387

Metadata

The Metadata section of a template allows you to provide structured details about the template.
For example, you can provide Metadata about the overall infrastructure to deploy and which
sections correspond to certain environments, functional groups, and so on. The Metadata you
provide is made available to AWS CloudFormation for reference in other sections of a template
or on Amazon EC2 instances being provisioned by AWS CloudFormation.

updating the metadata Section of a Template

You cannot update template metadata by itself; you must perform an update to one or
more resources when you update the Metadata section of a template.

"Metadata": {
 "ApplicationLayer": {
 "Description": "Information about resources in the app layer."
 },
 "DatabaseLayer": {
 "Description": "Information about resources in the DB layer."
 }
}

In the Metadata section of the template, you have the ability to specify properties that
affect the behavior of different components of the AWS CloudFormation service, such as
how template parameters display in the AWS CloudFormation console.

Parameters

You can use Parameters to provide inputs into your template, which allows for more flex-
ibility in how this template behaves when you deploy it. Parameter values can be set either
when you create the stack or when you perform updates.

The Parameters section must include a unique logical ID (in the next example,
InstanceTypeParameter). A parameter must include a value, either a default or one that
you provide. Lastly, you cannot reference parameters outside a single template.

Allowedvalues error

This example defines a String parameter named InstanceTypeParameter with a default
value of t2.micro. The parameter allows t2.micro, m1.small, or m1.large. The Allowed-
Values section specifies what options you can select for this parameter in the AWS
CloudFormation console. AWS CloudFormation will throw an error if you add a value not
in AllowedValues.

"Parameters": {
 "InstanceTypeParam": {
 "Type": "String", (continued)

388 Chapter 8 ■ Infrastructure as Code

 "Default": "t2.micro",
 "AllowedValues": ["t2.micro", "m1.small", "m1.large"],
 "Description": "Enter t2.micro, m1.small, or m1.large. Default is t2.micro."
 }
}

Once you specify a parameter, you can use it within the template using the Ref intrinsic
function. When AWS CloudFormation evaluates it, the Ref statement converts it to the
value of the parameter.

"EC2Instance": {
 "Type": "AWS::EC2::Instance”,
 "Properties": {
 "InstanceType": { "Ref": "InstanceTypeParam" },
 "ImageId": "ami-12345678"
 }
}

AWS CloudFormation supports the following parameter types:

 ■ String

 ■ Number

 ■ List of numbers

 ■ Comma-delimited list

 ■ AWS parameter types

 ■ AWS Systems Manager Parameter Store (Systems Manager) parameter types

If a parameter value is sensitive, you can add the NoEcho property. When this is set, the
parameter value displays as asterisks (***) for any cloudformation:Describe* calls. Within
the template itself, the value will resolve to the actual input when making Ref calls.

AWS parameter types When you use AWS parameter types, AWS CloudFormation automatically
queries existing properties and values within your AWS account. This can include information such
as Amazon EC2 key pair names, IDs of resources, AWS regions/availability zones, or other proper-
ties of your account. These input values must exist in your account and are validated to ensure that
they are correct. For example, you can use the AWS::EC2::KeyPair::KeyName parameter type to
require a valid Amazon EC2 key pair. This way, there is reduced risk that a user will input an incor-
rect value that results in improper stack behavior.

AWS System Manager parameter types AWS Systems Manager parameter types can reference
parameters that exist in the AWS Systems Manager Parameter Store. If you specify a parameter
key, AWS CloudFormation will search your Systems Manager Parameter Store for the correct
value and input this into the stack. When you perform stack updates, AWS CloudFormation que-
ries the same key again and could result in a new value for the AWS CloudFormation parameter.

(continued)

Using AWS CloudFormation to Deploy Infrastructure 389

Mappings

You can use the Mappings section of a template to create a rudimentary lookup tables
that you can reference in other sections of your template when you create the stack.

A common example of mappings usage is to look up Amazon EC2 instance AMI IDs
based on the region and architecture type. Note in the following example that mappings
entries may contain only string values. (Mappings does not support parameters, conditions,
or intrinsic functions.)

"Mappings" : {
 "RegionMap" : {
 "us-east-1" : { "32" : "ami-6411e20d", "64" : "ami-7a11e213" },
 "us-west-1" : { "32" : "ami-c9c7978c", "64" : "ami-cfc7978a" },
 "eu-west-1" : { "32" : "ami-37c2f643", "64" : "ami-31c2f645" },
 "ap-southeast-1" : { "32" : "ami-66f28c34", "64" : "ami-60f28c32" },
 "ap-northeast-1" : { "32" : "ami-9c03a89d", "64" : "ami-a003a8a1" }
 }
}

After you declare the Mappings section, you can query the values within the mapping
with the Fn::FindInMap intrinsic function. The example shows an Fn::FindInMap call that
queries the AMI ID based on region and architecture type (32- or 64-bit). If the region was
us-east-1, for example, the previous template snippet would resolve to ami-6411e20d.

pseudo parameter: AWS::region

The AWS::Region reference is a pseudoparameter; that is, it’s a parameter that AWS
defines automatically on your behalf. The AWS::Region parameter, for example, resolves
to the region code where the stack is being deployed (such as us-east-1).

"Resources" : {
 "myEC2Instance" : {
 "Type" : "AWS::EC2::Instance",
 "Properties" : {
 "ImageId" : { "Fn::FindInMap" : ["RegionMap", { "Ref" : "AWS::Region" },
"32"]},
 "InstanceType" : "m1.small"
 }
 }
}

Conditions

You can use Conditions in AWS CloudFormation templates to determine when to create
a resource or when a property of a resource is defined (either in the Resources or Outputs
section of the stack). Conditional statements make use of intrinsic functions to evaluate
multiple inputs against one other.

390 Chapter 8 ■ Infrastructure as Code

 A common use case for this would be to conditionally set an Amazon EC2 instance to
use a larger instance type if the environment to which you deploy is prod versus dev . The
environment type is input as a template parameter, EnvType , which the conditional state-
ment, CreateProdResources , uses. The conditional statement decides whether to create an
additional Amazon Elastic Block Store (Amazon EBS) volume and mount it to the instance
with the Condition property of the resource.

 A single condition can reference input parameters, mappings, or other con-
ditions to determine whether the final value is true or false.

 {
 "AWSTemplateFormatVersion" : "2010-09-09",
 "Mappings" : {
 "RegionMap" : {
 "us-east-1" : { "AMI" : "ami-7f418316", "TestAz" : "us-east-1a" },
 "us-west-1" : { "AMI" : "ami-951945d0", "TestAz" : "us-west-1a" },
 "us-west-2" : { "AMI" : "ami-16fd7026", "TestAz" : "us-west-2a" }
 }
 },
 "Parameters" : {
 "EnvType" : {
 "Description" : "Environment type.",
 "Default" : "test",
 "Type" : "String",
 "AllowedValues" : ["prod", "test"]
 }
 },
 "Conditions" : {
 "CreateProdResources" : {"Fn::Equals" : [{"Ref" : "EnvType"}, "prod"]}
 },
 "Resources" : {
 "EC2Instance" : {
 "Type" : "AWS::EC2::Instance",
 "Properties" : {
 "ImageId" : { "Fn::FindInMap" : ["RegionMap", { "Ref" : "AWS::Region"
}, "AMI"]}
 }
 },
 "MountPoint" : {
 "Type" : "AWS::EC2::VolumeAttachment",
 "Condition" : "CreateProdResources",

Using AWS CloudFormation to Deploy Infrastructure 391

 "Properties" : {
 "InstanceId" : { "Ref" : "EC2Instance" },
 "VolumeId" : { "Ref" : "NewVolume" },
 "Device" : "/dev/sdh"
 }
 },
 "NewVolume" : {
 "Type" : "AWS::EC2::Volume",
 "Condition" : "CreateProdResources",
 "Properties" : {
 "Size" : "100",
 "AvailabilityZone" : { "Fn::GetAtt" : ["EC2Instance",
"AvailabilityZone"]}
 }
 }
 }
}

You can also use Conditions to declare different resource properties based on whether the
condition evaluates to true with the Fn::If intrinsic function. The following example uses
the UseDBSnapshot condition to determine whether to pass a value to the DBSnapshotIdentifier
property of an AWS::RDS::DBInstance resource. You use the AWS::NoValue pseudoparameter
in place of a null value in AWS CloudFormation templates. When you provide it as a value to a
resource property, AWS::NoValue removes that property declaration.

"MyDB" : {
 "Type" : "AWS::RDS::DBInstance",
 "Properties" : {
 "AllocatedStorage" : "5",
 "DBInstanceClass" : "db.m1.small",
 "Engine" : "MySQL",
 "EngineVersion" : "5.5",
 "MasterUsername" : { "Ref" : "DBUser" },
 "MasterUserPassword" : { "Ref" : "DBPassword" },
 "DBParameterGroupName" : { "Ref" : "MyRDSParamGroup" },
 "DBSnapshotIdentifier" : {
 "Fn::If" : [
 "UseDBSnapshot",
 {"Ref" : "DBSnapshotName"},
 {"Ref" : "AWS::NoValue"}
]
 }
 }
}

392 Chapter 8 ■ Infrastructure as Code

 Transforms

 As templates grow in size and complexity, there may be situations where you use certain
components repeatedly across multiple templates, such as common resources or mappings.
Transforms allow you to simplify the template authoring process through a powerful set
of macros you use to reduce the amount of time spent in the authoring process. AWS
CloudFormation transforms fi rst create a change set for the stack. Transforms are applied to
the template during the change set creation process.

 Once a change set is complete, the template updates with output of the
executed macros. The finalized template deploys to AWS CloudFormation,
not the original with the transform declarations. This can cause confusion,
as the original template will not be available via the console or AWS CLI or
AWS SDK actions.

 There are two types of supported transforms.

AWS::Include Transform AWS::Include Transform acts as a tool to import template
snippets from Amazon S3 buckets into the template being developed. When the template is
evaluated, a change set is created, and the template snippet is copied from its location and
is added to the overall template structure. You can use this transform anywhere in a
template, except the Parameters and AWSTemplateFormatVersion sections.

 When you use the AWS::Include Transform at the top level of a template, the syntax must
match the example. (Note that the transform is declared as Transform .) This is especially
useful if there is a set of common mappings that you use across multiple teams or template
authors, as they can share this set and update it in one location.

 {
 "Transform" : {
 "Name" : "AWS::Include",
 "Parameters" : {
 "Location" : "s3://MyAmazonS3BucketName/MyFileName.json"
 }
 }
 }

 When you use a transform in nested sections of a template, such as the Properties sec-
tion of an AWS::EC2::Instance resource, use the following syntax. (Note that this is now
an intrinsic function call.)
 {
 "Fn::Transform" : {
 "Name" : "AWS::Include",
 "Parameters" : {
 "Location" : "s3://MyAmazonS3BucketName/MyFileName.json"
 }
 }
 }

Using AWS CloudFormation to Deploy Infrastructure 393

 When you process stack updates, the template snippets you reference in any transforms
pull from their Amazon S3 locations. This means that if a snippet updates without your
knowledge, the updated snippet will import into the template. We recommend that you
create change sets fi rst so that any accidental updates can be caught before you deploy.

 AWS CloudFormation does not support nested transforms. If the snippet
being imported into a template includes an additional transform declara-
tion, the stack creation or update will fail.

AWS::Serverless Transform You can use the AWS::Serverless Transform to convert
AWS Serverless Application Model (AWS SAM) templates to valid AWS CloudFormation
templates for deployment. AWS SAM uses an abbreviated template syntax to deploy server-
less applications with AWS Lambda, Amazon API Gateway, and Amazon DynamoDB.

 The following example creates a function that uses the serverless transform. When AWS
CloudFormation evaluates the transform, the transform expands the template to include an
AWS Lambda function and its IAM execution role.

 Transform: AWS::Serverless-2016-10-31
 Resources:
 MyServerlessFunctionLogicalID:
 Type: AWS::Serverless::Function
 Properties:
 Handler: index.handler
 Runtime: nodejs4.3
 CodeUri: 's3://testBucket/mySourceCode.zip'

 Resources

 The Resources section of an AWS CloudFormation template declares the actual AWS
resources to be provisioned and their properties. AWS CloudFormation requires this template
section when you create stacks . The Resources section follows a standard syntax, where
a logical ID acts as the resource key and type/properties subkeys defi ne the actual type of
resource to deploy and what properties it should have.

 The logical ID of the resource allows it to be referenced in other parts of a template.
You can refer to Resources in other sections of a template, build relationships between
interdependent resources, output property values of the resources, perform other useful
functions. The Resource Type defi nes the actual type of resource being managed. For
example, an Amazon S3 bucket type is AWS::S3::Bucket . There are too many resource
types available to list in this book, and they are updated regularly. Check the AWS
CloudFormation documentation for available resource types.

 https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-
resource-type-ref.html

394 Chapter 8 ■ Infrastructure as Code

The resource properties section defines what configuration a resource should have. In the
same example, the AWS::S3::Bucket resource has an optional property called BucketName,
which defines the name of the bucket to create.

{
 "Resources": {
 "MyBucket": {
 "Type": "AWS::S3::Bucket",
 "Properties": {
 "BucketName": "MyBucketName1234"
 }
 }
 }
}

Resource properties are either optional or required and may be any of the following
types:

 ■ String

 ■ List of strings

 ■ Boolean

 ■ References to parameters or pseudoparameters

 ■ Intrinsic functions

Outputs

Outputs are values that can be made available to use outside a single stack. You can refer-
ence these values in a number of different ways, such as cross-stack references, nested stacks,
describe-stack API calls, or in the AWS CloudFormation console. Outputs are useful in
providing meaningful information after a stack has been created or updated successfully. For
example, it would be helpful to output an Elastic Load Balancing load balancer URL to the
user when a web application stack deploys successfully.

The basic structure for AWS CloudFormation outputs follows. Similar to resources,
outputs must have a logical ID so that AWS CloudFormation can reference them. The
Description field provides a friendly explanation of the purpose of the output, which can
be useful to users of your template. The value being returned can be produced using intrin-
sic functions, or it can be a static string value. Lastly, the Export key (optional) creates
cross-stack references.

Here is an example of outputting the ELB load balancer URL:

"Outputs" : {
 "BackupLoadBalancerDNSName" : {
 "Description": "The DNSName of the backup load balancer",
 "Value" : { "Fn::GetAtt" : ["BackupLoadBalancer", "DNSName"]}
 }
}

Using AWS CloudFormation to Deploy Infrastructure 395

Intrinsic Functions
Situations can occur where values input into a template cannot be determined until the stack or
change set actually is created. If you create an Amazon RDS instance, which is referenced in a
configuration file added to an Amazon EC2 instance in the same template, the actual database
connection string cannot be determined until the database instance is created. Other attributes,
settings, or values may need to be calculated from several inputs at once.

Intrinsic functions aim to resolve this issue by adding dynamic functionality into AWS
CloudFormation templates. Multiple intrinsic functions are available to add significant
power and flexibility to your templates.

Fn::Base64

The Fn::Base64 intrinsic function converts an input string into its Base64 equivalent. The
primary purpose of this function is to pass instructions written in string format to an
Amazon EC2 instance’s UserData property.

{ "Fn::Base64": valueToEncode }

Fn::Cidr

When you create Amazon VPCs and subnets, you must provide Classless Inter-Domain
Routing (CIDR) blocks to map a group of IP addresses to the resource being created. The
Fn::Cidr intrinsic function allows you to convert an IP address block, subnet count, and size
mask (optional) into valid CIDR notation.

{ "Fn::Cidr": [ipBlock, count, sizeMask] }

Fn::FindInMap

After you create mappings in AWS CloudFormation, you use the Fn::FindInMap intrinsic
function to query information stored within the mapping table. Note that mappings have
two key levels, and thus top-level and second-level keys must be supplied as inputs, along
with the mapping name itself.

{ "Fn::FindInMap": ["MapName", "TopLevelKey", "SecondLevelKey"] }

Consider the following Mappings section. The Fn::FindInMap call would return
ami-c9c7978c.

"Mappings" : {
 "RegionMap" : {
 "us-east-1" : { "32" : "ami-6411e20d", "64" : "ami-7a11e213" },
 "us-west-1" : { "32" : "ami-c9c7978c", "64" : "ami-cfc7978a" },
 "eu-west-1" : { "32" : "ami-37c2f643", "64" : "ami-31c2f645" }
 }
}

. . .

{ "Fn::FindInMap" : ["RegionMap", { "Ref" : "AWS::Region" }, "32"] }

396 Chapter 8 ■ Infrastructure as Code

 Fn::GetAtt

 Resources you create in AWS CloudFormation contain information that you can query in
other parts of the same template. For example, if you create an IAM role to use when log
in to AWS CloudTrail events to Amazon CloudWatch Logs, you must provide the Amazon
Resource Name (ARN) of the AWS role to the trail confi guration. Since the ARN is not
returned when you use the Ref intrinsic function (this returns the role name), you can use
Fn::GetAtt to query additional resource properties. In this case, you would be able to
use this intrinsic function to determine the ARN of the role.

 { "Fn::GetAtt" : ["logicalIDOfResource", "attributeName"] }

 Fn::GetAZs

 For each AWS region, different availability zones (with different names) are available. The
specifi c availability zones will not always match between different accounts (in fact, two ac-
counts with the same availability zone by name may not use the same physical location). Be-
cause of this, it is not easy to determine which availability zones are usable when you create
a stack. The Fn::GetAZs intrinsic function returns a list of availability zones for the account
in which the stack is being created.

 { "Fn::GetAZs" : "region" }

 Only availability zones where a default subnet exists will be returned by
Fn::GetAZ .

 To increase fl exibility further and remove the need to hard-code a region in the template,
you can use the AWS::Region pseudoparameter to return the list of availability zones for the
region in which the stack is being created.

 { "Fn::GetAZs" : { "Ref": "AWS::Region" } }

 Fn::Join

 In some situations, string values must be concatenated from multiple input strings, as is the case
when building Java Database Connectivity (JDBC) connection strings. AWS CloudFormation
supports string concatenation with the Fn::Join intrinsic function. You can join string values
with a predefi ned delimiter, which you supply to the function along with a list of strings to join.

 When you defi ne the UserData for an AWS::EC2::Instance resource, it may be required
that you add various parameters to commands being run on the instance.

 fn::Join Appending data dynamically

 This example shows how you can use Fn::Join to append various data dynamically to
create complex commands.

 "Resources" : {
 "Ec2Instance" : {
 "Type" : "AWS::EC2::Instance",

Using AWS CloudFormation to Deploy Infrastructure 397

 "Properties" : {
 "ImageId" : "ami-12345678",
 "Tags" : [{"Key" : "Role", "Value" : "Test Instance"}],
 "UserData" : { "Fn::Base64" : { "Fn::Join" : ["", [
 "#!/bin/bash -ex", "\n",
 "echo deploying into region: ", { "Ref": "AWS::Region" }, "\n",
 "\n", "yum install ec2-net-utils -y", "\n",
 "ec2ifup eth1", "\n",
 "service httpd start"]] }
 }
 }
 }
 }

 Fn::Select

 If you pass a list of values into your template, there needs to be a way to select an item from
the list based on what position (index) it is in the list. Fn::Select allows you to choose an
item in a list based on the zero-based index.

 The Fn::Select intrinsic function does not check for issues such as
whether an index is out of bounds or whether the values in a list equal
null . You need to verify that the input list does not contain null values
and has a known length.

 { "Fn::Select" : [index, listOfObjects] }

 Fn::Split

 Counter to the Fn::Join intrinsic function, you use Fn::Split to create a list of strings by
separating a single string by a known delimiter. You can use Fn::Select to access the output
list of strings and pass them to an index to select from different substrings.

 { "Fn::Split" : ["delimiter", "source string"] }

 Fn::Sub

 If you need to build an input string with multiple variables determined at runtime, use
the Fn::Sub function to populate a template string with input variables from a variable
map.

 This intrinsic function can also use parameters, resources, and resource attributes
already present in your template. Note in the following example that two template values
are present in the string, but only one mapping value is provided. This is because the

398 Chapter 8 ■ Infrastructure as Code

AWS::AccountId pseudoparameter will automatically resolve to the account ID where the
stack is being created, and AWS::Region automatically resolves to the region ID.

{
 "Fn::Sub": ["arn:aws:ec2:${AWS::Region}:${AWS::AccountId}:vpc/${vpc}", {
 "vpc": { "Ref": "MyVPC" }
 }
}

Ref

You will use the Ref intrinsic function a lot within your template, especially when multiple
resources have dependencies and relationships between one another (such as if you create an
AWS::EC2::VPC resource with two AWS::EC2::Subnet resources). The behavior of the Ref func-
tion can differ slightly depending on the resource type being referenced. In some cases, such as
with AWS::S3::Bucket or AWS::AutoScaling::AutoScalingGroup resources, you use Ref to
return the resource name (in this situation, either the bucket or AWS Auto Scaling group name).
In other cases, different properties such as the resource ARN or physical ID returns. Make sure
to check the documentation for the resource type being referenced to verify what data returns.

{ "Ref" : "logicalName" }

Condition Functions

Condition functions are special intrinsic functions for which you can optionally create
resources or set resource properties, depending on whether the condition evaluates to
true or false. Other than Fn::If, you must use all other condition functions within the
Conditions section of a template. The Fn::If intrinsic function allows you to pass different
data to resource properties depending on the state of the referenced condition.

fn::And

Returns true only if all contained conditions evaluate to true; otherwise, false returns.

"Fn::And": [{condition}, {...}]

fn::equAlS

Returns true if both compared values are equal; otherwise, false returns.

"Fn::Equals" : ["value_1", "value_2"]

fn::If

Returns one of two values, depending on whether the specified condition evaluates to true
or false. If you would like to return a null value, pass a reference the AWS::NoValue pseu-
doparameter with the Ref intrinsic function.

"Fn::If": [condition_name, value_if_true, value_if_false]

fn::noT

Acts as a negation, returning the opposite of the evaluated condition.

"Fn::Not": [{condition}]

Using AWS CloudFormation to Deploy Infrastructure 399

fn::or

Returns true if any of the provided conditions are true. Otherwise, false returns.

"Fn::Or": [{condition}, {...}]

Built-in Metadata Keys
This section details built-in metadata keys for AWS::CloudFormation:Init,
AWS::CloudFormation::Interface, and AWS::CloudFormation::Designer.

AWS::CloudFormation::Init

This section defines what operations the cfn-init helper script performs on Amazon EC2
instances being provisioned by AWS CloudFormation (either as stand-alone instances
or in AWS Auto Scaling groups). This metadata key allows you to develop a more declar-
ative infrastructure configuration, instead of having to procedurally script every individ-
ual action (such as installing packages, which can vary based on the instance’s operating
system).

This Metadata section is organized by config keys, which contain a list of configurations
to apply.

AWS::Cloudformation::Init: resource metadata

Unless otherwise specified, AWS CloudFormation will look for config wherever the
AWS::CloudFormation::Init Metadata section appears.

"Resources": {
 "MyInstance": {
 "Type": "AWS::EC2::Instance",
 "Metadata" : {
 "AWS::CloudFormation::Init" : {
 "config" : {
 "packages" : { },
 "groups" : { },
 "users" : { },
 "sources" : { },
 "files" : { },
 "commands" : { },
 "services" : { }
 }
 }
 },
 "Properties": { }
 }
}

400 Chapter 8 ■ Infrastructure as Code

 pACkAgeS

 The packages key allows installation of arbitrary packages on the system. Packages must be
available to one of the supported package managers (yum , apt , python , and others). Pack-
ages nest under the supported package manager and include a package name followed by
an optional version string (or list of versions). If you do not provide a version, the version
installs. If the package is not available in the package manager repository, you must include
a download URL.

 "packages": {
 "rpm" : {
 "epel" : " http://download.fedoraproject.org/pub/epel/5/i386/
epel-release-5-4.noarch.rpm"

 },
 "yum" : {
 "httpd" : [],
 "php" : [],
 "wordpress" : []
 }
 }

 On Windows systems, the packages key only supports MSI installers.

 groupS

 Use the groups key to generate Linux/UNIX groups on the target system. The name of the
group is derived from the key name, and you can provide an optional group ID. For exam-
ple, you create two groups with the following syntax. The fi rst group, groupOne , randomly
generates the gid value. The second group, groupTwo , will be assigned a gid of 45.

 "groups" : {
 "groupOne" : {},
 "groupTwo" : { "gid" : "45" }
 }

 Windows systems do not support the groups key.

 uSerS

 The users key allows you to create Linux/UNIX users on your instance. By default, users
you create with this key are noninteractive system users, and their default shell is set to
 /sbin/nologon . If you want to modify this behavior, you will have to issue a separate
command on the system after the user generates.

Using AWS CloudFormation to Deploy Infrastructure 401

 "users" : {
 "myUser" : {
 "groups" : ["groupOne", "groupTwo"],
 "uid" : "50",
 "homeDir" : "/tmp"
 }
 }

 Windows systems do not support the users key.

 SourCeS

 Similar in operation to the files key, you use the sources key to download fi les from
remote locations. However, the sources key supports unpacking archives into target direc-
tories on the instance. For example, to download and unpack an archive hosted in a public
Amazon S3 bucket, use this snippet:

 "sources" : {
 "/etc/myapp" : " https://s3.amazonaws.com/mybucket/myapp.tar.gz"

 }

 fIleS

 The files key creates fi les based on either inline content in the template or content from
a remote location (URL). An example of inline fi le content written to /tmp/setup.mysql is
as follows:

 "files" : {
 "/tmp/setup.mysql" : {
 "content" : { "Fn::Join" : ["", [
 "CREATE DATABASE ", { "Ref" : "DBName" }, ";\n",
 "CREATE USER '", { "Ref" : "DBUsername" }, "'@'localhost' IDENTIFIED BY
'",
 { "Ref" : "DBPassword" }, "';\n",
 "GRANT ALL ON ", { "Ref" : "DBName" }, ".* TO '", { "Ref" : "DBUsername"
},
 "'@'localhost';\n",
 "FLUSH PRIVILEGES;\n"
]]},
 "mode" : "000644",
 "owner" : "root",
 "group" : "root"
 }
 }

 Additional fi le options, such as symlinks and mustache templates, are also supported.

402 Chapter 8 ■ Infrastructure as Code

CommAndS

The commands key allows the execution of arbitrary commands on an Amazon EC2 instance,
such as calling a custom application or script file.

Command order of execution

The commands section processes commands in alphabetical order based on the command
name key. In this snippet, the command test would be called before test2.

"commands" : {
 "test" : {
 "command" : "echo \"$MAGIC\" > test.txt",
 "env" : { "MAGIC" : "I come from the environment!" },
 "cwd" : "~",
 "test" : "test ! -e ~/test.txt",
 "ignoreErrors" : "false"
 },
 "test2" : {
 "command" : "echo \"$MAGIC2\" > test2.txt",
 "env" : { "MAGIC2" : "I come from the environment!" },
 "cwd" : "~",
 "test" : "test ! -e ~/test2.txt",
 "ignoreErrors" : "false"
 }
}

ServICeS

The services key defines which services are enabled or disabled on the instance being configured.
Linux systems utilize sysvinit to support the services key, while Windows systems use Windows
Service Manager. Additionally, you can configure services to restart when dependencies update,
such as files and packages. The following example enables nginx, configures it to run when the
instance starts, and restarts whenever /var/www/html updates on the instance.

"services" : {
 "sysvinit" : {
 "nginx" : {
 "enabled" : "true",
 "ensureRunning" : "true",
 "files" : ["/etc/nginx/nginx.conf"],
 "sources" : ["/var/www/html"]
 }
 }
}

Using AWS CloudFormation to Deploy Infrastructure 403

ConfIgSeTS

You can organize config keys into configSets, which allow you to call groups of configu-
rations at different times during an instance’s setup process and change the order in which
configurations are applied. The following example shows two configSets, which reverse the
order in which configurations execute.

"AWS::CloudFormation::Init" : {
 "configSets" : {
 "ascending" : ["config1" , "config2"],
 "descending" : ["config2" , "config1"]
 },
 "config1" : {
 "commands" : {
 "test" : {
 "command" : "echo \"$CFNTEST\" > test.txt",
 "env" : { "CFNTEST" : "I come from config1." },
 "cwd" : "~"
 }
 }
 },
 "config2" : {
 "commands" : {
 "test" : {
 "command" : "echo \"$CFNTEST\" > test.txt",
 "env" : { "CFNTEST" : "I come from config2" },
 "cwd" : "~"
 }
 }
 }
}

enforCIng AWS::CloudformATIon::InIT meTAdATA

To enforce the AWS::CloudFormation::Init metadata, instances being provisioned
in your template must call the cfn-init helper script as part of UserData execution
(either in the AWS::EC2::Instance UserData property or in the same property of an
AWS::AutoScaling::LaunchConfiguration resource). When doing so, you must provide
the stack name and resource logical ID. Optionally, you can execute a configSet or list of
configSets in the call.

You must pass UserData to instances in Base64 format. Thus, you call the Fn::Base64
function to convert the text-based script to a Base64 encoding.

"UserData" : { "Fn::Base64" :
 { "Fn::Join" : ["", [
 "#!/bin/bash -xe\n",

404 Chapter 8 ■ Infrastructure as Code

 "# Install the files and packages from the metadata\n",
 "/opt/aws/bin/cfn-init -v ",
 " --stack ", { "Ref" : "AWS::StackName" },
 " --resource WebServerInstance ",
 " --configsets InstallAndRun ",
 " --region ", { "Ref" : "AWS::Region" }, "\n"
]]}
 }

 AWS::CloudFormation::Interface

 This section details how to modify the ordering and presentation of parameters in the AWS
CloudFormation console. Without this section, parameters display alphabetically without
any additional clarifi cation. This is especially useful when providing templates to other
groups who are not familiar with the purpose of each input parameter.

 This Metadata section is only for the visual appearance of parameters
in the AWS CloudFormation console. metadata does not have change
templates that you submit via the AWS CLI or AWS SDK.

 The AWS::CloudFormation::Interface metadata key uses two child keys, ParameterGroups
and ParameterLabels .

 "Metadata" : {
 "AWS::CloudFormation::Interface" : {
 "ParameterGroups" : [ParameterGroup, ...],
 "ParameterLabels" : ParameterLabel
 }
 }

 pArAmeTergroupS

 You use the ParameterGroups section to organize sets of parameters into logical groupings,
which are then separated by horizontal lines in the console. Each entry in ParameterGroups
is defi ned as an object with a Label key and Parameters key. The Label key contains a
friendly text name for each grouping of parameters. The Parameters key contains a list of
logical IDs for each parameter in the group.

 "ParameterGroups" : [
 {
 "Label" : { "default" : "Network Configuration" },
 "Parameters" : ["VPCID", "SubnetId", "SecurityGroupID"]
 },
 {

Using AWS CloudFormation to Deploy Infrastructure 405

 "Label" : { "default":"Amazon EC2 Configuration" },
 "Parameters" : ["InstanceType", "KeyName"]
 }
]

pArAmeTerlAbelS

The ParameterLabels section lets you define friendly names for parameters in the console.
A logical ID such as BastionSecurityGroupName may be confusing to consumers of your
template, especially if the template is shared outside your organization or team. By providing
a more human-readable name, template portability is increased. The ParameterLabels key
takes a list of parameter logical IDs, each of which has a friendly description as a subkey.

"ParameterLabels" : {
 "VPCID" : { "default" : "Which VPC should this be deployed to?" }
}

The inclusion of the AWS::CloudFormation::Interface definition results in an easy-to-
understand list of parameters that you can complete, as shown in Figure 8.1.

f I gu r e 8 .1 AWS CloudFormation parameters

AWS::CloudFormation::Designer

This Metadata section specifies the visual layout and representation of resources when you
design templates in the AWS CloudFormation Designer. Since it is used by Designer, we do
not recommend that you manually modify this section.

406 Chapter 8 ■ Infrastructure as Code

AWS CloudFormation Designer
AWS CloudFormation Designer is a web-based graphical interface used to design and deploy
AWS CloudFormation templates. You can design templates with a drag-and-drop interface
of resource objects. You can create connections to make relationships between resources,
which automatically update dependencies between them. When you are ready to deploy, you
can submit the template directly to AWS CloudFormation or download it in JSON or YAML
format.

AWS CloudFormation Designer keeps track of resource positions and relationships with
metadata information in AWS::CloudFormation::Designer. Since no other service or com-
ponent uses this information, it is safe to leave as is within your template.

Custom Resources
Sometimes custom provisioning logic is required when creating resources in AWS.
Common examples of this include managing resources not currently supported by AWS
CloudFormation, interacting with third-party tools, or other situations where more complexity
is involved in the provisioning process.

AWS CloudFormation uses custom resource providers to handle the provisioning
and configuration of custom resources. Custom resource providers may be AWS Lambda
functions or Amazon Simple Notification Service (Amazon SNS) topics. When you create,
update, or delete a custom resource, either the AWS Lambda function is invoked or a mes-
sage is sent to the Amazon SNS topic you configure in the resource declaration.

In the custom resource declaration, you must provide a service token along with any
optional input parameters. The service token acts as a reference to where custom resource
requests are sent. This can be either an AWS Lambda function or Amazon SNS topic. Any
input parameters you include are sent with the request body. After the resource provider
processes the request, a SUCCESS or FAILED result is sent to the presigned Amazon S3 URL
you included in the request body. AWS CloudFormation monitors this bucket location for
a response, which it processes once it is sent by the provider. Custom resources can provide
outputs back to AWS CloudFormation, which are made accessible as properties of the cus-
tom resource. You can access these properties with the Fn::GetAtt intrinsic function to pass
the logical ID of the resource and the attribute you desire to query.

AWS Lambda Backed Custom Resources

Custom resources that are backed by AWS Lambda invoke functions whenever create,
update, or delete actions are sent to the resource provider. This resource type is incredibly
useful to reference other AWS services and resources that may not support AWS CloudFor-
mation. Also, you can use them to look up data from other resources, such as Amazon EC2
instance IDs or entries in an Amazon DynamoDB table.

You can include the AWS Lambda function, which acts as a resource provider in the
same AWS CloudFormation template that creates the custom resource and adds addi-
tional flexibility for stack update events. In this case, you can define the code for the

Using AWS CloudFormation to Deploy Infrastructure 407

AWS Lambda function itself inline in the template or store it in a separate location such
as Amazon S3. The following example demonstrates a custom resource, AMIInfo, which
makes use of an AWS Lambda function, AMIInfoFunction, as the resource provider. Two
additional properties, Region and OSName, provide inputs to the resource provider.

"AMIInfo": {
 "Type": "Custom::AMIInfo",
 "Properties": {
 "ServiceToken": { "Fn::GetAtt" : ["AMIInfoFunction", "Arn"] },
 "Region": { "Ref": "AWS::Region" },
 "OSName": { "Ref": "WindowsVersion" }
 }
}

For the AWS Lambda function to execute successfully, you must supply it with an IAM
role. If the function will interact with other AWS services, you need the following permis-
sions at minimum:

 ■ logs:CreateLogGroup

 ■ logs:CreateLogStream

 ■ logs:PutLogEvents

Custom Resources Associated with Amazon SNS

Although AWS Lambda functions are incredibly powerful and versatile, they have a limit of
5 minutes of execution time, at which point the function will exit prematurely. This may not
be desirable, especially when custom resources take a long time to provision or update. In
these situations, use custom resources associated with Amazon SNS.

With this resource type, notifications are sent to an Amazon SNS topic any time the
custom resource triggers. As the developer you are responsible for managing the system
that receives notifications and performs processing. For instance, transcoding of long video
files may take a longer time than AWS Lambda allows. In these situations, you subscribe an
Amazon EC2 instance to the Amazon SNS topic to listen for requests, consume the input
request object, perform the transcoding work, and place an appropriate response.

Custom Resource Success/Failure

For a custom resource to be successful in AWS CloudFormation, the resource provider must
return a success response to the presigned Amazon S3 URL that you provide in the request.
If you do not provide a response, the custom resource will eventually time out. This is
especially important with regard to update and delete actions. The custom resource provider
will need to respond appropriately to every action type (create, update, and delete) for both
successful and unsuccessful attempts. If you do not provide a response to an update action,
for example, the entire stack update will fail after the custom resource times out, and this
results in a stack rollback.

408 Chapter 8 ■ Infrastructure as Code

Resource Relationships
By default, AWS CloudFormation will track most dependencies between resources. There
are, however, some exceptions to this process. For example, an application server may not
function properly until the backend database is up and running. In this case, you can add
a DependsOn attribute to your template to specify the order of creation. The DependsOn
attribute specifies that creation of a resource should not begin until another completes.
A resource can have a dependency on one or more other resources in a stack. The following
code demonstrates that the resource EC2Instance has a dependency on MyDB, which
means the instance resource will not begin creation until the database resource is in a
CREATE_COMPLETE state.

{
 "Resources" : {
 "Ec2Instance" : {
 "Type" : "AWS::EC2::Instance",
 "Properties" : {
 "ImageId" : {
 "Fn::FindInMap" : ["RegionMap", { "Ref" : "AWS::Region" }, "AMI"]
 }
 },
 "DependsOn" : "myDB"
 },
 "myDB" : {
 "Type" : "AWS::RDS::DBInstance",
 "Properties" : {
 "AllocatedStorage" : "5",
 "DBInstanceClass" : "db.m1.small",
 "Engine" : "MySQL",
 "EngineVersion" : "5.5",
 "MasterUsername" : "MyName",
 "MasterUserPassword" : "MyPassword"
 }
 }
 }
}

Creation Policies

There may be situations where a dependency is not enough, such as when you install and
configure applications on an instance before you attach it to an elastic load balancer. In this
case, you can use a CreationPolicy. A CreationPolicy instructs AWS CloudFormation not
to mark a resource as CREATE_COMPLETE until the resource itself signals back to the service.

Using AWS CloudFormation to Deploy Infrastructure 409

You can confi gure the creation policy to require a specifi c number of signals in a certain
amount of time; otherwise, the resource will show CREATE_FAILED . Signals sent to a resource
are visible events in the AWS CloudFormation stack logs.

 You can defi ne creation policies with this syntax. When you confi gure creation poli-
cies for AWS Auto Scaling groups, you must specify the MinSuccessfulInstancesPercent
property so that a certain percentage of instances in the group setup successfully complete
before the group itself shows CREATE_COMPLETE . You can also confi gure creation policies to
require a certain number of signals (Count) in a certain amount of time (Timeout). The fol-
lowing code example displays an AWS Auto Scaling group resource with a creation policy.
This policy specifi es that at least three signals must be received in 15 minutes for the group
to create successfully.

 "AutoScalingGroup": {
 "Type": "AWS::AutoScaling::AutoScalingGroup",
 "Properties": {
 "AvailabilityZones": { "Fn::GetAZs": "" },
 "LaunchConfigurationName": { "Ref": "LaunchConfig" },
 "DesiredCapacity": "3",
 "MinSize": "1",
 "MaxSize": "4"
 },
 "CreationPolicy": {
 "ResourceSignal": {
 "Count": "3",
 "Timeout": "PT15M"
 }
 }
 }

 Wait Conditions

 You can use the WaitCondition property to insert arbitrary pauses until resources complete.
If you require additional tracking of stack creation, you can use the WaitCondition
property to add pauses to wait for external confi guration tasks. An example of this would
be if you create an Amazon DynamoDB table with a custom resource associated with AWS
Lambda to load data into the table and then install software on an Amazon EC2 instance
that reads data from the table. You can insert a WaitCondition into this template to
prevent the creation of the instance until the custom resource function signals that data has
been successfully loaded.

 For Amazon EC2 instances and AWS Auto Scaling groups, we recommend
that you use creation policies instead of wait conditions.

410 Chapter 8 ■ Infrastructure as Code

 Wait conditions consist of two resources in a template, an AWS::CloudFormation::
WaitCondition (wait condition) and an AWS::CloudFormation::WaitConditionHandle
(wait condition handle).

 The fi rst resource, the wait condition, is similar to a creation policy. It requires a signal
count and timeout value. However, it also requires a reference to a wait condition handle.
The wait condition handle acts as a reference to a presigned URL where signals are sent to
AWS CloudFormation, which it monitors.

 Wait condition handles should never be reused between stack creation
and subsequent updates, as it may result in signals from previous stack
actions being evaluated. Instead, create new wait conditions for each
stack action.

 In the following example, the WebServerGroup resource creates an AWS Auto Scaling
group with a count equal to the WebServerCapacity parameter. The example also creates a
wait condition and wait condition handle, where the wait condition handle expects a num-
ber of signals equal to the WebServerCapacity parameter.

 "WebServerGroup" : {
 "Type" : "AWS::AutoScaling::AutoScalingGroup",
 "Properties" : {
 "AvailabilityZones" : { "Fn::GetAZs" : "" },
 "LaunchConfigurationName" : { "Ref" : "LaunchConfig" },
 "MinSize" : "1",
 "MaxSize" : "5",
 "DesiredCapacity" : { "Ref" : "WebServerCapacity" },
 "LoadBalancerNames" : [{ "Ref" : "ElasticLoadBalancer" }]
 }
 },
 "WaitHandle" : {
 "Type" : "AWS::CloudFormation::WaitConditionHandle"
 },
 "WaitCondition" : {
 "Type" : "AWS::CloudFormation::WaitCondition",
 "DependsOn" : "WebServerGroup",
 "Properties" : {
 "Handle" : { "Ref" : "WaitHandle" },
 "Timeout" : "300",
 "Count" : { "Ref" : "WebServerCapacity" }
 }
 }

Using AWS CloudFormation to Deploy Infrastructure 411

With this approach, you need to ensure that the signal is sent to the wait condition han-
dle. This is done in the Amazon EC2 instance’s user data, which you define in the launch
configuration for AWS Auto Scaling groups. In this case, the LaunchConfig resource must
include a signal to the wait condition handle. To do this, you reference the wait condition
handle within the launch configuration’s UserData script.

"UserData" : {
 "Fn::Base64" : {
 "Fn::Join" : ["", ["SignalURL=", { "Ref" : "myWaitHandle" }]]
 }
}

Within UserData, you can use a curl command to send the success signal back to AWS
CloudFormation.

curl -T /tmp/a "WAIT_CONDITION_HANDLE_URL"

The file /tmp/a must be in the following format:

{
 "Status" : "SUCCESS",
 "Reason" : "Configuration Complete",
 "UniqueId" : "ID1234",
 "Data" : "Application has completed configuration."
}

The Data section of the JSON response can include arbitrary data about the signal. You
can make it accessible in the AWS CloudFormation template with the Fn::GetAtt intrinsic
function.

"Outputs": {
 "WaitConditionData" : {
 "Value" : { "Fn::GetAtt" : ["mywaitcondition", "Data"]},
 "Description" : "The data passed back as part of signalling the
WaitCondition"
 }
}

Stack Create, Update, and Delete Statuses
Whenever you perform an action on an AWS CloudFormation stack, the end result will bring
the stack into one of three possible statuses: Create, Update, and Delete. These statuses are
visible in the AWS CloudFormation console, or if you use the DescribeStacks action.

CREATE_COMPLETE

The stack has created successfully.

412 Chapter 8 ■ Infrastructure as Code

CREATE_IN_PROGRESS

The stack is currently undergoing creation. No error has been detected.

CREATE_FAILED

One or more resources has failed to create successfully, causing the entire stack creation to
fail. Review the stack failure messages to determine which resource(s) failed to create.

DELETE_COMPLETE

The stack has deleted successfully and will remain visible for 90 days.

DELETE_IN_PROGRESS

The stack is currently deleting.

DELETE_FAILED

The stack delete action has failed because of one or more underlying resources failing to
delete. Review the stack output events to determine which resource(s) failed to delete. There
you can manually delete the resource to prevent the stack delete from failing again.

ROLLBACK_COMPLETE

If a stack creation action fails to complete, AWS CloudFormation will automatically attempt
to roll the stack back and delete any created resources. This status is achieved when the
resources have been removed.

ROLLBACK_IN_PROGRESS

The stack has failed to create and is currently rolling back.

ROLLBACK_FAILED

If AWS CloudFormation is not able to delete resources that were provisioned during a failed
stack create action, the stack will enter ROLLBACK_FAILED. The remaining resources will not
be deleted until the error condition is corrected. Other than attempting to continue deleting
the stack, no other actions can be performed on the stack itself. To resolve this, review the
stack events to determine which resource(s) failed to delete.

UPDATE_COMPLETE

The stack has updated successfully.

UPDATE_IN_PROGRESS

The stack is currently performing an update.

UPDATE_COMPLETE_CLEANUP_IN_PROGRESS

When AWS CloudFormation updates certain resources, the type of update may require a replace-
ment of the original physical resource. In these situations, AWS CloudFormation will first create
the replacement resource and verify that the provision was successful. After all resources update,
the stack will enter this phase and remove any previous resources. For example, when you update

Using AWS CloudFormation to Deploy Infrastructure 413

the Name property of an AWS::S3::Bucket resource, AWS CloudFormation will create a bucket
with the new name value and then delete the previous bucket during the cleanup phase.

 UPDATE_ROLLBACK_COMPLETE

 If a stack update fails, AWS CloudFormation will attempt to roll the stack back to the last
working state. Once complete, the stack will enter the UPDATE_ROLLBACK_COMPLETE state.

 UPDATE_ROLLBACK_IN_PROGRESS

 After a stack update fails, AWS CloudFormation begins to roll back any changes to bring the
stack back to the last working state.

 UPDATE_ROLLBACK_COMPLETE_CLEANUP_IN_PROGRESS

 A failed rollback will require a cleanup of any newly created resources that would have
originally replaced existing ones. During this phase, replacement resources are deleted in
place of the originals.

 UPDATE_ROLLBACK_FAILED

 If the stack update fails and the rollback is unable to return it to a working state, it will enter
UPDATE_ROLLBACK_FAILED . You can delete the entire stack. Otherwise, you can review to
determine what failed to roll back and continue the update rollback again.

 Stack Updates
 You do not need to re-create stacks any time you need to update an underlying resource. You
can modify and resubmit the same template, and AWS CloudFormation will parse it for changes
and apply the modifi cations to the resources. This can include the ability to add new resources
or modify and delete existing ones. You can perform stack updates when you create a new
template or parameters directly, or you can create a change set with the updates.

 Some template sections, such as Metadata , require you to modify one
or more resources when the stack updates, as you cannot change them
on their own. You can change parameters without modifying the stack’s
template.

 When performing a stack action, such as an update, one or more stack events are cre-
ated. The event contains information such as the resource being modifi ed, the action being
performed, and resource IDs. One critical piece of information in the stack event is the
ClientRequestToken .

 All events triggered by a single stack action are assigned the same token value. For
example, if a stack update modifi es an Amazon S3 bucket and Amazon EC2 instance,
the corresponding Amazon S3 and Amazon EC2 API calls will contain the same request
token. This lets you easily track what API activity corresponds to particular stack actions.
This API activity can be tracked in AWS CloudTrail and stored in Amazon S3 for later
review.

414 Chapter 8 ■ Infrastructure as Code

 When you update a stack, underlying resources can exhibit one of several behaviors.
This depends on the update to the resource property or properties. Resource property
changes can cause one of update types to occur, as shown in Table 8.1 .

 TA b le 8 .1 AWS CloudFormation Update Types

Update Type Resource Downtime Resource Replacement

Update with No Interruption No No

Update with Some Interruption Yes No

Replacing Update Yes Yes

 For resource properties that require replacement, the resource’s physical
ID will change.

 Some resource properties do not support updates. In these cases, you
must create new resources first. After this, you can remove the original
resource from the stack.

 Update Policies

 You use the AWS CloudFormation UpdatePolicy to determine how to respond to changes to
AWS::AutoScaling::AutoScalingGroup and AWS::Lambda::Alias resources.

 For AWS Auto Scaling group update policies, there are policies that you can enforce.
These depend on the type of change you make and whether you confi gure the AWS Auto
Scaling scheduled actions. Table 8.2 displays the types of policies that take effect under
each scenario.

 TA b le 8 . 2 AWS Auto Scaling Update Types in AWS CloudFormation

AWS Auto Scaling Update Type

Change AWS
Auto Scaling
group Launch
Configuration

Change AWS Auto
Scaling group
VPCZoneIdentifier
Property

AWS Auto
Scaling group
Has a Scheduled
Action

AutoScalingReplacingUpdate X X

AutoScalingRollingUpdate X X

AutoScalingScheduledAction X

Using AWS CloudFormation to Deploy Infrastructure 415

 You can configure the WillReplace property for an UpdatePolicy to true
and give precedence to the AutoScalingReplacingUpdate settings.

 The AutoScalingReplacingUpdate policy defi nes how to replace updates. You can
replace the entire AWS Auto Scaling group or only instances inside.

 "UpdatePolicy" : {
 "AutoScalingReplacingUpdate" : {
 "WillReplace" : Boolean
 }
 }

 The AutoScalingRollingUpdate policy allows you to defi ne the update process
for instances in an AWS Auto Scaling group. This lets you confi gure the group to update
instances all at once, in batches, or with an additional batch.

 Suspendprocesses Attribute

 The SuspendProcesses attribute can defi ne whether to suspend AWS Auto Scaling
scheduled actions or those you invoke by alarms, which can otherwise cause the update
to fail.

 "UpdatePolicy" : {
 "AutoScalingRollingUpdate" : {
 "MaxBatchSize" : Integer,
 "MinInstancesInService" : Integer,
 "MinSuccessfulInstancesPercent" : Integer
 "PauseTime" : String,
 "SuspendProcesses" : [List of processes],
 "WaitOnResourceSignals" : Boolean
 }
 }

 Lastly, for AWS Auto Scaling groups, the AutoScalingScheduledAction property defi nes
whether to adhere to the group sizes (minimum, maximum, and desired counts) you defi ne
in your template. If your AWS Auto Scaling group has enabled scheduled actions, there is a
possibility that the actual group sizes no longer refl ect those in the template. If you run an
update without this policy set, it can cause the group to be reverted to its original size. If
you confi gure the IgnoreUnmodifiedGroupSizeProperties property to true , it will cause

416 Chapter 8 ■ Infrastructure as Code

AWS CloudFormation to ignore different group sizes when it compares the template to the
actual AWS Auto Scaling group.

"UpdatePolicy" : {
 "AutoScalingScheduledAction" : {
 "IgnoreUnmodifiedGroupSizeProperties" : Boolean
 }
}

For changes to an AWS::Lambda::Alias resource, you can define the
CodeDeployLambdaAliasUpdate policy. This controls whether a deployment is made
with AWS CodeDeploy whenever it detects version changes.

"UpdatePolicy" : {
 "CodeDeployLambdaAliasUpdate" : {
 "AfterAllowTrafficHook" : String,
 "ApplicationName" : String,
 "BeforeAllowTrafficHook" : String,
 "DeploymentGroupName" : String
 }
}

In the previous examples, you only require the ApplicationName and
DeploymentGroupName properties. These refer to the AWS CodeDeploy application and
deployment group, which should update when the alias changes.

Deletion Policies

When you delete a stack, by default all underlying stack resources are also deleted. If this
behavior is not desirable, apply the DeletionPolicy to resources in the stack to modify their
behavior when the stack is deleted. You use deletion policies to preserve resources when you
delete a stack (set DeletionPolicy to Retain). Some resources can instead have a snapshot
or backup taken before you delete the resource (set DeletionPolicy to Snapshot). The
following resource types support snapshots:

 ■ AWS::EC2::Volume

 ■ AWS::ElastiCache::CacheCluster

 ■ AWS::ElastiCache::ReplicationGroup

 ■ AWS::RDS::DBInstance

 ■ AWS::RDS::DBCluster

 ■ AWS::Redshift::Cluster

The following template example creates an Amazon S3 bucket with a deletion policy set
to retain the bucket when you delete the stack.

Using AWS CloudFormation to Deploy Infrastructure 417

 {
 "AWSTemplateFormatVersion" : "2010-09-09",
 "Resources" : {
 "myS3Bucket" : {
 "Type" : "AWS::S3::Bucket",
 "DeletionPolicy" : "Retain"
 }
 }
 }

 Exports and Nested Stacks
 Since AWS CloudFormation enforces limits on how large templates can grow and how many
resources, outputs, and parameters you can declare in one template, situations can arise
where you will need to manage more infrastructure than a single stack will allow. There are
two approaches to manage relationships between multiple stacks. You use stack exports
to share information between separate stacks or manage AWS CloudFormation stacks
themselves as resources in a “parent” or “master” stack (a nested stack relationship).

 Export and Import Stack Outputs

 You can export stack output values to import them into other stacks in the same account
and region. This allows you to share data that generates in one stack out to other stacks in
your account. If, for example, you create a networking infrastructure such as an Amazon
VPC in one stack, you can export the IDs of such resources from this stack and import them
into others at a later date.

 To export a stack value, update the Outputs section to include an Export declaration for
every output you want to share.

 "Outputs" : {
 "Logical ID" : {
 "Description" : "Information about the value",
 "Value" : "Value to return",
 "Export" : {
 "Name" : "Value to export"
 }
 }
 }

 Export values must have a unique name within the AWS account and
AWS region.

 After you declare the export and the stack creates or updates, it displays in the AWS
CloudFormation console on the Exports tab, as shown in Figure 8.2 .

418 Chapter 8 ■ Infrastructure as Code

 f I gu r e 8 . 2 AWS CloudFormation Exports tab

 To import this value into another stack, you use the Fn::ImportValue intrinsic function.
This intrinsic function requires only the export name as an input parameter (the name pres-
ent in the AWS CloudFormation console).

 You cannot change export values after you import them into another
stack. You must first modify the import stack so that it no longer uses the
export. To list stacks that import an exported output, use the ListImports
API action.

https://cloudformation.us-east-1.amazonaws.com/
 ?Action=ListImports
 &ExportName=SampleStack-MyExportedValue
 &Version=2010-05-15
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=[Access key ID and scope]
 &X-Amz-Date=20160316T233349Z
 &X-Amz-SignedHeaders=content-type;host
 &X-Amz-Signature=[Signature]

 Nesting with the AWS::CloudFormation::Stack Resource

 You can manage stacks as resources within the service in AWS CloudFormation. A single
parent stack can create one or more AWS::CloudFormation::Stack resources, which act as
child stacks that the parent manages. The direct benefi ts of this are as follows:

 ■ You can work around template limits that AWS CloudFormation imposes.

 ■ It provides the ability to separate resources into logical groups, such as network,
database, and web application.

 ■ It lets you separate duties. (Each team is responsible only for maintaining their
respective child stack.)

 You can increase the nesting levels, as shown in Figure 8.3 , with the
AWS::Cloud Formation::Stack resources.

Using AWS CloudFormation to Deploy Infrastructure 419

 f I gu r e 8 . 3 Nested stack structure

D

Root Stack

Root

Nested Stack

Parent

C

B

A

 From a workflow perspective, the “topmost” parent stack should manage
all updates to child stacks. In Figure 8.3 , if you need to update stack D, you
perform the update on stack A, the topmost parent, to accomplish this.

 You can share data from each nested stack if you use a combination of stack outputs
and the Fn::GetAtt function calls. If there is an output value from a nested stack that you
would like to access from its parent, the following syntax will let you access stack outputs.

 { "Fn::GetAtt" : ["logicalNameOfChildStack", "Outputs.attributeName"] }

 Outputs from stacks created by a nested stack (such as to access outputs
in stack C from stack A, as shown in Figure 8.3) can be accessed from the
parent stack(s). First, you will need to output the value in the originating
stack and then its parent and finally access the output from the parent. To
clarify, the output would originate in stack C and be added as an output to
stack B, and then stack A references it.

420 Chapter 8 ■ Infrastructure as Code

 Stack Policies
 Though you can assign resources to create, update, and delete policies to stacks directly,
there may be situations where you will want to prevent certain types of updates to stacks
themselves. By default, anyone with permissions to modify stacks can perform updates to all
underlying stack resources (if they have permissions to modify the resources themselves, or the
AWS CloudFormation service role attached to the stack has these permissions). You can as-
sign a stack policy to a stack to allow or deny access to modify certain stack resources, which
you can fi lter by the type of update. Stack policies apply to all users, regardless of their IAM
permissions.

 {
 "Statement" : [
 {
 "Effect" : "Allow",
 "Action" : "Update:*",
 "Principal": "*",
 "Resource" : "*"
 },
 {
 "Effect" : "Deny",
 "Action" : "Update:*",
 "Principal": "*",
 "Resource" : "LogicalResourceId/ProductionDatabase"
 }
]
 }

 Stack policies are not a replacement for appropriate access control from an
IAM policy. Stack policies are an additional fail-safe to prevent accidental
updates to critical resources.

 Stack policies protect all resources by default with an implicit deny. To allow access
to actions on stack resources, you must apply explicit allow statements to the policy. In
the previous example, an explicit allow specifi es that you can perform all updates on all
resources in the stack. However, the explicit deny for the ProductionDatabase resource
prevents update actions to this specifi c resource. You can specify allow and deny actions for

Using AWS CloudFormation to Deploy Infrastructure 421

either resource logical IDs or generic resource types. To specify policies for generic resource
types, use a condition statement as follows:

 {
 "Statement" : [
 {
 "Effect" : "Deny",
 "Principal" : "*",
 "Action" : "Update:*",
 "Resource" : "*",
 "Condition" : {
 "StringEquals" : {
 "ResourceType" : ["AWS::EC2::Instance", "AWS::RDS::DBInstance"]
 }
 }
 }
]
 }

 Once you apply a stack policy, you cannot remove it. During future
updates, the policy must be temporarily replaced.

 You can allow or deny specifi c types of updates for resources in your stack. Action types
include the following:

Update:Modify Update actions where resources will experience some or no interruption

 Update:Replace Update actions where replacement resources create (the physical ID of
the resource changes)

 Update:Delete Update actions where resources delete from the stack

 Update:* All update actions

 Once a stack policy has been set, it will need to be overridden during updates to pro-
tected resources. To do so, you supply a new, temporary stack policy. You add this stack
policy in the console under the Stack policy property, as shown in Figure 8.4 .

422 Chapter 8 ■ Infrastructure as Code

 f I gu r e 8 . 4 AWS CloudFormation Stack Policy field

 When you supply a stack policy during an update, it only modifies the pol-
icy for the duration of the update after which the original policy reinstates.

 AWS CloudFormation Command Line Interface
 AWS CloudFormation provides several utility functions apart from the standard API-based
component of the AWS CloudFormation CLI.

 Packaging Local Dependencies

 When you develop templates locally, you may require additional fi les for your infrastructure
that you do not want to defi ne inline as part of the template syntax. For example, you may
need to place confi guration fi les on Amazon EC2 instances or AWS Lambda function code.
You can use the aws cloudformation package command to upload local fi les and convert
local references in your template to Amazon S3 URIs. Consider the following example:

 AWSTemplateFormatVersion: '2010-09-09'
 Transform: 'AWS::Serverless-2016-10-31'

Using AWS CloudFormation to Deploy Infrastructure 423

Resources:
 MyFunction:
 Type: 'AWS::Serverless::Function'
 Properties:
 Handler: index.handler
 Runtime: nodejs4.3
 CodeUri: /home/user/code/lambdafunction

The CodeUri property refers to a local path on the user’s workstation (/home/user/code/
lambdafunction). To prepare this for deployment, you can run the following command:

aws cloudformation package --template /path_to_template/template.json --s3-bucket
mybucket --output json > packaged-template.json

When you execute this command, the AWS CLI will package the contents of /home/
user/code/lambdafunction into a .zip archive and upload it to the Amazon S3 bucket you
specify in the --s3-bucket parameter. After doing so, the template updates to refer to the
Amazon S3 URI for the archive file and generates the following:

AWSTemplateFormatVersion: '2010-09-09'
Transform: 'AWS::Serverless-2016-10-31'
Resources:
 MyFunction:
 Type: 'AWS::Serverless::Function'
 Properties:
 Handler: index.handler
 Runtime: nodejs4.3
 CodeUri: s3://mybucket/lambdafunction.zip

Deploy Templates with Transforms

Any time that you want to deploy an AWS CloudFormation template that contains trans-
forms, you must first create a change set. The change set is responsible for executing the
transform to generate a final template that you can deploy. If you would like to reduce this
to a one-step process, the aws cloudformation deploy command will generate and execute
the change set on your behalf. This is especially useful for rapid testing, as it eliminates the
need to approve change sets manually.

When you use this command, you can override default parameters with the
--parameter-overrides property.

aws cloudformation deploy --template /path_to_template/my-template.json --stack-
name my-new-stack --parameter-overrides Key1=Value1 Key2=Value2

424 Chapter 8 ■ Infrastructure as Code

AWS CloudFormation Helper Scripts
When you execute custom scripts on Amazon EC2 instances as part of your UserData, AWS
CloudFormation provides several important helper scripts. You can use these to interact with
the stack to query metadata, notify a CreationPolicy or WaitCondition, and process scripts
when AWS CloudFormation detects metadata updates.

cfn-init

You use this helper script to read AWS::CloudFormation::Init metadata from the
AWS::EC2::LaunchConfiguration or AWS::EC2::Instance resource being declared. It is
responsible for installing packages, adding files, creating users and groups, and any other
configuration you specify in your AWS::CloudFormation::Init metadata.

AWS::CloudFormation::Init metadata is not enforced automatically. You must call the
cfn-init helper script in your instances’ UserData. The following example demonstrates
a cfn-init call on an instance in an AWS CloudFormation stack. In this case, the
InstallAndRun configuration set executes on the instance.

"UserData" : { "Fn::Base64" :
 { "Fn::Join" : ["", [
 "#!/bin/bash -xe\n",
 "# Install the files and packages from the metadata\n",
 "/opt/aws/bin/cfn-init -v ",
 " --stack ", { "Ref" : "AWS::StackName" },
 " --resource WebServerInstance ",
 " --configsets InstallAndRun ",
 " --region ", { "Ref" : "AWS::Region" }, "\n"
]]}
}

cfn-signal

After cfn-init has been called and the AWS::CloudFormation::Init metadata has been
enforced successfully (or unsuccessfully), you can use cfn-signal to notify AWS CloudFormation
that the instance has completed its configuration. For example, if your template contains a
CreationPolicy or WaitCondition to prevent the setup of an AWS::ElasticLoadBalancing::
LoadBalancer resource until instances in your AWS::AutoScaling::AutoScalingGroup have
configured a custom application, cfn-signal performs the notification. The following UserData
example demonstrates how to pass the result of cfn-init to cfn-signal:

"UserData": {
 "Fn::Base64": {
 "Fn::Join": [
 "",
 [
 "#!/bin/bash -x\n",
 "# Install the files and packages from the metadata\n",

Using AWS CloudFormation to Deploy Infrastructure 425

 "/opt/aws/bin/cfn-init -v ",
 " --stack ", { "Ref": "AWS::StackName" },
 " --resource MyInstance ",
 " --region ", { "Ref": "AWS::Region" },
 "\n",
 "# Signal the status from cfn-init\n",
 "/opt/aws/bin/cfn-signal -e $? ",
 " --stack ", { "Ref": "AWS::StackName" },
 " --resource MyInstance ",
 " --region ", { "Ref": "AWS::Region" },
 "\n"
]
]
 }
}

cfn-get-metadata

If your template contains arbitrary metadata, use cfn-get-metadata to fetch this informa-
tion for use on your instance(s). You can use this helper script to query either an entire meta-
data block or a subtree. AWS CloudFormation supports only top-level keys.

cfn-hup

Since AWS CloudFormation executes UserData only on resource creation, instances will not
detect changes to AWS::CloudFormation::Init metadata automatically. Unlike other helper
scripts, you can configure cfn-hup to run as a daemon on instances. This script checks for
changes to resource metadata, can execute custom scripts whenever they are detected, and
allows you to perform configuration updates on instances in a stack.

The cfn-hup helper script requires you to perform several configuration steps before it
detects updates.

dAemon ConfIgurATIon fIle

You must create the cfn-hup.conf configuration file on the instance, and it needs to contain
the stack name. You can also use cfn-hup.conf to contain AWS credentials the daemon
requires, though it can also leverage IAM instance profiles. Here’s an example:

[main]
stack=<stack-name-or-id>

hookS ConfIgurATIon fIle

Whenever AWS CloudFormation detects changes to instance metadata, user-defined actions
are called based on settings in the hooks.conf configuration file. You can configure hooks
to run on one or more resource actions (add, update, or remove) and can execute arbitrary
commands. If there are scripts you want to call, you must add the scripts to the instance

426 Chapter 8 ■ Infrastructure as Code

before you execute the hook. If you require more than one configuration file, you can add
/etc/cfn/hooks.d/ on Linux instances. The hooks.conf file structure is as follows:

[hookname]
triggers=post.add or post.update or post.remove
path=Resources.<logicalResourceId> (.Metadata or
.PhysicalResourceId)(.<optionalMetadatapath>)
action=<arbitrary shell command>
runas=<runas user>

This template snippet demonstrates how to add a cfn-hup hook file to instances in an
AWS::AutoScaling::LaunchConfiguration resource. This hook file will detect updates
to the LaunchConfig resource and execute the wordpress_install config set you specify
in the AWS::CloudFormation::Init metadata.

[hookname]
triggers=post.add or post.update or post.remove
path=Resources.<logicalResourceId> (.Metadata or
.PhysicalResourceId)(.<optionalMetadatapath>)
action=<arbitrary shell command>
runas=<runas user>
"LaunchConfig": {
 "Type" : "AWS::AutoScaling::LaunchConfiguration",
 "Metadata" : {
 "AWS::CloudFormation::Init" : {
 ...
 "/etc/cfn/hooks.d/cfn-auto-reloader.conf": {
 "content": { "Fn::Join": ["", [
 "[cfn-auto-reloader-hook]\n",
 "triggers=post.update\n",
 "path=Resources.LaunchConfig.Metadata.AWS::CloudFormation::Init\n",
 "action=/opt/aws/bin/cfn-init -v ",
 " --stack ", { "Ref" : "AWS::StackName" },
 " --resource LaunchConfig ",
 " --configsets wordpress_install ",
 " --region ", { "Ref" : "AWS::Region" }, "\n",
 "runas=root\n"
]]},
 "mode" : "000400",
 "owner" : "root",
 "group" : "root"
}

Using AWS CloudFormation to Deploy Infrastructure 427

 AWS CloudFormation StackSets
 AWS CloudFormation StackSets gives users the ability to control, provision, and manage
stacks across multiple accounts, as shown in Figure 8.5 . From a centralized administrator
account, you can develop a template as the basis for provisioning similar stacks across a fl eet
of accounts.

 f I gu r e 8 .5 AWS CloudFormation StackSets structure

Administrator Account

Target
Account: A

Target
Account: B

Stack set

Stack Stack

Account E ...Account DAccount C

Region

Target
Account: A

Target
Account: B

Stack Stack

Account E ...Account DAccount C

Region

 Stack Set

 A stack set acts as a logical container for stack information in an administrator account.
Each stack set will contain information about the stacks you deploy to a single target
account in one or more regions. You can confi gure stack sets to deploy to regions in a
specifi c order and how many unsuccessful deployments are required to fail the entire
deployment.

 Though a stack set allows you to deploy stacks to multiple regions, the
stack set itself exists in one region, and you must manage it there.

 Stack Instance

Stack instances allow you to manage stacks in a target account, as shown in Figure 8.6 .
For example, if a stack set deploys to four regions in a target account, you create four
stack instances. An update to a stack set propagates to all stack instances in all accounts
and regions.

428 Chapter 8 ■ Infrastructure as Code

 f I gu r e 8 .6 AWS CloudFormation StackSet actions

Stack StackStackStack

Stack

Stack Set Create

Update

Preferences
Tags

Delete

StackStackStack

Stack StackStackStack

 Stack Set Operations

 When you perform operations on stack sets, you can confi gure how to control the fl ow of
updates across accounts and regions. You can specify a maximum number or percentage
of target accounts for concurrent deployment. Additionally, you can specify a maximum
number of percentage of failures (per region). Lastly, you can confi gure delete operations to
remove only the stack instances and stack set and leave the stack itself present in the target
account. This option is useful when removing control from an administrator account for
resources that need to remain operational in the target account.

 If you specify a maximum number of failures per region, stack updates will
not progress to the next region when this threshold is breached. The stack
set operation will stop completely.

 Stack Set Permissions

 For an administrator account to deploy to any target accounts, you must create a trust rela-
tionship between the accounts. To do this, you create an IAM role in each account.

 The administrator account requires an IAM service role with permissions to execute
stack set operations and assume an execution role in any target accounts. This service role
must have a trust policy that allows cloudformation.amazonaws.com .

 Any target accounts will require an execution role that you create in the administra-
tor account, which the service role can assume. This execution role will require AWS
CloudFormation permissions and permissions to manage any resources you defi ne in the
template being deployed by the stack set, as shown in Figure 8.7 .

Using AWS CloudFormation to Deploy Infrastructure 429

f I gu r e 8 .7 AWS CloudFormation StackSets permissions

Administrator Account All Target Accounts

AWS...AdministrationRole AWS...ExecutionRole

Target Account Gate

Before you create or update a stack set, evaluate potential blockers in target accounts. If a
certain resource type is not available in different regions, for example, this can cause the
stack set operation to fail. You can use a target account gate to perform evaluation tasks
with AWS Lambda functions in the target account. Depending on the return value of the
function, the stack set operation will either continue or stop. You can configure this so that
account gate failures count toward the stack set’s configured tolerance settings.

AWS CloudFormation Service Limits
Important service limits for AWS CloudFormation are listed in Table 8.3. You cannot raise
template-specific limits through a support request. You can raise some limits such as the
number of stacks per account.

TA b le 8 . 3 AWS CloudFormation Service Limits

Limit Value

Mappings per template 100

Outputs per template 60

Parameters per template 60

Resources per template 200

Stacks per account 200

Template body size 51,200 B (local file)

460,800 B (S3)

Using AWS CloudFormation with AWS CodePipeline
AWS CloudFormation has built-in integrations with AWS CodePipeline as a deployment
provider. Refer to Figure 8.8. When a template revision passes through a pipeline, AWS
CloudFormation can reference input parameters, stack policies, and other configuration data
in the AWS CodePipeline deployment.

430 Chapter 8 ■ Infrastructure as Code

f I gu r e 8 . 8 CloudFormation as a deployment provider

Deployment Configuration Properties
This section details deployment configuration properties including the following: Action
Mode, Stack or Change Set Name, Templates, Template Configurations, Capabilities, Role
Names, Output File Names, and Parameter Overrides.

Action Mode

You can use change sets in a pipeline to include a manual review step to ensure that the
changes you deploy are valid and desired before they actually execute. AWS CodePipeline
supports the following AWS CloudFormation actions:

 ■ Create or replace a change set

 ■ Create or update a stack

 ■ Delete a stack

 ■ Execute a change set

 ■ Replace a failed stack

Stack or Change Set Name

These refer to the new or existing stack or change set to be created, updated, or deleted.

Using AWS CloudFormation to Deploy Infrastructure 431

 Template

 This is the location of the template fi le to submit. Since AWS CodePipeline uses artifacts to
pass fi les between stages, you must defi ne this fi le within the artifact with the following:

 ArtifactName::TemplateFileName

 Template Configuration

 The template confi guration is where you specify properties such as template parameters and
the stack policy.

 Do not commit sensitive information to your repository. If this file contains
information such as passwords, restrict access and pull it into the artifact
from another source, such as Amazon S3.

 Capabilities

 You must specify any templates which create, update, or delete IAM resources with either
the CAPABILITY_IAM or CAPABILITY_NAMED_IAM within this property.

 Role Name

 Unlike manually provisioned stacks, AWS CodePipeline requires a service role to assume
when you perform actions in AWS CloudFormation.

 Output File Name

 This is an optional output that you can add to the output artifact after the deploy action
completes. This will add any stack outputs to the pipeline output artifact.

 Parameter Overrides

 Though you can defi ne parameters in the template confi guration fi le, the parameter over-
rides section lets you specify a JSON input fi le to override any already-specifi ed parameters.
You can retrieve data from pipeline artifacts with the Fn::GetParam intrinsic function. The
following example demonstrates how to specify a parameter override for ParameterName .

 {
 " ParameterName " : {
 "Fn::GetParam" : [" ArtifactName ", " config-file-name .json", " ParamName "]
 }
 }

 All parameters you specify in the parameter overrides or template configu-
ration file must already exist in the Parameters section of the template you
want to deploy.

 Parameter overrides can leverage two intrinsic functions specifi c to AWS CodePipeline.
These functions allow you to specify dynamic pipeline values and data from artifacts being
passed through the pipeline.

432 Chapter 8 ■ Infrastructure as Code

fn::geTArTIfACTATT

You use Fn::GetArtifactAtt to query values of an input artifact attribute, such as the
Amazon S3 bucket name where the artifact is stored. This function enables you to gather
information about the artifact itself, not data within the artifact.

When you run a pipeline, AWS CodePipeline copies and writes files to the pipeline’s
artifact store (Amazon S3 bucket). AWS CodePipeline generates the filenames in
the artifact store. These filenames are unknown before you run the pipeline. This attribute
requires the Amazon S3 bucket name (BucketName), artifact object key (ObjectKey), and
artifact URL (URL).

Use the following syntax to retrieve an attribute value of an artifact:

{ "Fn::GetArtifactAtt" : ["artifactName", "attributeName"] }

fn::geTpArAm

Complimentary to Fn::GetArtifactAtt, the Fn::GetParam function allows you to query
information within an artifact. Any files in the artifact that you query must be in valid JSON
format. For example, you can add outputs from a stack as a JSON file to the pipeline arti-
fact, which you use Fn::GetParam to query.

{ "Fn::GetParam" : ["artifactName", "JSONFileName", "keyName"] }

Summary
In this chapter, you became familiar with provisioning and managing AWS infrastructure
using AWS CloudFormation. AWS CloudFormation allows you to describe an entire enter-
prise’s infrastructure as one or more template files, achieving infrastructure as code (IaC) in
an environment.

By leveraging AWS CloudFormation in a deployment pipeline, you can dynamically
provision and update infrastructure over time by simply committing code to a Git-based
repository (AWS CodeCommit). You can use AWS CodePipeline to reliably automate com-
plex deployment processes.

AWS CloudFormation uses a declarative language (JSON or YAML template) to
describe, model, and provision all infrastructure resources for your applications across all
regions and accounts in your cloud environment in an automated and secure manner. This
file serves as the single source of truth for your cloud environment. You pay only for the
AWS resources you require to run your applications.

The template contains the infrastructure to where AWS will deploy and configuration
properties. After you deploy a template in an account, you can redeploy it again in the same
or different account and/or region.

A stack is a collection of resources that will be deployed and managed by AWS
CloudFormation. When you submit a template, the resources you configure are provi-
sioned and then make up the stack itself. Any modifications to the stack affect underlying
resources. Stacks use the IAM user or AWS role authorizations to invoke an action. The
template only requires the Resources section.

Summary 433

When you create a stack, you can submit a template from a local file or via a URL that
points to an object in Amazon S3. If you submit the template as a local file, it uploads to
Amazon S3 on your behalf.

Two key benefits of AWS CloudFormation are that your infrastructure is repeatable and
that it is versionable.

A change set is a description of the changes that will occur to a stack should you sub-
mit the template and/or parameter updates. When you process stack updates, the template
snippets you reference in any transforms pull from their Amazon S3 locations. If a snippet
updates without your knowledge, the updated snippet will import into the template. Use a
change set where there is a potential for data loss.

If values input into a template cannot be determined until the stack or change set is
actually created, intrinsic functions resolve this by adding dynamic functionality into AWS
CloudFormation templates. Condition functions are intrinsic functions to create resources
or set resource properties that evaluate true or false conditions.

AWS CloudFormation Designer is a web-based graphical interface to design and
deploy AWS CloudFormation templates. You can create connections to make relationships
between resources that automatically update dependencies between them.

AWS CloudFormation uses custom resource providers to handle the provisioning and
configuration of custom resources with AWS Lambda functions or Amazon SNS topics.
You must provide a service token along with any optional input parameters. The service
token acts as a reference to where custom resource requests are sent. This can be an AWS
Lambda function or Amazon SNS topic. Custom resources can provide outputs back to
AWS CloudFormation, which are made accessible as properties of the custom resource.

Custom resources associated with AWS Lambda invoke functions whenever create, update,
or delete actions are sent to the resource provider. This resource type is incredibly useful to ref-
erence other AWS services and resources that may not support AWS CloudFormation.

You can use custom resources associated with Amazon SNS for any long-running cus-
tom resource tasks, such as transcoding a large video file.

By default, AWS CloudFormation will track most dependencies between resources.
A resource can have a dependency on one or more other resources in a stack, in which case you
create a resource relationship to control the order of resource creation, updates, and deletion.

Whenever you perform an action on an AWS CloudFormation stack, the end result will
bring the stack into one of several possible statuses. These actions can complete or fail. In the
case of a failed event, you can roll back the release based on your update or deletion policies.

To update stacks, you can modify and resubmit the same template or create a change set;
AWS CloudFormation will parse it for changes (add, modify, or delete) and apply the modifi-
cations to the resources. You use the AWS CloudFormation UpdatePolicy to determine how
to respond to changes. When you delete a stack, by default all underlying stack resources
also delete. You use deletion policies to preserve resources when you delete a stack.

AWS Auto Scaling group update policies enforce the behavior that will occur when an
update is performed on an AWS Auto Scaling group. This depends on the type of change
you make and whether you configure the AWS Auto Scaling scheduled actions. You can
replace the entire AWS Auto Scaling group or only instances inside it. When you delete
a stack, all underlying stack resources are deleted. You can apply the DeletionPolicy to
resources in the stack to modify their behavior when the stack deletes.

434 Chapter 8 ■ Infrastructure as Code

You use stack exports to share information between separate stacks. Or, you can manage
AWS CloudFormation stacks themselves as resources in a nested stack relationship. You can
export stack output values to import them into other stacks in the same account and region.
This allows you to share data that generates in one stack out to other stacks in your account.

You can assign a stack policy to a stack to allow or deny access to modify certain stack
resources, which you can filter by the type of update. Stack policies protect all resources by
default with an implicit deny. To allow access to actions on stack resources, you must apply
explicit allow statements to the policy.

When you execute custom scripts on Amazon EC2 instances as part of your UserData,
AWS CloudFormation provides several important helper scripts. You can use these to inter-
act with the stack to query metadata, notify a CreationPolicy or WaitCondition, and pro-
cess scripts when AWS CloudFormation detects metadata updates.

AWS CloudFormation StackSets give users the ability to control, provision, and man-
age stacks across multiple accounts and regions. A stack set as a logical container for stack
information in an administrator account. Each stack set will contain information about
stacks that you deploy to a single target account in one or more regions. Stack instances
allow you to manage stacks in a target account. An update to a stack set propagates to all
stack instances in all accounts and regions. When you perform operations on stack sets,
you can configure how to control the flow of updates across accounts and regions. The
administrator account requires an IAM service role with permissions to execute stack set
operations and assume an execution role in any target account(s).

You can use a target account gate to perform evaluation tasks with AWS Lambda func-
tions in the target account.

You cannot raise AWS CloudFormation template-specific limits through a support
request. You can raise some limits, such as the number of stacks per account.

AWS CloudFormation has built-in integrations with AWS CodePipeline as a deploy-
ment provider. When a template revision passes through a pipeline, AWS CloudFormation
can reference input parameters, stack policies, and other configuration data in the AWS
CodePipeline deployment.

You can use change sets in a pipeline to include a manual review step to ensure that the
changes you deploy are valid and desired before they actually execute with the use of the
Action Mode.

Exam Essentials
Understand Infrastructure as Code (IaC). You model infrastructure as code to automate the
provisioning, maintenance, and retirement of complex infrastructure across an organization.
The declarative syntax allows you to describe the resource state you desire, instead of the
steps to create it. You can version and maintain IaC with the same development workflow as
application and configuration code.

Understand the purpose of change sets. Change sets allow administrators to preview the
changes that will take place when a given template deploys to the AWS CloudFormation.

Exam Essentials 435

This includes a description of resources that you will update or replace entirely. You create
change sets to help prevent stack updates that could accidentally result in the replacement of
critical resources, such as databases.

Know the AWS CloudFormation permissions model. When you create, update, or de-
lete stacks, AWS CloudFormation will operate with the same permissions as the IAM user
or IAM role that performs the stack action. For example, a user who deletes a stack that
contains an Amazon EC2 instance must also have the ability to terminate instances; other-
wise, the stack delete fails. AWS CloudFormation also supports service roles, which you can
pass to the service when you perform stack actions. This requires that the user or role have
permissions to pass the service role to perform the stack action.

Know the AWS CloudFormation template structure. You can use these AWS CloudFormation
template properties: AWSTemplateFormatVersion, Description, Metadata, Parameters,
Mappings, Conditions, Transform, Resources, and Outputs. Templates only require the
Resources property, and you must define at least one resource in every template.

Know how to use the intrinsic functions. It is important to understand the AWS
CloudFormation templates intrinsic functions.

 ■ Fn::FindInMap

 ■ Fn::GetAtt

 ■ Fn::Join

 ■ Fn::Split

 ■ Ref

Understand the purpose of AWS::CloudFormation::Init. This template section defines
the configuration tasks the cfn-init helper script will perform on instances that you create
individually or as part of AWS Auto Scaling launch configurations. This metadata key allows
you to define a more declarative syntax for configuration tasks compared to using proce-
dural steps in the UserData property.

Know the use cases for both custom resource types. You can implement custom resources
with AWS Lambda functions or Amazon SNS topics. The primary difference between each
type is that AWS Lambda-backed custom resources have a maximum execution duration
of 5 minutes. This may not work for custom resources that take a long time to provision or
update. In those cases, Amazon SNS topics backed by Amazon EC2 instances would allow
for long running tasks.

Understand how AWS CloudFormation manages resource relationships. AWS
CloudFormation will automatically reorder resource provisioning and update steps based
on known dependencies. For example, if a template declares an Amazon VPC and a sub-
net, the subnet will not create before the Amazon VPC (a subnet requires an Amazon VPC
ID during creation). However, AWS CloudFormation is not aware of all possible relation-
ships, so you must manually declare them with the DependsOn property. If a template
declares an Amazon EC2 instance and AWS DynamoDB table, and the table is referenced
inside the instance’s UserData property, you must declare a DependsOn property that states
the instance depends on the table.

436 Chapter 8 ■ Infrastructure as Code

Understand wait conditions and creation policies. In some cases, resources in a template
should wait for other resources to provision and configure before starting their tasks. For
example, you may want to prevent creation of a load balancer resource until instances in an
AWS Auto Scaling group have installed a web application. In those cases, you can use either
wait conditions or creation policies. Wait conditions require you to add two separate resourc-
es to the template (AWS::CloudFormation::WaitCondition and AWS::CloudFormation::
WaitConditionHandle). The instance’s UserData property references the wait condition
handle, where a success or failure signal will be sent. A creation policy does not require the
additional resources, and it allows for additional options such as timeouts and signal counts.

Understand how stack updates affect resources. When you update a stack, resources may
behave differently when properties update. If an Amazon S3 bucket is created as part of a stack
and later the bucket policy is updated, the resource will update with no interruption. However,
if the bucket name later updates, you must replace the bucket. Resources can undergo one of
three types of updates: update with no interruption, update with some interruption, and replace
update.

Know how to use exports and nested stacks to share stacks. Stack exports allow you to
access stack outputs in other stacks in the same region. Exports, however, come with some
limitations. For example, you cannot delete stacks that export values until all other stacks
that import the exported value have been modified to no longer include the import. Nested
stacks make use for the AWS::CloudFormation::Stack resource type. This way, a single
stack can create multiple “child” stacks, which can declare their own resources (including
other stacks). This is a useful mechanism to work around some service limits such as the
number of resources per template (200).

Understand stack policies. To prevent updates to critical stack resources, you implement
stack policies. A stack policy declares what resources you can and cannot update and
under what circumstances. A stack containing an Amazon RDS instance, for example,
can include a stack policy that prevents updates that require replacement of the database
 instance.

Resources to Review
AWS CloudFormation:

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome
.html

Infrastructure as Code:

https://d1.awsstatic.com/whitepapers/DevOps/infrastructure-as-code.pdf

AWS Quick Starts:

https://aws.amazon.com/quickstart/

Exercises 437

Quick Start Builder’s Guide:

https://aws-quickstart.github.io/templates-examples.html

Bootstrapping Applications via AWS CloudFormation:

https://s3.amazonaws.com/cloudformation-examples/
BoostrappingApplicationsWithAWSCloudFormation.pdf

AWS CloudFormation Templates:

https://aws.amazon.com/cloudformation/templates/

AWS Resource Types Reference:

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
aws-template-resource-type-ref.html

Exercises

e x e r C I S e 8 .1

Write your own AWS Cloudformation Template

1. Create an Amazon S3 bucket with a static website configuration that includes refer-
ences to index and error documents, such as index.html and error.html, respectively.

2. Create an output to the bucket’s website URL.

3. Create an output that displays the bucket name.

4. Upload the code as index.html to the root of the bucket for the index document.

<html>
 <body>
 <h1>Hello, World!</h1>
 </body>
</html>

5. Upload the code as error.html to the root of the bucket for the error document.

<html>
 <body>
 <h1>Oops! Something went wrong.</h1>
 </body>
</html>

6. Access the URL the output provides from your AWS CloudFormation stack to verify
the static website works.

438 Chapter 8 ■ Infrastructure as Code

e x e r C I S e 8 . 2

Troubleshoot a failed Stack deletion

1. Deploy the AWS CloudFormation code template, which provisions an Amazon S3
bucket in your account.

{
 "Resources" : {
 "ExampleBucket" : {
 "Type": "AWS::S3::Bucket"
 }
 },
 "Outputs" : {
 "BucketName" : {
 "Value": { "Ref": "ExampleBucket" }
 }
 }
}

2. Upload several files and objects to the Amazon S3 bucket that the template creates.

3. Delete the stack and monitor progress until it fails.

Note the error output by AWS CloudFormation when the stack reaches the DELETE_
FAILED state.

4. Delete all files from the Amazon S3 bucket.

5. Attempt to delete the stack again, but do not enable the option to retain the bucket.

e x e r C I S e 8 . 3

monitor Stack update Activity

1. Deploy the AWS CloudFormation code template, which provisions an Amazon S3
bucket in your account.

{
 "Resources" : {
 "ExampleBucket" : {
 "Type": "AWS::S3::Bucket"
 }
 },
 "Outputs" : {

Exercises 439

 "BucketName" : {
 "Value": { "Ref": "ExampleBucket" }
 }
 }
}

2. After the stack is created, make note of the output value. This is the name of your
Amazon S3 bucket.

3. Use the template code to update the stack, and replace BUCKET_NAME with a name of
your choice.

{
 "Resources" : {
 "ExampleBucket" : {
 "Type": "AWS::S3::Bucket",
 "Properties": {
 "BucketName": "BUCKET_NAME"
 }
 }
 },
 "Outputs" : {
 "BucketName" : {
 "Value": { "Ref": "ExampleBucket" }
 }
 }
}

Note that a new bucket is created, and the original bucket is deleted. This is because you
cannot change bucket names after initial creation, so a replacement must be provisioned.

440 Chapter 8 ■ Infrastructure as Code

Review Questions
1. Which of the AWS CloudFormation template sections is/are required?

A. AWSTemplateFormatVersion

B. Parameters

C. Metadata

D. Resources

E. All of the above

2. You are writing an AWS CloudFormation template and would like to create an output
value corresponding to your application’s website URL. The application is composed of
two application servers in a private subnet behind an Elastic Load Balancing load balancer.
The application servers read from the Amazon Relational Database Service (Amazon RDS)
database instance. The logical IDs of the instances are AppServerA and AppServerB. The
logical IDs of the load balancer and database are AppLB and AppDB, respectively.

"Outputs" : {
 "AppEndpoint" : {
 "Description" : "URL to access the application",
 "Value" : "Value to return"
 }
}

Which code correctly completes the previous output declaration?

A. { "Fn::Join": ["", [https://, { "Ref": "AppLB" }, "/login.php"]] }

B. { "Fn::Join": ["", [https://, { "Fn::GetAtt": ["AppServerA",
"PublicDNSName"] }, "/login.php"]] }

C. { "Fn::Join": ["", [https://, { "Ref": ["AppLB", "DNSName"] },
"/login.php"]] }

D. { "Fn::Join": ["", [https://, { "Fn::GetAtt": ["AppDB", "Endpoint
.Address"] }, "/login.php"]] }

E. { "Fn::Join": ["", [https://, { "Fn::GetAtt": ["AppLB", "DNSName"] },
"/login.php"]] }

3. An AWS CloudFormation template you have written uses a CreationPolicy to ensure
that video transcoding instances launch and configure before the application server
instances so that they are available before users are able to access the website. However,
you are finding that the stack always reaches the creation policy’s timeout value before the
transcoding instances complete setup.

Why could this be? (Select THREE.)

A. The user data script does not include a call to cfn-signal.

B. The instance could not be launched because of account limits.

Review Questions 441

C. The user data script fails before reaching the cfn-signal step.

D. The instance cannot connect to the AWS CloudFormation endpoint when calling
cfn-signal.

4. When you attempt to update an Amazon Relational Database Service (Amazon RDS)
instance in your AWS CloudFormation stack, you experience a Resource failed to
stabilize error, which causes the stack to roll back any changes you attempted.

What might be the cause of this error, and how could it be resolved?

A. The database is corrupted and cannot be updated. Take a snapshot of the database,
and use it to create a replacement.

B. The database took too long to update. Remove the database from the AWS
CloudFormation stack by applying a DeletionPolicy of Retain, and manage the
stack using the Amazon RDS console or AWS CLI.

C. The database took too long to update, and the session credentials used by AWS
CloudFormation timed out. Use a service role to perform the update.

D. You have attempted to perform an update that is not supported by Amazon RDS.
Review the specification documentation and attempt a valid update.

E. I/O has not been halted on the database before performing the update, and AWS
CloudFormation timed out waiting for database transactions to halt. Temporarily
block I/O and attempt the update again.

5. A custom resource associated with AWS Lambda in your stack creates successfully;
however, it attempts to update the resource result in the failure message Custom Resource
failed to stabilize in the expected time. After you add a service role to extend the
timeout duration, the issue still persists.

What may also be the cause of this error?

A. The custom resource defined a function for handling the CREATE action but did not do
the same for the UPDATE action; thus, a success or failure signal was not sent to AWS
CloudFormation.

B. The service role does not have appropriate permissions to invoke the custom resource
function.

C. The custom resource function no longer exists.

D. All of the above.

6. After you deploy an AWS Serverless Application Model (AWS SAM) template to AWS
CloudFormation, can you view the original template? Why or why not?

A. No, after the template is submitted and the AWS::Serverless transform is executed,
an AWS CloudFormation-supported template is generated.

B. Yes, the original template is saved and accessible using the get-stack-template AWS
CLI command.

C. Yes, it is saved in the Amazon Simple Storage Service (Amazon S3) bucket created by
AWS CloudFormation for AWS SAM templates.

D. No, AWS CloudFormation does not retain processed templates.

442 Chapter 8 ■ Infrastructure as Code

7. When defining an AWS Serverless Application Model (AWS SAM) template, how can you
create an Amazon API Gateway as part of the stack?

A. By defining an AWS::ApiGateway::RestApi resource and any associated
AWS::ApiGateway::Method resources

B. One will be created automatically for you whenever AWS::Serverless::Function
resources are declared with one or more Events.

C. By defining an AWS::Serverless::Api and providing an inline or external Swagger
definition

D. AWS::ApiGateway::RestApi resources are not supported in AWS SAM templates.

E. A, B, and C

8. Which of these helper scripts performs updates to OS configuration when an AWS
CloudFormation stack updates?

A. cfn-hup

B. cfn-init

C. cfn-signal

D. cfn-update

9. Which of these options allows you to specify a required number of signals to mark the
resource as CREATE_COMPLETE?

A. Wait Condition

B. Wait Condition Handler

C. CreationPolicy

D. WaitCount

10. How would you preview the changes a stack update will make without affecting any
resources in your account?

A. Create a change set.

B. Perform the stack update, and then manually roll back.

C. Perform the stack update on a test stack.

D. Do a manual diff of both templates.

11. How would you access a property of a resource created in a nested stack?

A. This cannot be done.

B. In the child stack, declare the resource property as a stack output. In the parent
stack, use Fn::GetAtt and pass in two parameters, the child stack logical ID and
Outputs.NestedStackOutputName.

C. In the child stack, export the resource property. In the parent stack, import the
exported value.

D. Use the cross-stack references.

Review Questions 443

12. By default, with what permissions will AWS CloudFormation stack operations perform?

A. Full administrator

B. The permissions of the user performing the operation

C. The AWS CloudFormation service role

D. The AWS CloudFormation does not use permissions

13. An AWS CloudFormation template declares two resources: an AWS Lambda function and
an Amazon DynamoDB table. The function code is declared inline as part of the template
and references the table. In what order will AWS CloudFormation provision the two
resources?

A. Amazon DynamoDB table, AWS Lambda function

B. AWS Lambda function, Amazon DynamoDB table

C. This cannot be determined ahead of time.

D. This depends on the template.

14. Which occurs during a replacing update?

A. The resource becomes unavailable.

B. The resource physical ID changes.

C. A new resource is created.

D. The original resource is deleted during the cleanup phase.

E. All of the above

15. Which of the update types results in resource downtime? (Select TWO.)

A. Update with No Interruption

B. Update with Some Interruption

C. Replacing Update

D. Update with No Data

E. Static Update

16. What must occur before a stack that exports an output can be deleted?

A. Any stacks importing the exported value must remove the import.

B. The export must be removed from the stack.

C. Nothing is required.

D. The stack must be deleted.

17. If an AWS CloudFormation stack is in UPDATE_IN_PROGRESS state, which of the states are
possible transitions? (Select THREE.)

A. UPDATE_ROLLBACK_COMPLETE

B. UPDATE_FAILED

C. UPDATE_ROLLBACK_FAILED

D. UPDATE_COMPLETE

E. UPDATE_COMPLETE_CLEANUP_IN_PROGRESS

444 Chapter 8 ■ Infrastructure as Code

18. What does it mean when an AWS CloudFormation stack is in
UPDATE_COMPLETE_CLEANUP_IN_PROGRESS state?

A. The stack has failed to update, and it is removing newly created resources.

B. The stack has successfully updated, and it is removing old resources.

C. The stack has successfully updated, and it is removing new resources.

D. The stack has failed to update, and it is removing old resources.

19. Which of the formats are valid for an AWS CloudFormation template? (Select TWO.)

A. YAML

B. XML

C. JSON

D. Markdown

E. LaTeX

20. What are some challenges to consider when using the AWS Command Line Interface
(AWS CLI) or AWS software development kits (AWS SDKs) to provision and manage
infrastructure compared to AWS CloudFormation?

A. Reduction of human error

B. Repeatable infrastructure

C. Reduced IAM permissions requirements

D. Versionable infrastructure

E. All of the above

21. What does a service token represent in a custom resource declaration?

A. The AWS service that receives the request

B. The Amazon Simple Notification Service (Amazon SNS) or AWS Lambda resource
Amazon Resource Name (ARN) that receives the request

C. The on-premises server IP address that receives the request

D. The type of action to take

E. The commands to execute for the custom resource

22. You are creating a custom resource associated with AWS Lambda that will execute several
database functions in an Amazon Relational Database Service (Amazon RDS) database
instance. As part of this, the functions will return data you would like to use in other
resources declared in your AWS CloudFormation template.

How would you best pass this data to the other resources declared in the template?

A. Store the data in a JSON file in an Amazon Simple Storage Service (Amazon S3)
bucket, and use the AWS Command Line Interface (AWS CLI) to download the object.

B. Store the output data in AWS Systems Manager Parameter Store, and query the
parameter store using the AWS CLI.

C. Use custom resource outputs to declare the returned data as resource properties. Then,
query the properties using the Fn::GetAtt intrinsic function.

D. This cannot be accomplished.

Configuration as
Code

The AWS CerTified developer –
ASSoCiATe exAm TopiCS Covered in
ThiS ChApTer mAy inClude, buT Are
noT limiTed To, The folloWing:

Domain 1: Deployment

 ✓ 1.1 Deploy Serverless Applications.

 ✓ 1.2 Use AWS OpsWorks Stacks to Deploy Applications.

 ✓ 1.3 Use Amazon Elastic Container Service (Amazon ECS)
to Deploy Containers.

Domain 3: Development with AWS Services

 ✓ 3.1 Write code for serverless applications.

 ✓ 3.2 Write code that interacts with AWS services by using
APIs, SDKs, and AWS CLI.

Chapter

9

AWS® Certified Developer Official Study Guide
By Nick Alteen, Jennifer Fisher, Casey Gerena, Wes Gruver, Asim Jalis,
Heiwad Osman, Marife Pagan, Santosh Patlolla and Michael Roth

 Amazon Web Services, Inc.

 Introduction to Configuration as Code
 To expand on the theme of automation, you can add confi guration to AWS enterprise
as code.

 AWS CloudFormation leverages standard AWS APIs to provision and update infra-
structure in your account. Though AWS CloudFormation is highly effective at this
task, there are some confi guration tasks that are either inaccessible from the AWS API
or more easily done with standard confi guration management tools, such as Chef and
Puppet. AWS OpsWorks Stacks provides a serverless Chef infrastructure to confi gure
servers with Chef code, known as recipes . Much like AWS CloudFormation templates,
Chef recipe code is declarative in nature. This means you do not have to rely on the
accuracy of procedural steps, as you would with a userdata script you apply to
Amazon Elastic Compute Cloud (Amazon EC2) instances or launch confi gurations. If
you separate infrastructure from confi guration, you also gain the ability to update each
on separate cadences.

 If a security vulnerability is found that requires a configuration update,
use a recipe update. When you do the same in AWS CloudFormation, this
requires a combination of userdata updates and cfn-hup configuration.
A specific configuration management tool, however, requires only a new
configuration code to submit to the instance, which will digest and apply
the changes automatically.

 In containerized environments, confi guration of the container itself must also be done.
Amazon Elastic Container Service (Amazon ECS) allows you to defi ne the requirements of,
schedule, and confi gure Docker containers to deploy to a cluster of Amazon EC2 instances.
The cluster itself can be easy to provision with AWS CloudFormation, along with confi gu-
ration of container requirements such as CPU and memory needs. By combining this with
confi guration management tools, both the cluster and any active containers can be confi g-
ured dynamically.

Using AWS OpsWorks Stacks to Deploy Applications 447

Using AWS OpsWorks Stacks to Deploy
Applications
AWS OpsWorks Stacks lets you manage applications and servers on AWS and on-premises.
With AWS OpsWorks Stacks, you can model your application as a stack that contains dif-
ferent layers, such as load balancing, database, and application server. You can deploy and
configure Amazon EC2 instances in each layer or connect other resources such as Amazon
Relational Database Service (Amazon RDS) databases. AWS OpsWorks Stacks lets you set
automatic scaling for your servers on preset schedules or in response to a constant change
of traffic levels, and it uses lifecycle hooks to orchestrate changes as your environment
scales. You run Chef recipes with Chef Solo, which allows you to automate tasks such as
install packages and program languages or frameworks, configure software, and more.

What Is AWS OpsWorks Stacks?
AWS OpsWorks Stacks is the only service that performs configuration management tasks.
Configuration management is the process designed to ensure that infrastructure in a
given system adheres to a specific set of standards, settings, or attributes (its configura-
tion). Popular configuration management tools include Chef and Puppet. AWS OpsWorks
Stacks allows you to manage the configuration of both on-premises and cloud infrastruc-
tures. To accomplish this, you organize units of infrastructure into stacks and layers.
AWS OpsWorks Stacks can also perform application deployments by the configuration of
apps. You can implement configuration changes at specific times in the lifecycle of your
infrastructure through the use of lifecycle events, such as when an instance is first brought
online or offline. Unlike traditional Chef Server installations, AWS OpsWorks Stacks uses
Chef Zero, Chef Solo, or local mode Chef Client. You do not need to involve an actual Chef
Server in the configuration management process.

There are two additional AWS OpsWorks services, AWS OpsWorks for Chef Automate
and AWS OpsWorks for Puppet Enterprise. Unlike AWS OpsWorks Stacks, both services
provision an Amazon EC2 instance in your AWS account with either Chef Automate or
Puppet Enterprise software. Table 9.1 lists key differences between each service.

TA b le 9 .1 AWS OpsWorks Services

AWS OpsWorks
Stacks

AWS OpsWorks for
Chef Automate

AWS OpsWorks for
Puppet Enterprise

Manage infrastructure X

Chef X X

448 Chapter 9 ■ Configuration as Code

AWS OpsWorks
Stacks

AWS OpsWorks for
Chef Automate

AWS OpsWorks for
Puppet Enterprise

Puppet X

Code repository X X

Built-in automatic scaling X

Amazon EC2 Auto Scaling X X X

Compliance X

Code repository Unlike AWS OpsWorks Stacks, the other two AWS OpsWorks services
create an Amazon EC2 instance in your account. This instance will store any Chef or
Puppet code for access by any cloud or on-premises instances (nodes) in your environment.
AWS OpsWorks Stacks, however, requires you to store Chef code in an external location
such as an Amazon Simple Storage Service (Amazon S3) bucket.

Amazon EC2 Auto scaling AWS OpsWorks includes the ability to have instances auto-
matically come online in response to changes in demand. All three AWS OpsWorks services
also support “traditional” automatic scaling.

Chef compliance You can use Chef Compliance to track, alert, report on, and remediate
compliance violations in your infrastructure. For example, if your organization has strict
requirements on SSH access to Linux systems, you can use InSpec (https://www.inspec.io)
policies in Chef Compliance to scan nodes in your environment periodically for violations
of the current SSH policy.

AWS OpsWorks Stacks supports these Chef versions:

 ■ Chef 11.10 (Linux)

 ■ Chef 12.0 (Linux)

 ■ Chef 12.2 (Windows)

AWS OpsWorks Stack Concepts
This section details AWS OpsWorks Stack concepts including cookbooks, recipes, packag-
ing, stacks, layers, instances, apps, users, permissions, lifecycle events, resources, data bags,
Chef, and monitoring your configuration.

TA b le 9 .1 AWS OpsWorks Services (continued)

Using AWS OpsWorks Stacks to Deploy Applications 449

 Cookbooks and Recipes

 AWS OpsWorks Stacks leverages Chef to implement configuration. Chef itself
is not in scope for the AWS Certified Developer – Associate exam. For more
information, refer to the Chef training material (https://learn.chef.io).

Chef is a Ruby-based confi guration management language that AWS OpsWorks Stacks
uses to enforce confi guration on Amazon EC2 on-premises instance nodes. Chef uses a
declarative syntax to describe how to confi gure a node without detailing the actual steps to
achieve the desired confi guration. Chef organizes these declarative statements into recipes ,
which act as a collection of resources to confi gure on nodes.

 template '/tmp/ somefile' do
 mode '0755'
 source ' somefile.erb '
 not_if { File.exist?('/etc/passwd') }
 end

 In the previous example, the fi le /tmp/ somefile is created from the somefile .erb
template. This template fi le is in a cookbook , which acts as a container for recipes and
any fi les, templates, attributes, or other components to enforce confi guration on a node.
Attribute fi les provide data to recipes, and AWS OpsWorks Stacks can modify them with
custom JSON at the stack, layer, and deployment levels. You can copy fi les from cookbooks
to nodes to create static fi les and use templates to provide dynamic data to fi les before you
create them on the node.

 Cookbooks normally belong to a cookbook repository, or chef-repo , which is a ver-
sioned directory that contains cookbooks and their recipes. A single cookbook repository
can contain one or more cookbooks. When you set the cookbook repository for a stack, all
cookbooks in the repository copy to each instance in the stack. The directory structure of a
chef-repo must match Figure 9.1 .

 f i gu r e 9 .1 Cookbook repository structure

cookbook1

repository_name

cookbook2

cookbookN
[Berksfile]

attributes
attribute1.rb
attribute2.rb

recipes
recipe1.rb
recipe2.rb

templates

template1.erb
template2.erbdefault

metadata.rb
other

other

...
...

...
...
...

...

...

...

450 Chapter 9 ■ Configuration as Code

 Recipes use nodes to execute in their “run list.” Recipes that you assign to a node’s run
list execute in the order in which they appear. You can assign recipes to roles, which you
assign to a node’s run list.

 Assigning recipes to roles

 If a role named database-server contains two recipes, postgresql::default and
monitoring::default , the following two run lists are the same:

 RUN_LIST="recipe['postgresql::default'],recipe['monitoring::default']"

 RUN_LIST="role['database-server']"

 In a typical Chef installation, one or more Chef Servers manage multiple nodes across
an enterprise. The Chef Server is responsible for distributing cookbooks, managing node
information, and providing data to nodes as the Chef runs (an execution of chef-client on
a node that enforces any assigned recipes).

 In AWS OpsWorks Stacks, there is no Chef Server to manage nodes. Chef
is run with chef-client in local mode on the instance. Local mode creates
an in-memory Chef Server to duplicate needed functionality.

 Managing Cookbooks

 To install custom cookbooks in your stack, you fi rst have to enable the Use Custom Chef
Cookbooks fi eld in the stack properties. Once you enable this fi eld, you can then provide
the details of the cookbook repository, such as the Git Repository URL, as shown in
Figure 9.2 .

 f i gu r e 9 . 2 Enabling custom cookbooks

 When instances fi rst create and start in a stack, they will download custom cookbooks
from the repository you select. However, running instances will not download new cook-
books automatically. You must manually set the Run Command’s Command option to
Update Custom Cookbooks, as shown in Figure 9.3 .

Using AWS OpsWorks Stacks to Deploy Applications 451

 f i gu r e 9 . 3 Running a command

 You cannot manually start stopped Amazon EBS backed load-based and
time-based instances, and thus you must replace the instance to update
custom cookbooks.

 Package Cookbook Dependencies

 Chef provides a utility called Berkshelf (https://docs.chef.io/berkshelf.html) to man-
age dependencies of cookbooks throughout the development and deployment process. In
Chef 11.10 stacks, you can install Berkshelf automatically on any instances in your stack.
For a production environment, AWS recommends that you do not use Berkshelf to import
dependencies during Chef runs. This process introduces a dependency on the external Chef
Supermarket API (https://supermarket.chef.io). If the supermarket is unavailable when
instances create in your stack, the initial Chef run may fail.

 Instead, package the custom cookbooks you develop and their dependencies into a single
 .zip archive with the berks package Berkshelf command. When you execute this com-
mand in a cookbook directory, it will automatically scan any Berksfile and metadata.rb
to list any dependencies, download them from their external location, and package them
into a compressed .tar archive. You can upload this archive to Amazon S3 and confi gure it
as the custom cookbook repository location for your stack.

 berks package cookbooks.tar.gz
 Cookbook(s) packaged to /Users/username/tmp/berks/cookbooks.tar.gz

452 Chapter 9 ■ Configuration as Code

When you package dependencies for multiple cookbooks in the parent directory of the
cookbooks, create a Berksfile such as this:

source "https://supermarket.chef.io"
cookbook "server-app", path: "./server-app"
cookbook "server-utils", path: "./server-utils"

After you package the dependencies, run the berks package command from this
 directory to download and dependencies for your cookbooks.

berks package cookbooks.tar.gz

Stack
A typical workload in AWS will include systems for various purposes, such as load balancers,
application servers, proxy servers, databases, and more. The set of Amazon EC2 on-premises
instances, Amazon RDS, Elastic Load Balancing, and other systems make up a stack. You
can organize stacks across an enterprise.

Suppose you have a single application with dev, test, and production environments.
Each of these environments has a stack that enables you to separate resources to ensure
stability of changes. You group resources into stacks by logical or functional purposes. The
example stack in Figure 9.4 includes three layers, a cookbook repository, an application
repository, and one app to deploy to the application server instances. This stack manages a
full application available to users over the Internet.

f i gu r e 9 . 4 Example stack structure

Cookbook
Repository Users

Internet

AWS

Load Balancer

Application
Server

Instance

Application
Server Layer

Application
Server

Instance

Amazon RDS InstanceAmazon
RDS Layer

App

App
Repository

Elastic Load
Balancing

Layer

AWS OpsWorks Stack

Using AWS OpsWorks Stacks to Deploy Applications 453

When you create a new stack, you will have the option to set the stack’s properties.

Stack Name

Stack Name identifies stacks in the AWS OpsWorks Stacks console. Since this name is not
unique, AWS OpsWorks assigns a Globally Unique Identifier (GUID) to the stack after you
create it.

API Endpoint Region

AWS OpsWorks associates a stack with either a global endpoint or one of multiple regional
endpoints. When you create a resource in the stack, such as an instance, it is available only
from the endpoint you specify when you create the stack. For example, if a stack is created
with the global “classic” endpoint, any instances will be accessible only by AWS OpsWorks
Stacks that use the global API endpoint in the US East (N. Virginia) region. Resources are
not available across regional endpoints.

Amazon Virtual Private Cloud

Stacks can create and manage instances in Amazon EC2 Classic or an Amazon Virtual
Private Cloud (Amazon VPC). When you select an Amazon VPC, you will be able to spec-
ify in what subnets to deploy instances when they are created.

Default Operating System

AWS OpsWorks Stacks supports many built-in Linux operating systems and Windows
Server (only in Chef 12.2 stacks). If there is a custom Amazon Machine Images (AMI)
you want to use, you must configure other tasks on the AMI to make it compatible with
AWS OpsWorks Stacks. You must base the custom AMI off an AMI that AWS OpsWorks
supports.

 ■ The AMI must support cloud-init.

 ■ The AMI must support the instance types you plan to launch.

 ■ The AMI must utilize a 64-bit operating system.

Layer
A layer acts as a subset of instances or resources in a stack. Layers act as groups of
instances or resources based on a common function. This is especially important, as the
Chef recipe code applies to a layer and all instances in a layer. A layer is the point where
any configuration of nodes will be set, such as what Chef recipes to execute at each life-
cycle hook. A layer can contain any one or more nodes, and a node must be a member of
one or more layers. When a node is a member of multiple layers, it will run any recipes
you configure for each lifecycle event for both layers in the layer and recipe order you
specify.

From the point of view of a Chef Server installation, a layer is synonymous with a
Chef Role. In the node object, the layer and role data are equivalent. This is primarily to
ensure compatibility with open-source cookbooks that are not written specifically for AWS
OpsWorks Stacks.

454 Chapter 9 ■ Configuration as Code

 Elastic Load Balancing

 After a layer is created, any elastic load balancers in the same region associate with the
layer. Any instances that come online in the layer will automatically register with the load
balancer. The instances will also deregister from the load balancer when they go offl ine.

 Elastic IP Addresses

 You can confi gure layers to assign public or elastic IP addresses to instances when they
come online. For Amazon Elastic Block Store (Amazon EBS) backed instances, the IP
address will remain assigned after the instance stops and starts again. For instance-store
backed instances, the IP address may not be the same as the original AWS OpsWorks
instance.

 Amazon EBS Volumes

 Linux stacks include the option to assign one or more Amazon EBS volumes to a layer. In
the process, you confi gure the mount point, size, Redundant Array of Independent Disks
(RAID) confi guration, volume type, Input/Output Operations Per Second (IOPS), and
encryption settings. When new instances start in the layer, AWS OpsWorks Stacks will
attempt to create an Amazon EBS volume with the confi guration and attach it to the
instance. Through the instance’s setup lifecycle event, AWS OpsWorks Stacks runs a Chef
cookbook to mount the volume to the instance. When the volumes add or remove volumes
to or from a layer, only new instances will receive the confi guration updates. Existing
instances’ volumes do not change.

 Only Chef 11.10 stacks support RAID configurations.

 Amazon RDS Layer

Amazon RDS layers pass connection information to an existing Amazon RDS instance.
When you associate an Amazon RDS instance to a stack, it is assigned to an app. This passes
the connection information to the instances via the app’s deploy attributes, and you can
access the data within your Chef recipes with node[:deploy][:app_name][:database] hash .

 You can associate a single Amazon RDS instance with multiple apps in the same stack.
However, you cannot associate multiple Amazon RDS instances with the same app. If your
application needs to connect to multiple databases, use custom JSON to include the connec-
tion information for the other database(s).

 Amazon ECS Cluster Layer

Amazon ECS cluster layers provide confi guration management capabilities to Linux
instances in your Amazon ECS cluster. You can associate a single cluster with a single stack
at a time. To create this layer, you must register the cluster with the stack. After this, it will
appear in the Layer type drop-down list of available clusters from which to create a layer,
as shown in Figure 9.5 .

Using AWS OpsWorks Stacks to Deploy Applications 455

 f i gu r e 9 .5 Creating a layer

 Use the console or AWS CLI/SDK commands to create the cluster.

 After the layer is created, any existing cluster instances will not import into the stack.
Instead, the instances need to register with the stack as on-premises instances, or you need to
create a new instance in the layer with the AWS OpsWorks Stacks console or CLI and replace
them with new instances. When you create new instances, AWS OpsWorks Stacks will auto-
matically install Docker and the Amazon ECS agent before it registers the instance with the
cluster.

 An instance cannot belong to both an Amazon ECS cluster layer and a Chef
11.10 built-in layer. However, the instance can belong to an Amazon ECS
cluster layer and other custom layer(s).

 Chef 11.10 Built-in Layers

 AWS OpsWorks Stacks provides several types of built-in layers for Chef 11.10 stacks.

 ■ HAProxy layer

 ■ MySQL layer

 ■ AWS Flow (Ruby) layer

 ■ Java app server layer

 ■ Node.js app server layer

 ■ PHP app server layer

 ■ Rails layer

 ■ Static web server layer

 ■ Amazon ECS cluster layer

456 Chapter 9 ■ Configuration as Code

 Each of the built-in layers provides a number of preconfi gured recipes that speed up
the process to deploy applications and manage underlying infrastructure. For example, the
Node.js app server layer requires you to specify only one or more apps in the stack and
associate it with the layer. When you use the built-in recipes, the app (or apps) automati-
cally deploys to any instances in the layer.

 Much like wrapper cookbooks in Chef, you can override built-in layers if you specify a
custom attribute or template fi les. To do so, you can create a cookbook with the same name
as the cookbook you want to override and include only the fi les you want to replace.

 Custom Cookbooks or Templates

 The built-in apache2 recipe includes an apache2.conf.erb template fi le that you can
override if you create a directory structure as a custom cookbook in your repository.

 apache2
 |- templates
 |-- default
 |--- apache2.conf.erb

 When your instance updates its cookbooks, it will merge both the built-in layer’s cook-
books with your custom ones and override the template fi le with your changes.

 Instances
 An instance represents either an Amazon EC2 or on-premises instance, and the confi gu-
ration AWS OpsWorks Stacks enforces upon it. You can associate instances with one or
more layers, which will defi ne the confi guration to apply to the instance. AWS OpsWorks
Stacks can create instances. For existing instances or on-premises servers, they can register
with a stack, and you can manage them in the same manner as if you created them as AWS
OpsWorks Stacks.

 Some Linux distributions can register instances.

 Instance Type

 AWS OpsWorks Stacks supports three instance types.

24/7 instances This instance type runs until you manually stop it.

Time-based instances Instances of this type run on a daily and weekly schedule that you
confi gure and are useful for handling predictable changes in a load on your stack.

 Load-based instances Load-based instances start and stop automatically based on metrics
such as NetworkOut or CPUUtilization .

Using AWS OpsWorks Stacks to Deploy Applications 457

You can use time-based and load-based instances to implement automatic scaling in
response to predictable or sudden changes in demand. However, unlike Amazon EC2 Auto
Scaling groups, you must create time-based and load-based instances ahead of time with
the AWS OpsWorks console or AWS CLI. The underlying Amazon EC2 instance will not
be created until the time you specify, or the load threshold occurs, but the AWS OpsWorks
instance object must exist ahead of time.

If your stack contains more than several instances, a mix of the previous instance
types will provide adequate scalability in response to predictable and sudden changes in
demand.

For example, if the lowest demand throughout the day in your environment requires
three running instances, then it would make sense to include at least three 24/7 instances
in the stack. If demand has a predictable pattern throughout the rest of the day, you can
use a number of time-based instances to scale out to meet known increases in demand.
To accommodate any potential changes outside the norm, you can configure additional
load-based instances as well. Figure 9.6 demonstrates the use of each instance type to react
dynamically to changes in request volume.

f i gu r e 9 .6 Instance usage over time

16

14

12

10

Nu
m

be
r o

f I
ns

ta
nc

es

Average Load Load-Based
Instances

Time-Based
Instances

24/7 Instances

6 PM
Time of Day

12 AM12 PM6 AM

8

6

4

2

Root Device Type

When you create an Amazon EC2 instance, you have the option to choose either the
instance-store or Amazon EBS backed instance types. There are several advantages and
disadvantages to each type, as shown in Table 9.2.

458 Chapter 9 ■ Configuration as Code

TA b le 9 . 2 Instance-Store–Backed vs. Amazon EBS Backed

Type Advantages Disadvantages

Instance-store–backed Lower cost Slower boot after initial

No data persistence

Amazon EBS backed Faster boot after initial

Retain disk contents

Higher cost

You can apply more configuration settings at the layer, such as Amazon EBS volumes
and elastic IP addresses.

Instance Updates

When an instance first boots, AWS OpsWorks Stacks will automatically install any new
security and package updates. However, after the initial boot, this will not occur again.
This is to ensure that future updates do not affect the performance of your applications.
For Linux stacks, you can initiate updates with the Update Dependencies command.
Windows stacks do not provide any built-in means to perform updates.

As an alternative to updating instances directly, you can instead regularly launch new
instances to replace old ones. As the new instances are created, they will be patched with
the latest available security and operating system updates. If you would like to prevent
updates entirely and manage this through a separate process, instances can be set to not
install updates on startup when you create them. Additionally, this can be set at the layer
level to propagate to any new instances that you add to the layer.

Register Instances

If there are instances running in your own data center or other Amazon EC2 instances in
your account (or even other accounts), you can register those instances with your stack.
You can perform tasks such as user management, package updates, operating system
upgrades, and application deployments on registered instances in the same manner as
“native” instances.

To register an instance with a stack, you use the aws opsworks register AWS CLI com-
mand. The command itself will install the AWS OpsWorks agent on the instance, which is
responsible for communicating with the AWS OpsWorks Stacks service endpoint to receive
commands and publish information. When you register with other Amazon EC2 instances,
they will need both an AWS Identity and Access Management (IAM) instance profile or
IAM user credentials with access to register instances with the AWS CLI via the AWS-
managed policy, AWSOpsWorksRegisterWithCLI.

When you register instances, you must provide a valid SSH user and private key or
valid username and password. These must correspond to a Linux user on the target system
(unless you call the register command from the target system itself). After the instance reg-
isters, it will display in the AWS OpsWorks Stacks console for assignment to one or more
layers in your stack.

Using AWS OpsWorks Stacks to Deploy Applications 459

 You can also deregister an instance from a stack if you no longer want to manage it as
part of that stack. This frees it up for you to register it with a different stack or manage-
ment process.

 AWS OpsWorks Agent

 The AWS OpsWorks Agent installs on any instances that the stack registers or creates. The
agent is responsible for querying the AWS OpsWorks Stacks endpoint for commands to
execute on the instance, provide instance metrics to the service, provide health checks for
auto healing, and update itself (if confi gured to do so). You can confi gure the stack to use a
specifi c agent version or automatically update to the latest available version.

 Auto-Healing Instances

 If you enable auto healing for a layer, instances that fail to communicate with the AWS
OpsWorks service endpoint for more than 5 minutes restart automatically. You can view
this in the Amazon CloudWatch Events console where initiated_by is set to auto-healing .
Auto healing is enabled by default on all layers in a stack, but you can disable them at
any time.

 When instances are auto-healed, the exact behavior depends on the type of instance.

 ■ For instance-store backed instances, the underlying instance terminates, and a new one
is created in its place.

 ■ Amazon EBS backed instances stop and start with the appropriate Amazon EC2 API
command.

 Apps
 An app refers to the location where you store application code and other fi les. This can be
an Amazon S3 bucket, a Git repository, or an HTTP bundle. If you require credentials to
connect to the repository, the app confi guration provides them as well. The Deploy lifecycle
event includes any apps that you confi gure for an instance at the layer or layers to which it
corresponds.

 AWS OpsWorks Stacks automatically downloads and deploys applications
in built-in layers. For custom layers, you must include this functionality in
your recipe code.

 After you confi gure one or more apps for a layer, running a deployment on instances in
that layer will copy the application code from the confi gured repository and perform any
needed deployment steps. In Chef 11.10 built-in layers, this occurs automatically. For cus-
tom layers in any Chef version, the deployment process is not automatic, and you must use
custom cookbooks.

 To perform app updates, you fi rst modify the app itself to point to a new version. Either
the current location (Amazon S3 fi le, Git branch, or HTTP archive) must have the update
of the new application code or the app must point to a new revision. Currently running

460 Chapter 9 ■ Configuration as Code

instances will not automatically update. Instances that create after the app updates will
deploy the latest version. Any instances that stop at the time of the update will update when
the instance starts again.

 Users and Permissions Management
 AWS OpsWorks Stacks provides the ability to manage users at the stack level, independent
of IAM permissions. This is incredibly useful to provide access to instances in a stack with-
out giving a user actual permission to your account. Since most large organizations have
strict access policies for third-party contractors, AWS OpsWorks Stacks allows you to give
access to perform some stack management tasks, as well as Secure Socket Shell (SSH) or
Remote Desktop Protocol (RDP) access to stack instances, and not allow nonemployees
access to perform tasks within your account.

 AWS OpsWorks Stacks users associate with regional endpoints and cannot
be given access to stacks not in the same region. In this case, you need to
import the user into the other region(s).

Managing Permissions

 There are four permission types you can apply to a user to provide stack-level permission.

Deny No action is allowed on the stack.

Show The user can view stack confi guration but cannot interact with it in any way.

Deploy The user can view stack confi guration and deploy apps.

 Manage The user can view stack confi guration, deploy apps, and manage stack
confi guration.

 AWS OpsWorks Stacks permissions do not allow certain actions, such as to create or
clone stacks. IAM permissions restrict these actions, and you must assign them to an
IAM user or IAM role. If the user in question is also an IAM user, you can fi ne-tune the
permissions levels.

 You can give an IAM user the Manage permission at the stack level but
deny the ability to delete layers (opsworks:DeleteLayer) at the IAM
level. Like IAM, explicit deny will always take precedence over
explicit allow.

 Along with stack-level permissions, you can give AWS OpsWorks users SSH or RDP
access into instances with or without administrative access. You can also confi gure users
to manage their own SSH keys so that they can set their key once they provide access and

Using AWS OpsWorks Stacks to Deploy Applications 461

do not require shared key fi les through other means. This is also more secure than Amazon
EC2 key pairs, as the keys are unique to individual users.

 User permissions are set at the stack level in the AWS OpsWorks console, as shown in
Figure 9.7 . Here you can assign stack and instance permissions to individual user accounts.

 f i gu r e 9 .7 AWS OpsWorks Stacks user permissions

 Managing Users

 For existing IAM users for whom you would like to confi gure stack-level access, you
can import them into AWS OpsWorks Stacks on the Users page of the AWS OpsWorks
console. Once you import them, you can assign stack-level permissions. These permis-
sions combine with current IAM policies before AWS OpsWorks evaluates them. For
example, if you would like to deny access to a specifi c stack for an IAM user, you can
import the user into AWS OpsWorks Stacks and then assign the Deny permission for
that stack.

 If you import an IAM user into AWS OpsWorks Stacks and then later delete
that user, you must manually delete the AWS OpsWorks Stacks user as
well to revoke any SSH or RDP access.

 Lifecycle Events
 At each layer of a stack, you will set which Chef recipes you would like to execute at each
stage of a node’s lifecycle, such as when it comes online or goes offl ine. These stages are
lifecycle events . The recipes at each lifecycle event execute in the order you specify in the
AWS OpsWorks Agent .

 Outside of the lifecycle events, you can execute recipes manually with the Execute
Recipes command in the AWS OpsWorks console (see Figure 9.8) or AWS CLI. When
invoking the command, you can provide a list of recipes to execute in order.

462 Chapter 9 ■ Configuration as Code

f i gu r e 9 . 8 Running command recipes to execute

You can add more custom recipes to each lifecycle event in the layer’s configuration.
Recipes execute in the order they appear in the Custom Chef recipes lifecycle event, as
shown in Figure 9.9.

f i gu r e 9 . 9 Custom Chef recipes for lifecycle events

Setup

This event occurs once the instance has come online after initial creation or when the
instance stops and starts. Setup automatically invokes the Deploy command after it com-
pletes successfully.

Configure

Any time an instance in a stack comes online or goes offline, all instances in the same
stack will undergo a Configure lifecycle event. This ensures that all instances in a stack are

Using AWS OpsWorks Stacks to Deploy Applications 463

“aware” of each other. For example, if a layer in your stack installs and confi gures haproxy
for load balancing, any instances in the same layer will need to update to include the new
node in /etc/hosts (or remove the node that went offl ine).

 Deploy

 After an instance has come online and completes the initial Setup and Configure events, a
Deploy event deploys any apps that you confi gure for the layer. This step can copy applica-
tion code from a repository, start or refresh services, and perform other tasks to bring your
application(s) online.

 After an instance has run Deploy for the fi rst time, it will never do so again automati-
cally. This prevents untested changes from reaching production instances. After you
test a feature change or bug fi x, you must manually run the Deploy event with the AWS
OpsWorks Stacks console or AWS CLI.

 Undeploy

 The Undeploy lifecycle event runs when you delete or remove an app from a layer. You use
this to perform tasks such as when you want to remove an application’s confi guration or
other cleanup tasks when you remove an app.

 Shutdown

 Before the actual shutdown command issues to an instance, the Shutdown lifecycle event
gives you the opportunity to perform tasks such as taking snapshots and copying log fi les
to Amazon S3 for later use. If the instance’s layer also includes a load balancer, the instance
deregisters after the confi gured connection draining time.

 Resource Management
 AWS OpsWorks Stacks allows for management of other resources in your account as part
of your stack, and it includes elastic IP addresses, Amazon EBS volumes, and Amazon RDS
instances. You register the resources with the stack to make them available to assign them
to instances or layers. If you attach resources to instances in the stack and you delete the
instance, the resource remains registered with the stack until it is manually deregistered.
Deregistering resources does not automatically delete them. You must delete the resource
itself with the respective service console or AWS CLI command.

 Amazon EBS Volumes

 Amazon EBS volumes that are not currently attached to any instances can register with a
stack, and you can assign them to instances if the volume uses XFS formatting. You cannot
attach volumes to running instances. To attach a volume to a running instance, you must
stop it. You can move a volume between instances that are both offl ine.

 You cannot attach Amazon EBS volumes to Windows stacks.

464 Chapter 9 ■ Configuration as Code

Elastic IP Addresses

As with Amazon EBS volumes, elastic IP addresses that are not associated with resources
in your account may be registered with the stack. You can assign an elastic IP address to an
instance regardless of whether it is running or not. After an Elastic IP address is disassoci-
ated from an instance, a configure lifecycle event updates instances in the stack with the
instance’s new IP address.

Amazon RDS Instances
You can register Amazon EBS instances to only one stack at a time. However, you can reg-
ister a single Amazon RDS instance with multiple apps in the same stack.

Chef 11 and Chef 12
Both Chef 11 and Chef 12 provide unique functionality differences that are important to note
before you use AWS OpsWorks Stacks. Each of the major differences is outlined in this section.

The differences in this section are with respect to AWS OpsWorks Stacks as a service, and
they do not include differences between Chef versions 11.10 and 12.0. Since version 11.10
has been deprecated by Chef, community support will not be as strong as for later versions.

Separate Chef Runs

In Chef 11.10 stacks, AWS-provided cookbooks were run in the same Chef run as any cus-
tom cookbooks. The AWS cookbooks performed various tasks such as mounting Amazon
EBS volumes that had been attached to the instance in the AWS OpsWorks console.
However, this could result in situations where custom cookbooks had naming conflicts
with those provided by AWS. You had to split this into two separate Chef runs on the
instance to eliminate any potential namespace conflicts.

Community Support

Since the deprecation of Chef 11.10, community support has gradually decreased. Any open
source cookbooks on the Chef Supermarket, for example, will likely make use of Chef 12.0
functionality, removing backward compatibility for Chef 11.10 stacks.

Built-in Layers

Chef 12.0 stacks no longer include the built-in layers as in Chef 11.10 stacks, such as the
Rails layer. To implement these layers in Chef 12.0 stacks, you can still copy the built-in
cookbooks from a Chef 11.10 stack and update them to be compatible with Chef 12.0.
Chef 12.0 stacks still support built-in layer types from Chef 11.10 stacks.

 ■ Amazon RDS instance layers

 ■ Amazon ECS cluster layers

Berkshelf

Berkshelf is no longer available for the automatic installation on Chef 12.0 instances.
Instead, install Berkshelf with a custom cookbook.

Using AWS OpsWorks Stacks to Deploy Applications 465

Data Bags

In lieu of custom JSON, Chef 12.0 stacks support data bags to provide better compatibility
with community cookbooks. You can declare data bags in the custom JSON field of the stack,
layer, and deployment configurations to provide instances in your stack for any additional data
that you would like to provide. The attributes set in the data bags will no longer be available in
the node object, as with Chef 11.10 stacks, but instead are available with Chef search.

example: Searching data bag Content

Here’s an example of searching a data bag for a value:

app = search("aws_opsworks_app").first
Chef::Log.info("********** The app's short name is '#{app['shortname']}' **********")
Chef::Log.info("********** The app's URL is '#{app['app_source']['url']}' **********")

Data Bags and Custom JSON
In Chef 11.10 stacks, you provide data to instances with custom JSON, which populates
in the node object when Chef runs. You can access this information in your recipe code to
specify configuration based on the value of custom JSON. You can specify custom JSON
at the stack, layer, and deployment levels. Any data that you define at the deployment level
overrides the data set at the layer or stack levels. Any data set at the layer level overrides the
data set at the stack level.

example: Stack-level Settings in Custom JSon

Here’s a JSON example at the stack level:

{
 "state": "visible",
 "colors": {
 "foreground": "light-blue",
 "background": "dark-gray"
 }
}

Now set the custom JSON for the layer to override the stack-level settings.

{
 "state": "hidden",
 "colors": {
 "foreground": "light-blue",
 "background": "dark-gray"
 }
}

(continued)

466 Chapter 9 ■ Configuration as Code

Next, execute the recipe on an instance; the value of node['state'] will be hidden.

Chef::Log.info("********** The app's initial state is '#{node['state']}' **********")
Chef::Log.info("********** The app's initial foreground color is '#{node['colors']
['foreground']}' **********")
Chef::Log.info("********** The app's initial background color is '#{node['colors']
['background']}' **********")

Custom JSON is limited to 80 KB in size. If you need to provide larger data, consider the
use of Amazon S3 and retrieve files with a custom cookbook.

Chef 12.0 and 12.2 stacks use data bags instead of custom JSON. This provides better
integration with community cookbooks that rely on data bags as the latest Chef standard
to provide structured data to cookbooks. Data bags are also written in JSON at the stack,
layer, and deployment levels. Any stack data originally provided in the node object on Chef
11.10 stacks is instead made available through one of several data bags during Chef runs.

App data bag (aws_opsworks_app)

Suppose the aws_opsworks_app data bag provides information about any apps associated
with the layer. In Chef 11.10 stacks, you can access app information in the node object.

Chef::Log.info ("********** The app's short name is '#{node['opsworks']
['applications'].first['slug_name']}' **********")
Chef::Log.info("********** The app's URL is '#{node['deploy']['simplephpapp']
['scm']['repository']}' **********")
Moving to data bags in Chef 12.0 and 12.2 stacks, Chef search is used to query
data bag contents. The above example would instead look like:
app = search("aws_opsworks_app").first

Chef::Log.info("********** The app's short name is '#{app['shortname']}'
**********")
Chef::Log.info("********** The app's URL is '#{app['app_source']['url']}'
**********")

To add custom data bags to your stack, specify them in either the stack, layer, or deploy-
ment custom JSON field. To create data bags to call users with a single item, you can do
the following:

{
 "opsworks": {
 "data_bags": {
 "users": {
 {
 "id": "nick",
 "comment": "Nick Alteen",
 "home": "/opt/alteen",

(continued)

Using AWS OpsWorks Stacks to Deploy Applications 467

 "ssh_keys": ["123…", "456…"]
 }
 }
 }
 }
 }

 Monitor Instance Metrics
 AWS OpsWorks Stacks provides a custom dashboard to monitor up to 13 custom metrics for
each instance in the stack. The agent that runs on each instance will publish the informa-
tion to the AWS OpsWorks Stacks service. If you enable the layer, system, application, and
custom logs, they automatically publish to Amazon CloudWatch Logs for review without
access the instance itself. You can monitor details at the stack, layer, and instance levels. The
metrics that the AWS OpsWorks Agent publishes include cpu_idle , memory_free , procs ,
and others. Since these metrics are provided by the AWS OpsWorks Agent running on the
instance itself, information not available to the underlying host of the instance is provided.

 Windows instance monitoring provides only the standard Amazon EC2
metrics.

 For each stack in your account, a dashboard displays these metrics over time. The met-
rics divide by layer and display over time periods that vary, as shown in Figure 9.10 .

 f i gu r e 9 .10 Monitoring all layers in a stack

 If you select a layer name in the monitoring dashboard, you can review each individual
layer. In the layer’s dashboard, metrics divide by individual instances. For example, if you
select PHP App Server, as shown in Figure 9.10 , the screen in Figure 9.11 displays.

468 Chapter 9 ■ Configuration as Code

f i gu r e 9 .11 Monitoring a single layer

From the layer dashboard, you can review individual instance metrics if you select the
instance name. For example, if you select php-app1, as shown in Figure 9.11, the screen in
Figure 9.12 displays.

f i gu r e 9 .12 Monitoring an instance

Using AWS OpsWorks Stacks to Deploy Applications 469

If you enable Amazon CloudWatch Logs on Linux stacks, you can configure the AWS
OpsWorks Agent to send system, application, and custom logs to Amazon CloudWatch
Logs. With this, alerts can be set when the logs detect specific string patterns, such
as HTTP 500 responses in web servers. To publish logs, the instance profile for any
instances in the layer must contain permission to push logs. To do this, you assign the
AWSOpsWorksCloudWatchLogs managed policy to the corresponding role. Since this integra-
tion requires a later agent version, enabling it for your layer will result in all instances being
upgraded to a compatible agent version (if they do not already have one).

When you stream logs to Amazon CloudWatch Logs, the log groups use the following
naming convention:

stack_name\layer_name\chef_log_name

Custom logs, which you define by the file path in the layer settings, add to log groups
with the naming convention.

/stack_name/layer_short_name/file_path_name

Along with CloudWatch Logs, CloudWatch Events support stacks. Any time the follow-
ing types of events occur, you can invoke custom actions in response.

 ■ Instance state change

 ■ Command state change

 ■ Deployment state change

 ■ Alerts

AWS OpsWorks Stacks Service Limits
AWS OpsWorks Stacks enforces the service limits shown in Table 9.3. These limits can be
increased by submitting a request to AWS Support.

TA b le 9 . 3 AWS OpsWorks Stacks Service Limits

Limit Value

Stacks per region per account 40

Layers per stack 40

Instances per stack 40

Apps per stack 40

470 Chapter 9 ■ Configuration as Code

Using AWS OpsWorks Stacks with AWS CodePipeline
Inside a stack, you specify a value for App to refer to a repository or archive that con-
tains application code to deploy to one or more layers. You can use AWS CodePipeline
to update an AWS OpsWorks app, which then deploys to any instances in layers you
associate with this app.

To configure AWS CodePipeline to deploy to a stack, select the appropriate stack, layer,
and app to update with the input artifact, as shown in Figure 9.13.

f i gu r e 9 .13 Using AWS OpsWorks Stacks with AWS CodePipeline

Deployment Best Practices
Since app or cookbook updates do not deploy automatically to running instances, you
need a robust deployment strategy to ensure that changes complete successfully (or do not
cause outages if they fail). This section details the deployment best practices recommended
by AWS.

Using Amazon Elastic Container Service to Deploy Containers 471

Rolling Deployments

You can issue commands to subsets of instances in a stack or layer at a time. If you split
the deployment into multiple phases, the blast radius of failures will be minimized to only a
few instances that you can replace, roll back, or repair.

Blue/Green Deployments (Separate Stacks)

Much like you use separate stacks for different environments of the same application, you
can also use separate stacks for different deployments. This ensures that all features and
updates to an application can be thoroughly tested before routing requests to the new envi-
ronment. Additionally, you can leave the previous environment running for some time to
perform backups, investigate logs, or perform other tasks.

When you use Elastic Load Balancing layers and Amazon Route 53, you can route traf-
fic to the new environment with built-in weighted routing policies. You can progressively
increase traffic to the new stack as health checks and other monitoring indicate the new
application version has deployed without error.

Manage Databases Between Deployments

In either deployment strategy, there will likely be a backend database with which instances
running either version will need to communicate. Currently, Amazon RDS layers support
registering a database with only one stack at a time.

If you do not want to create a new database and migrate data as part of the deploy-
ment process, you can configure both application version instances to connect to the same
database (if there are no schema changes that would prevent this). Whichever stack does
not have the Amazon RDS instance registered will need to obtain credentials via another
means, such as custom JSON or a configuration file in a secure Amazon S3 bucket.

If there are schema changes that are not backward compatible, create a new database to
provide the most seamless transition. However, it will be important to ensure that data is
not lost or corrupted during the transition process. You should heavily test this before you
attempt it in a production deployment.

Using Amazon Elastic Container Service
to Deploy Containers
Amazon ECS is a highly scalable, high-performance container orchestration service that
supports Docker containers and allows you to easily run and scale containerized applica-
tions on AWS. Amazon ECS eliminates the need for you to install and operate your own
container orchestration software, manage and scale a cluster of virtual machines, or sched-
ule containers on those virtual machines.

472 Chapter 9 ■ Configuration as Code

With simple API calls, you can launch and stop Docker-enabled applications, query the
complete state of your application, and access many familiar features such as IAM roles,
security groups, load balancers, Amazon CloudWatch Events, AWS CloudFormation tem-
plates, and AWS CloudTrail logs.

What Is Amazon ECS?
Amazon ECS streamlines the process for managing and scheduling containers across fleets
of Amazon EC2 instances, without the need to include separate management tools for
container orchestration or cluster scaling. AWS Fargate reduces management further as
it deploys containers to serverless architecture and removes cluster management require-
ments entirely. To create a cluster and deploy services, you need only configure the resource
requirements of containers and availability requirements. Amazon ECS manages the rest
with the use of an agent that runs on cluster instances. AWS Fargate requires no agent
management.

To react to changes in demands for your service or application, Amazon ECS supports
Amazon EC2 Auto Scaling groups of cluster instances that allow your service to increase
running container counts across multiple instances as demand increases. You can define
container isolation and dependencies as part of the service definition. You can use the
service definition to enforce requirements without user interaction, such as “only one con-
tainer of type A may run on a cluster instance at a time.”

Amazon ECS Concepts
This section details Amazon ECS concepts.

Amazon ECS Cluster
Amazon ECS clusters are the foundational infrastructure components on which con-
tainers run. Clusters consist of one or more Amazon EC2 instances in your Amazon
VPC. Each instance in a cluster (cluster instance) has an agent installed. The agent is
responsible for receiving container scheduling/shutdown commands from the Amazon
ECS service and to report the current health status of containers (restart or replace).
Figure 9.14 demonstrates an Amazon EC2 launch type, where instances make up the
Amazon ECS cluster.

Using Amazon Elastic Container Service to Deploy Containers 473

f i gu r e 9 .14 Amazon ECS architecture

Container image

Container registry
(Amazon ECR, Docker Hub,

self-hosted registry)

ECS agent

Tasks

Container instances

AWS region

Service

Service description

Task definition

Task definition

AZ 1

AWS

VPC

ECS agent

Tasks

Container instances

Amazon ECS cluster

AZ 2

In an AWS Fargate launch type, Amazon ECS clusters are no longer made up of
Amazon EC2 instances. Since the tasks themselves launch on the AWS infrastructure,
AWS assigns each one an elastic network interface with an Amazon VPC. This provides
network connectivity for the container without the need to manage the infrastructure on
which it runs. Figure 9.15 demonstrates an AWS Fargate cluster that runs in multiple avail-
ability zones (AZs).

474 Chapter 9 ■ Configuration as Code

f i gu r e 9 .15 AWS Fargate architecture

Container image

Container registry
(Amazon ECR, Docker Hub)

AWS region

Service

Service description

Task definition

Task definition

AWS

VPC

task

Fargate

AZ 1

elastic network
interface

elastic network
interface

elastic network
interface

task task

task

Fargate

AZ 2

elastic network
interface

elastic network
interface

Amazon ECS cluster

elastic network
interface

task task

An individual cluster can support both Amazon EC2 and AWS Fargate launch types.
However, a single cluster instance can belong to only one cluster at a time. Amazon EC2
launch types support both on-demand and spot instances, and they allow you to reduce
cost for noncritical workloads.

To enable network connectivity for containers that run on your instance, the cor-
responding task definition must outline port mappings from the container to the host

Using Amazon Elastic Container Service to Deploy Containers 475

instance. When you create a container instance, you can select the instance type to use.
The compute resources available to this instance type will determine how many containers
can be run on the instance. For example, if a t2.micro instance has one vCPU and 1 GB of
RAM, it will not be able to run containers that require two vCPUs.

 After you add a container instance to a cluster and you place containers on it, there may
be situations where you would need to remove the container from the cluster temporarily—
for a regular patch, for example. However, if critical tasks run on a container instance, you
may want to wait for the containers to terminate gracefully. Container instance draining
can be used to drain running containers from an instance and prevent new ones from being
started. Depending on the service’s confi guration, replacement tasks start before or after the
original tasks terminate.

 ■ If the value of minimumHealthyPercent is less than 100 percent, the service will termi-
nate the task and launch a replacement.

 ■ If the value is greater than 100 percent, the service will attempt to launch a replace-
ment task before it terminates the original.

 To make room for launching additional tasks, you can scale out a cluster with Amazon
EC2 Auto Scaling groups. For an EC2 Auto Scaling group to work with an Amazon ECS
cluster, you must install the Amazon ECS agent either as part of the AMI or via instance
 userdata . To change the number container instances that run, you can adjust the size of the
corresponding EC2 Auto Scaling group. If you need to terminate instances, any tasks that
run on them will also halt.

 Scaling out a cluster does not also increase the running task count. You
use service automatic scaling for this process.

 AWS Fargate
 AWS Fargate simplifi es the process of managing containers in your environment and
removes the need to manage underlying cluster instances. Instead, you only need to specify
the compute requirements of your containers in your task defi nition. AWS Fargate auto-
matically launches containers without your interaction.

 With AWS Fargate, there are several restrictions on the types of tasks that you can
launch. For example, when you specify a task defi nition, containers cannot be run in privi-
leged mode. To verify that a given task defi nition is acceptable by AWS Fargate, use the
 Requires capabilities fi eld of the Amazon ECS console or the --requires-capabilities
command option of the AWS CLI.

 AWS Fargate requires that containers launch with the network mode set to
 awsvpc . In other words, you can launch only AWS Fargate containers into
Amazon VPCs.

476 Chapter 9 ■ Configuration as Code

 AWS Fargate requires the awslogs driver to enable log configuration.

 Containers and Images

 Amazon ECS launches and manages Docker containers. However, Docker
is not in scope for the AWS Certified Developer – Associate Exam.

 Any workloads that run on Amazon ECS must reside in Docker containers. In a virtual
server environment, multiple virtual machines share physical hardware, each of which acts
as its own operating system. In a containerized environment, you package components of
the operating system itself into containers. This removes the need to run any nonessential
aspects of a full-fl edged virtual machine to increase portability. In other words, virtual
machines share the same physical hardware, while containers share the same operating
system.

 Container images are similar in concept to AMIs. Images provision a Docker container.
You store images in registries, such as a Docker Hub or an Amazon Elastic Container
Repository (ECR).

 You can create your own private image repository; however, AWS Fargate
does not support this launch type.

 Docker provides mobility and fl exibility of your workload to allow containers to be run
on any system that supports Docker. Compute resources can be better utilized when you
run multiple containers on the same cluster, which makes the best possible use of resources
and reduces idle compute capacity. Since you separate service components into containers,
you can update individual components more frequently and at reduced risk.

 Task Definition
 Though you can package entire applications into a single container, it may be more effi cient
to run multiple smaller containers, each of which contains a subset of functionality of your
full application. This is referred to as service-oriented architecture (SOA). In SOA, each
unit of functionality for an overall system is contained separately from the rest. Individual
services work with one another to perform a larger task. For example, an e-commerce web-
site that uses SOA could have sets of containers for load balancing, credit card processing,
order fulfi llment, or any other tasks that users require. You design each component of the
system as a black box so that other components do not need to be aware of inner workings
to interact with them.

 A task defi nition is a JSON document that describes what containers launch for your
application or system. A single task defi nition can describe between one and 10 containers
and their requirements. Task defi nitions can also specify compute, networking, and storage

Using Amazon Elastic Container Service to Deploy Containers 477

requirements, such as which ports to expose to which containers and which volumes to
mount.

You should add containers to the same task definition under the following
circumstances:

 ■ The containers all share a common lifecycle.

 ■ The containers need to run on the same common host or container instance.

 ■ The containers need to share local resources or volumes.

An entire application does not need to deploy with a single task definition. Instead,
you should separate larger application segments into separate task definitions. This will
reduce the impact of breaking changes in your environment. If you allocate the right-sized
container instances, you can also better control scaling and resource consumption of the
containers.

After a task definition creates and uploads to Amazon ECS, it can launch one or more
tasks. When a task is created, the containers in the task definition are scheduled to launch
into the target cluster via the task scheduler.

Task definition with Two Containers

The following example demonstrates a task definition with two containers. The first
container runs a WordPress installation and binds the container instance’s port 80 to the
same port on the container. The second container installs MySQL to act as the backend
data store of the WordPress container. The task definition also specifies a link between
the containers, which allows them to communicate without port mappings if the network
setting for the task definition is set to bridge.

{
 "containerDefinitions": [
 {
 "name": "wordpress",
 "links": [
 "mysql"
],
 "image": "wordpress",
 "essential": true,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],

(continued)

478 Chapter 9 ■ Configuration as Code

 "memory": 500,
 "cpu": 10
 },
 {
 "environment": [
 {
 "name": "MYSQL_ROOT_PASSWORD",
 "value": "password"
 }
],
 "name": "mysql",
 "image": "mysql",
 "cpu": 10,
 "memory": 500,
 "essential": true
 }
],
 "family": "hello_world"
}

Services
When creating a service, you can specify the task definition and number of tasks to main-
tain at any point in time. After the service creates, it will launch the desired number of
tasks; thus, it launches each of the containers in the task definition. If any containers in the
task become unhealthy, the service is responsible and launches replacement tasks.

Deployment Strategies

When you define a service, you can also configure deployment strategies to ensure a mini-
mum number of healthy tasks are available to serve requests while other tasks in the service
update. The maximumPercent parameter defines the maximum percentage of tasks that can
be in RUNNING or PENDING state. The minimumHealthyPercent parameter specifies the mini-
mum percentage of tasks that must be in a healthy (RUNNING) state during deployments.

Suppose you configure one task for your service, and you would like to ensure that the
application is available during deployments. If you set the maximumPercent to 200 percent
and minimumHealthyPercent to 100 percent, it will ensure that the new task launches
before the old task terminates. If you configure two tasks for your service and some loss
of availability is acceptable, you can set maximumPercent to 100 percent and minimum-
HealthyPercent to 50 percent. This will cause the service scheduler to terminate one task,
launch its replacement, and then do the same with the other task. The difference is that
the first approach requires double the normal cluster capacity to accommodate the addi-
tional tasks.

(continued)

Using Amazon Elastic Container Service to Deploy Containers 479

Balance Loads

You can configure services to run behind a load balancer to distribute traffic automatically
to tasks in the service. Amazon ECS supports classic load balancers, application load bal-
ancers, and network load balancers to distribute requests. Of the three load balancer types,
application load balancers provide several unique features.

Application Load Balancing (ALB) load balancers route traffic at layer 7 (HTTP/
HTTPS). Because of this, they can take advantage of dynamic host port mapping when you
use them in front of Amazon ECS clusters. ALBs also support path-based routing so that
multiple services can listen on the same port. This means that requests will be to different
tasks based on the path specified in the request.

Classic load balancers, because they register and deregister instances, require that any
tasks being run behind the load balancer all exist on the same container instance. This may
not be desirable in some cases, and it would be better to use an ALB.

Schedule Tasks
If you increase the number of instances in an Amazon ECS cluster, it does not automati-
cally increase the number of running tasks as well. When you configure a service, the ser-
vice scheduler determines how many tasks run on one or more clusters and automatically
starts replacement tasks should any fail. This is especially ideal for long-running tasks such
as web servers. If you configure it to do so, the service scheduler will ensure that tasks reg-
ister with an elastic load balancer.

You can also run a task manually with the RunTask action, or you can run tasks on a
cron-like schedule (such as every N minutes on Tuesdays and Thursdays). This works well
for tasks such as log rotation, batch jobs, or other data aggregation tasks.

To dynamically adjust the run task count dynamically, you use Amazon CloudWatch
Alarms in conjunction with Application Auto Scaling to increase or decrease the task count
based on alarm status. You can use two approaches for automatically scaling Amazon ECS
services and tasks: Target Tracking Policies and Step Scaling Policies.

Target Tracking Policies

Target tracking policies determine when to scale the number of tasks based on a target
metric. If the metric is above the target, such as CPU utilization being above 75 per-
cent, Amazon ECS can automatically launch more tasks to bring the metric below the
desired value. You can specify multiple target tracking policies for the same service. In
the case of a conflict, the policy that would result in the highest task count wins.

Step Scaling Policies

Unlike target tracking policies, step scaling policies can continue to scale in or out as met-
rics increase or decrease. For example, you can configure a step scaling policy to scale out
when CPU utilization reaches 75 percent, again at 80 percent, and one final time at 90 per-
cent. With this approach, a single policy can result in multiple scaling activities as metrics
increase or decrease.

480 Chapter 9 ■ Configuration as Code

 Task Placement Strategies

 Regardless of the method you use, task placement strategies determine on which instances
tasks launch or which tasks terminate during scaling actions. For example, the spread task
placement strategy distributes tasks across multiple AZs as much as possible. Task place-
ment strategies perform on a best-effort basis. If the strategy cannot be honored, such as
when there are insuffi cient compute resources in the AZ you select, Amazon ECS will still
try to launch the task(s) on other cluster instances. Other strategies include binpack (uses
CPU and memory on each instance at a time) and random .

 Task placement strategies associate with specifi c attribute s, which are evaluated during
task placement. For example, to spread tasks across availability zones, the placement strat-
egy to use is as follows:

 "placementStrategy": [
 {
 "field": "attribute:ecs.availability-zone",
 "type": "spread"
 }
]

 Task Placement Constraints

 Task placement constraints enforce specifi c requirements on the container instances on
which tasks launch, such as to specify the instance type as t2.micro .

 "placementConstraints": [
 {
 "expression": "attribute:ecs.instance-type == t2.micro",
 "type": "memberOf"
 }
]

 Amazon ECS Service Discovery
 Amazon ECS Service Discovery allows you to assign Amazon Route 53 DNS entries auto-
matically for tasks your service manages. To do so, you create a private service namespace for
each Amazon ECS cluster. As tasks launch or terminate, the private service namespace updates
to include DNS entries for each task. A service directory maps DNS entries to available ser-
vice endpoints. Amazon ECS Service Discovery maintains health checks of containers, and it
removes them from the service directory should they become unavailable.

 To use public namespaces, you must purchase or register the public
hosted zone with Amazon Route 53.

Using Amazon Elastic Container Service to Deploy Containers 481

 Private Image Repositories
 Amazon ECS can connect to private image repositories with basic authentication. This is
useful to connect to Docker Hub or other private registries with a username and password.
To do so, the ECS_ENGINE_AUTH_TYPE and ECS_ENGINE_AUTH_DATA environment variables
must be set with the authorization type and actual credentials to connect. However, you
should not set these properties directly. Instead, store your container instance confi guration
fi le in an Amazon S3 bucket and copy it to the instance with userdata .

 Amazon Elastic Container Repository
Amazon Elastic Container Repository (Amazon ECR) is a Docker registry service that
is fully compatible with existing Docker CLI tools. Amazon ECR supports resource-level
permissions for private repositories and allows you to preserve a secure registry without
the need to maintain an additional application. Since it integrates with IAM users and
Amazon ECS cluster instances, it can take advantage of IAM users or instance profi les
to access and maintain images securely without the need to provide a username and
password.

 Amazon ECS Container Agent
 The Amazon ECS container agent is responsible for monitoring the status of tasks that
run on cluster instances. If a new task needs to launch, the container agent will download
the container images and start or stop containers. If any containers fail health checks, the
container agent will replace them. Since the AWS Fargate launch type uses AWS-managed
compute resources, you do not need to confi gure the agent.

 To register an instance with an Amazon ECS cluster, you must fi rst install the Amazon
ECS Agent. This agent installs automatically on Amazon ECS optimized AMIs. If you
would like to use a custom AMI, it must adhere to the following requirements:

 ■ Linux kernel 3.10 or greater

 ■ Docker version 1.9.0 or greater and any corresponding dependencies

 The Amazon ECS container agent updates regularly and can update on your instance(s)
without any service interruptions. To perform updates to the agent, replace the con-
tainer instance entirely or use the Update Container Agent command on Amazon ECS
optimized AMIs.

 You cannot perform agent updates on Windows instances using these
methods. Instead, terminate the instance and create a new server in its
absence.

 To confi gure the Amazon ECS container agent, update /etc/ecs/config on the con-
tainer instance and then restart the agent. You can confi gure properties such as the cluster
to register with, reserved ports, proxy settings, and how much system memory to reserve
for the agent.

482 Chapter 9 ■ Configuration as Code

Amazon ECS Service Limits
Table 9.4 displays the limits that AWS enforces for Amazon ECS. You can change limits
with an asterisk (*) by making a request to AWS Support.

TA b le 9 . 4 Amazon ECS Service Limits

Limit Value

Clusters per region per account* 1,000

Container instances per cluster* 1,000

Services per cluster* 500

Tasks that use Amazon EC2 launch type per service* 1,000

Tasks that use AWS Fargate launch type per region per account* 20

Public IP addresses for tasks that use AWS Fargate launch type* 20

Load balancers per service 1

Task definition size 32 KiB

Task definition containers 10

Layer size of image that use AWS Fargate task 4 GB

Shared volume that use AWS Fargate tasks 10 GB

Container storage that use AWS Fargate tasks 10 GB

Using Amazon ECS with AWS CodePipeline
When you select Amazon ECS as a deployment provider, there is no option to create the
cluster and service as part of the pipeline creation process. This must be done ahead of
time. After the cluster is created, select the appropriate cluster and service names in the
AWS CodePipeline console, as shown in Figure 9.16.

Summary 483

f i gu r e 9 .16 Amazon ECS as a deployment provider

You must provide an image filename as part of this configuration. This is a JSON-
formatted document inside your code repository or archive or as an output build artifact,
which specifies the service’s container name and image tag. We recommend that the cluster
contain at least two Amazon EC2 instances so that one can act as primary while the other
handles deployment of new containers.

Summary
This chapter includes infrastructure, configuration, and deployment services that you use to
deploy configuration as code.

AWS CloudFormation leverages standard AWS APIs to provision and update infrastruc-
ture in your account. AWS CloudFormation uses standard configuration management tools
such as Chef and Puppet.

Configuration management of infrastructure over an extended period of time is best
served with the use of a dedicated tool such as AWS OpsWorks Stacks. You define the
configuration in one or more Chef recipes to achieve configuration as code on top of your
infrastructure. AWS OpsWorks Stacks can be used to provide a serverless Chef infrastruc-
ture to configure servers with Chef code (recipes).

484 Chapter 9 ■ Configuration as Code

Chef recipe code is declarative in nature, and you do not have to rely on the accuracy
of procedural steps, as you would with a userdata script you apply to Amazon ECS
instances or launch configurations. You can use Amazon ECS instead of instances
or serverless functions to use a containerization method to manage applications. If you
separate infrastructure from configuration, you also gain the ability to update each
on separate cadences.

Amazon ECS supports Docker containers, and it allows you to run and scale container-
ized applications on AWS. Amazon ECS eliminates the need to install and operate your
own container orchestration software, manage and scale a cluster of virtual machines, or
schedule containers on those virtual machines.

AWS Fargate reduces management further as it deploys containers to serverless archi-
tecture and removes cluster management requirements. To create a cluster and deploy
services, you configure the resource requirements of containers and availability require-
ments. Amazon ECS manages the rest through an agent that runs on cluster instances. AWS
Fargate requires no agent management.

Amazon ECS clusters are the foundational infrastructure components on which
containers run. Clusters consist of Amazon EC2 instances in your Amazon VPC. Each
cluster instance has an agent installed that is responsible for receiving scheduling/shutdown
commands from the Amazon ECS service and reporting the current health status of
containers (restart or replace).

In lieu of custom JSON, Chef 12.0 stacks support data bags to provide better compat-
ibility with community cookbooks. You can declare data bags in the custom JSON field of
the stack, layer, and deployment configurations to provide instances in your stack for any
additional data that you would like to provide.

AWS OpsWorks Stacks lets you manage applications and servers on AWS and on-
premises. You can model your application as a stack that contains different layers, such as
load balancing, database, and application server. You can deploy and configure Amazon
EC2 instances in each layer or connect other resources such as Amazon RDS databases.
AWS OpsWorks Stacks lets you set automatic scaling for your servers on preset schedules or
in response to a constant change of traffic levels, and it uses lifecycle hooks to orchestrate
changes as your environment scales. You run Chef recipes with Chef Solo, which allows
you to automate tasks such as installing packages and program languages or frameworks,
configuring software, and more.

An app is the location where you store application code and other files, such as an
Amazon S3 bucket, a Git repository, or an HTTP bundle, and it includes sign-in creden-
tials. The Deploy lifecycle event includes any apps that you configure for an instance at the
layer or layers to which it corresponds.

At each layer of a stack, you set which Chef recipes to execute at each stage of a node’s
lifecycle, such as when it comes online or goes offline (lifecycle events). The recipes at
each lifecycle event are executed by the AWS OpsWorks Agent in the order you specify.

AWS OpsWorks Stacks allows for management of other resources in your account as
part of your stack and include elastic IP addresses, Amazon EBS volumes, and Amazon
RDS instances.

Exam Essentials 485

The AWS OpsWorks Stacks dashboard monitors up to 13 custom metrics for each
instance in the stack. The agent that runs on each instance will publish the information to
the AWS OpsWorks Stacks service. If you enable the layer, system, application, and custom
logs, they automatically publish to Amazon CloudWatch Logs for review without accessing
the instance itself.

When you define a consistent deployment pattern for infrastructure, configuration, and
application code, you can convert entire enterprises to code. You can remove manual man-
agement of most common processes and replace them with seamless management of entire
application stacks through a simple commit action.

Exam Essentials
Understand configuration management and Chef. Configuration management is the
 process designed to ensure the infrastructure in a given system adheres to a specific set of
standards, settings, or attributes. Chef is a Ruby-based configuration management language
that AWS OpsWorks Stacks uses to enforce configuration on Amazon EC2 on-premises
instances, or nodes. Chef uses a declarative syntax to describe the desired state of a node,
abstracting the actual steps needed to achieve the desired configuration. This code is orga-
nized into recipes, which are organized into collections called cookbooks.

Know how AWS OpsWorks Stacks organizes configuration code into cookbooks. In
traditional Chef implementations, cookbooks belong to a chef-repo, which is a versioned
directory that contains cookbooks and their underlying recipes and files. A single cookbook
repository can contain one or more cookbooks. When you define the custom cookbook
location for a stack, all cookbooks copy to instances in the stack.

Know how to update custom cookbooks on a node. When instances first launch in a
stack, they will download cookbooks from the custom cookbook repository. You must
manually issue an Update Custom Cookbooks command to instances in your stack to
update the instance.

Understand the different AWS OpsWorks Stacks components. The topmost object in AWS
OpsWorks Stacks is a stack, which contains all elements of a given environment or system.
Within a stack, one or more layers contain instances you group by common purpose. A sin-
gle instance references either an Amazon EC2 or on-premises instance and contains addi-
tional configuration data. A stack can contain one or more apps, which refer to repositories
where application code copies to for deployment. Users are regional resources that you can
configure to access one or more stacks in an account.

Know the different AWS OpsWorks Stacks instance types and their purpose. AWS
OpsWorks Stacks has three different instance types: 24/7, time-based, and load-based. The
24/7 instances run continuously unless an authorized user manually stops it, and they are
useful for handling the minimum expected load of a system. Time-based instances start and
stop on a given 24-hour schedule and are recommended for predicable increases in load at

486 Chapter 9 ■ Configuration as Code

different times of the day. Load-based instances start and stop in response to metrics, such
as CPU utilization for a layer, and you use them to respond to sudden increases in traffic.

Understand how AWS OpsWorks Stacks implements auto healing. The AWS OpsWorks
Stacks agent that runs on an instance performs a health check every minute and sends the
response to AWS. If the AWS OpsWorks Stacks agent does not receive the health check for
five continuous minutes, the instance restarts automatically. You can disable this feature.
Auto healing events publish to Amazon CloudWatch for reference.

Understand the AWS OpsWorks Stacks permissions model. AWS OpsWorks Stacks pro-
vides the ability to manage users at the stack level, independent of IAM permissions. This
is useful for providing access to instances in a stack but not to the AWS Management
Console or API. You can assign AWS OpsWorks Stacks users to one of four permission
levels: Deny, Show, Deploy, and Manage. Additionally, you can give users SSH/RDP access
to instances in a stack (with or without sudo/administrator permission). AWS OpsWorks
Stacks users are regional resources. If you would like to give a user in one region access
to a stack in another region, you need to copy the user to the second region. Some AWS
OpsWorks Stacks activities are available only through IAM permissions, such as to delete
and create stacks.

Know the different AWS OpsWorks Stacks lifecycle events. Instances in a stack are provi-
sioned, configured, and retired using lifecycle events. The AWS OpsWorks Stacks supports
the lifecycle events: Setup, Configure, Deploy, Undeploy, and Shutdown. The Configure
event runs on all instances in a stack any time one instance comes online or goes offline.

Know the components of an Amazon ECS cluster. A cluster is the foundational infra-
structure component on which containers are run. Clusters are made up of one or more
Amazon EC2 instances, or they can be run on AWS-managed infrastructure using AWS
Fargate. A task definition is a JSON file that describes which containers to launch on a
cluster. Task definitions can be defined by grouping containers that are used for a common
purpose, such as for compute, networking, and storage requirements. A service launches on
a cluster and specifies the task definition and number of tasks to maintain. If any containers
become unhealthy, the service is responsible for launching replacements.

Know the difference between Amazon ECS and AWS Fargate launch types. The AWS
Fargate launch type uses AWS-managed infrastructure to launch tasks. As a customer, you
are no longer required to provision and manage cluster instances. With AWS Fargate, each
cluster instance is assigned a network interface in your VPC. Amazon ECS launch types
require a cluster in your account, which you must manage over time.

Know how to scale running tasks in a cluster. Changing the number of instances in a
cluster does not automatically cause the number of running tasks to scale in or out. You
can use target tracking policies and step scaling policies to scale tasks automatically based
on target metrics. A target tracking policy determines when to scale based on metrics such
as CPU utilization or network traffic. Target tracking policies keep metrics within a certain
boundary. For example, you can launch additional tasks if CPU utilization is above 75 per-
cent. Step scaling policies can continuously scale as metrics increase or decrease. You can
configure a step scaling policy to scale tasks out when CPU utilization reaches 75 percent

Resources to Review 487

and again at 80 percent and 90 percent. A single step scaling policy can result in multiple
scaling activities.

Know how images are stored in Amazon Elastic Container Repository (Amazon ECR).
Amazon ECR is a Docker registry service that is fully compatible with existing Docker
tools. Amazon ECR supports resource-level permissions for private repositories, and it
allows you to maintain a secure registry without the need to maintain additional instances/
applications.

Resources to Review

Continuous Deployment to Amazon ECS with AWS CodePipeline, AWS CodeBuild,
Amazon ECR, and AWS CloudFormation:

https://aws.amazon.com/blogs/compute/continuous-deployment-to-amazon-ecs-
using-aws-codepipeline-aws-codebuild-amazon-ecr-and-aws-cloudformation/

How to set up AWS OpsWorks Stacks auto healing notifications in Amazon
CloudWatch Events:

https://aws.amazon.com/blogs/mt/how-to-set-up-aws-opsworks-stacks-auto-
healing-notifications-in-amazon-cloudwatch-events/

Managing Multi-Tiered Applications with AWS OpsWorks:

https://d0.awsstatic.com/whitepapers/managing-multi-tiered-
web-applications-with-opsworks.pdf

AWS OpsWorks Stacks:

https://aws.amazon.com/opsworks/stacks/

How do I implement a configuration management solution on AWS?:

https://aws.amazon.com/answers/configuration-management/
aws-infrastructure-configuration-management/

Docker on AWS:

https://d1.awsstatic.com/whitepapers/docker-on-aws.pdf

What are Containers?

https://aws.amazon.com/containers/

Amazon Elastic Container Service (ECS):

https://aws.amazon.com/ecs/

488 Chapter 9 ■ Configuration as Code

Exercises
e x e r C i S e 9 .1

launch a Sample AWS opsWorks Stacks environment

1. Launch the AWS Management Console.

2. Select Services ➢ AWS OpsWorks.

3. Select Add Stack, and select Sample stack.

4. Select your preferred operating system (Linux or Windows).

5. Select Add Instance, and monitor the stack’s progress until it enters the online state.
This deploys the app to the stack.

6. Copy the public IP Address, and paste it into a web browser to display the sample app.

7. Open the instance in the AWS OpsWorks Stacks console, and view the log entries.

8. Verify that the Chef run was a success and which resources deploy to the instance in
the log entries.

9. Update the recipes of the automatically created layer.

10. Remove the deploy recipe.

11. Add a new instance to the stack and monitor its progress.

12. Once the instance is in the online state, view the run logs to verify that the sample
website is not deployed to the instance.

e x e r C i S e 9 . 2

launch an Amazon eCS Cluster and Containers

1. Launch the Amazon ECS console.

2. Create a new cluster with an Amazon EC2 container instances.

3. Create a new task definition that launches a WordPress and MySQL container.

4. Use the official images from Docker Hub:

a. https://registry.hub.docker.com/wordpress/

b. https://registry.hub.docker.com/mysql/

5. Create a new service that launches this task definition on the cluster.

6. Copy the public IP address, and paste it into a web browser to access WordPress on
the cluster instance.

Exercises 489

7. Modify the service to launch two tasks.

As the second task attempts to launch, note that this will fail because of the
ports configured in the task definition already being registered with the running
containers.

8. Launch an additional cluster instance in your cluster.

9. Monitor the service status to verify that the second task deploys to the new cluster
instance.

e x e r C i S e 9 . 3

migrate an Amazon rdS database

1. Launch the Amazon RDS console.

2. Create a new database instance.

3. Connect to your database and create a user with a password. For example, to create
a user with full privileges on MySQL, use the following command:

GRANT ALL PRIVILEGES ON *.* TO 'username'@'localhost' IDENTIFIED BY 'password';

4. Launch the AWS OpsWorks console.

5. Create two stacks (one “A” stack and one “B” stack). For ease of use, try the sample
Linux stack with a Node.js app.

6. Register the RDS database instance that you created with stack A, providing the data-
base username and password you created.

7. Edit the stack’s app to include Amazon RDS as a data source. Select the database you
registered and provide the database name.

8. Verify that you can connect to your database by creating a simple recipe to output
the credentials. Specifically, try to output to the database field of the deploy attri-
butes.

9. Run this recipe to verify that the connection information passes to your nodes.

10. Pass the same connection information into stack A using custom JSON.

11. Deregister the database from stack A and register it with stack B.

12. Perform the same tasks to verify that connection details pass to the instances in
stack B.

13. Remove the custom JSON from stack A to complete the migration.

490 Chapter 9 ■ Configuration as Code

e x e r C i S e 9 . 4

Configure Auto healing event notifications in AWS opsWorks Stacks

1. Launch the Amazon SNS console.

2. Create a new notification topic with your email address as a recipient.

3. Launch the Amazon CloudWatch console.

4. Create an Amazon CloudWatch Rule.

a. Edit the JSON version of the rule pattern to use:

{
 "source": ["aws.opsworks"],
 "detail": {
 "initiated_by": [
 "auto-healing"
]
 }
}

5. Add the Amazon SNS topic that you created as a target.

6. Add permissions to the Amazon SNS topic so that it can be invoked by Amazon
CloudWatch Events. An example policy statement is shown here. Replace the value
of the Resource block with your topic Amazon Resource Name (ARN).

{
 "Version": "2008-10-17",
 "Id": "AutoHealingNotificationPolicy",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sns:Publish",
 "Resource": "arn:aws:sns:REGION:ACCOUNT:MyTopic"
 }]
}

7. Create a stack and add an instance. Make sure that Auto Healing is enabled on the stack.

8. Launch the instance.

9. SSH or RDP into the instance.

10. Uninstall the AWS OpsWorks Stacks Agent.

11. Wait until the instance is stopped and started by AWS OpsWorks Stacks. You will
receive a notification shortly after this occurs.

Review Questions 491

Review Questions
1. Which of the following AWS OpsWorks Stacks limits cannot be raised?

A. Maximum stacks per account, per region

B. Maximum layers per stack

C. Maximum instances per layer

D. Maximum apps per stack

E. None of the above

2. After submitting changes to your cookbook repository, you notice that executing cook-
books on your AWS OpsWorks instances does not result in any changes taking place, even
though the logs show successful Chef runs.

What could be the cause of this?

A. The instances are unable to connect to the cookbook repository or archive location
because of networking or permissions errors.

B. The AWS OpsWorks Stacks agent running on the instance is enforcing cookbook
caching, resulting in cached copies being used instead of the new versions.

C. The version of the cookbook specified in the recipe list for the lifecycle event is
incorrect.

D. The custom cookbooks have not yet been downloaded to the instances.

3. When will an AWS OpsWorks Stacks instance register and deregister from an Elastic Load
Balancing load balancer associated with the layer?

A. Instances are registered or deregistered manually only.

B. Instances will be registered when they enter an online state and are deregistered when
they leave an online state.

C. As an administrator, you are responsible for including the registration and deregistration
within your Chef recipes and assigning the recipes to the appropriate lifecycle event.

D. Instances are registered when they are created and not deregistered until they are
terminated.

4. You have an Amazon ECS cluster that runs on a single service with one task. The cluster
currently contains enough instances to support the containers you define in your task, with
no additional compute resources to spare (other than those needed by the underlying OS
and Docker). Currently the service is configured with a maximum in-service percentage of
100 percent and a minimum of 100 percent. When you attempt to update the service, noth-
ing happens for an extended period of time, as the replacement task appears to be stuck as
it launches.

How would you resolve this? (Select TWO.)

A. The current configuration prevents new tasks from starting because of insufficient
resources. Add enough instances to the cluster to support the additional task temporarily.

B. The current configuration prevents new tasks from starting because of insufficient
resources. Modify the configuration to have a maximum in-service percentage of 200
percent and a minimum of 0 percent.

492 Chapter 9 ■ Configuration as Code

C. Configure the cluster to leverage an AWS Auto Scaling group and scale out additional
cluster instances when CPU Utilization is over 90 percent.

D. Submit a new update to replace the one that appears to be failing.

5. Which party is responsible for patching and maintaining underlying clusters when you use
the AWS Fargate launch type?

A. The customer

B. Amazon Web Services (AWS)

C. Docker

D. Independent software vendors

6. Why should instances in a single AWS OpsWorks Stacks layer have the same functionality
and purpose?

A. Because all instances in a layer run the same recipes

B. To keep the console clean

C. To stop and start at the same time

D. To all run configure lifecycle events at the same time

7. Where do instances in an AWS OpsWorks Stacks stack download custom cookbooks?

A. The Chef Server

B. They are included in the Amazon Machine Image (AMI).

C. The custom cookbook repository

D. Amazon Elastic Container Service (Amazon ECS)

8. How would you migrate an Amazon Relational Database Service (Amazon RDS) layer
between two stacks in the same region?

A. Supply the connection information to the second stack as custom JSON to ensure that
the instances can connect. Remove the Amazon RDS layer from the first stack. Add the
Amazon RDS layer to the second stack. Remove the connection custom JSON.

B. Add the Amazon RDS layer to the second stack and remove it from the first.

C. Create a new database instance, migrate data to the new instance, and associate it with
the second stack using an Amazon RDS layer.

D. This is not possible.

9. Which AWS OpsWorks Stacks instance type would you use for predictable increases in traf-
fic or workload for a stack?

A. 24/7

B. Load-based

C. Time-based

D. On demand

Review Questions 493

10. Which AWS OpsWorks Stacks instance type would you use for random, unpredictable
increases in traffic or workload for a stack?

A. 24/7

B. Load-based

C. Time-based

D. Spot

11. What component is responsible for stopping and starting containers on an Amazon Elastic
Container Service (Amazon ECS) cluster instance?

A. The Amazon ECS agent running on the instance

B. The Amazon ECS service role

C. AWS Systems Manager

D. The customer

12. What is Service-Oriented Architecture (SOA)?

A. The use of multiple AWS services to decouple infrastructure components and achieve
high availability

B. A software design practice where applications divide into discrete components (ser-
vices) that communicate with each other in such a way that individual services do not
rely on one another for their successful operation

C. Involves multiple teams to develop application components with no knowledge of other
teams and their components

D. Leasing services from different vendors instead of doing internal development

13. How many containers can a single task definition describe?

A. 1

B. Up to 3

C. Up to 5

D. Up to 10

14. You have a web proxy application that you would like to deploy in containers with the use
of Amazon Elastic Container Service (Amazon ECS). Typically, your application binds to
port 80 on the instance on which it runs. How can you use an application load balancer to
run more than one proxy container on each instance in your cluster?

A. Do not configure the container to bind to port 80. Instead, configure Application Load
Balancing (ALB) with dynamic host port mapping so that a random port is bound.
The ALB will route traffic coming in on port 80 to the port on which the container is
listening.

B. Configure a Port Address Translation (PAT) instance in Amazon Virtual Private Cloud
(Amazon VPC).

C. If the container binds to a specific port, only one copy can launch per instance.

D. Configure a classic load balancer to use dynamic host port mapping.

494 Chapter 9 ■ Configuration as Code

15. Which Amazon Elastic Container Service (Amazon ECS) task placement policy ensures that
tasks are distributed as much as possible in a single cluster?

A. Spread

B. Binpack

C. Random

D. Least Cost

Authentication and
Authorization

The AWS CerTified developer –
ASSoCiATe exAm TopiCS Covered in
ThiS ChApTer mAy inClude, buT Are
noT limiTed To, The folloWing:

Domain 2: Security

 ✓ 2.1 Make authenticated calls to AWS services.

 ✓ 2.3 Implement application authentication and
authorization.

Chapter

10

AWS® Certified Developer Official Study Guide
By Nick Alteen, Jennifer Fisher, Casey Gerena, Wes Gruver, Asim Jalis,
Heiwad Osman, Marife Pagan, Santosh Patlolla and Michael Roth

 Amazon Web Services, Inc.

Introduction to Authentication
and Authorization
Authentication is the process or action that verifies the identity of a user or process. Authorization
is a security mechanism that determines access levels or permissions related to system
resources including files, services, computer programs, data, and application features. The
authentication and authorization process grants or denies user access to network resources
based on the identity.

AWS Identity and Access Management (IAM) allows you to create identities (users,
groups, or roles) and control access to various AWS services through the use of policies.
IAM serves as an identity provider (IdP).

The following are the benefits of integrating an existing IdP:

 ■ Users are no longer required to manage multiple sets of credentials.

 ■ There are fewer credentials to administer.

 ■ Credentials are centrally managed.

 ■ It is easier to establish and enforce compliance standards.

As an IdP, AWS is responsible for storing identities and providing the mechanism for
authentication. You can use AWS as an IdP for the following:

 ■ AWS services

 ■ Applications running on AWS infrastructure

 ■ Applications running on non-AWS infrastructure, such as web or mobile applications

There are multiple benefits for using AWS as the IdP. AWS provides a managed service,
eliminates single points of failure, is highly available, and can scale as needed. AWS also
provides a number of tools, such as Amazon CloudWatch and AWS CloudTrail, to manage,
control, and audit this service.

Using a third party to provide identity services is known as federation.
In this chapter, you learn the various ways to integrate existing identity providers into

AWS and how to use AWS as an identity provider to control access to applications, both
inside and outside the AWS infrastructure.

Introduction to Authentication and Authorization 497

Different Planes of Control
There are two different planes of access used to manage and access AWS services: a control
plane and a data plane.

The control plane permits access to perform operations on a particular AWS instance.
AWS can control access to this plane through various AWS application programming inter-
face (AWS API) operations. The data plane permits access to the application running on
AWS. The data plane permits access to sign in to the compute instance using Secure Shell
(SSH) or Remote Desktop Protocol (RDP) and to make changes to the guest operating
system or to the application itself.

The control and data planes use different paths, different protocols, and different cre-
dentials; however, for several AWS services, the control and data planes are identical.
Amazon DynamoDB allows you to stop and start the compute instances (control plane) and
stop and start the database (data plane) using an AWS API.

Identity and Authorization
A discussion of federation requires a review of the concept’s identity and authorization.
Each of these concepts asks and answers two different questions. Identity asks and answers
“Who are you?”; and authorization asks and answers “What can you do?”

AWS establishes identity in several different ways, as shown in Table 10.1.

TA b le 10 .1 AWS Identity

Name Identifier Credential

Root user Email Password

User Email Password

User, group, or role Access key ID Secret access key

API Access Secret access key

AWS establishes authorization by user-executed APIs. AWS controls operations and
tasks through APIs. Policies are JavaScript Object Notation (JSON) documents that show
attribute-value pairs. Every policy document requires a minimum of three attribute-value
pairs: effect, action, and resource.

Effect has the API value of either ALLOW or DENY. The entity (whether a user, group, or
role) is either granted the permission to execute that API or denied the permission to exe-
cute that API.

Action determines whether the API is allowed or denied. Actions can be determined by an
individual API, a grouping of APIs for the same service using a wildcard (for example, S3:*
includes all Amazon Simple Storage Service (Amazon S3 APIs), or APIs for different services.

498 Chapter 10 ■ Authentication and Authorization

Resource determines where the API is being allowed or denied. For example, with
Amazon S3, you can allow the execution of an API in a particular bucket, object, or
particular group of objects (using the wildcard *).

 Though the order of the three attribute-value pairs has no impact on their
execution, use the acronym EAR to remember the three attribute-value
pairs: effect, action, and resource (EAR).

 Federation Defined
 A federation consists of two components: identity provider and identity consumer.

 Each component plays a different role in the process of federation. An identity provider
stores identities, provides a mechanism for authentication, and provides a course level of
authorization. An identity consumer stores a reference to the identity, providing authoriza-
tion at a greater granularity than the identity provider.

 An identity provider and an identity consumer work together to create a federation. The
identity provider and the identity consumer establish a trust relationship between each
other. They agree on the type of information to exchange, what information to exchange,
in what format, and what security methods and measures they will use.

 An identity provider answers the question “Who are you?” Because a prior trust rela-
tionship has been established between the identity provider and the identity consumer, the
identity consumer trusts the answer supplied by the identity provider and grants access.

 There is no expectation that there will be either a synchronization or replication of data
between an identity provider and an identity consumer or that an identity provider and an
identity consumer are operated by the same organization or entity.

 Federation with AWS
 Federation with AWS allows for two things. First, it allows you to use AWS as an IdP to
gain access to both AWS and non-AWS resources. Amazon Cognito is an AWS service that
acts as an IdP. Second, you can use non-AWS resources like Security Assertion Markup
Language (SAML) 2.0, OpenID Connect (OIDC), or Microsoft Active Directory as the IdP
to facilitate single sign-on (SSO).

 Federation enables you to manage access to your AWS resources centrally. With federa-
tion, you can use SSO to access your AWS accounts with credentials from your corporate
directory. Federation uses open standards, such as SAML or OIDC, to exchange identity
and security information between an IdP and an application.

 The fi ve mechanisms that the AWS federation can facilitate are as follows:

 ■ Custom-built IdP

 ■ Cross-account access

 ■ SAML

 ■ OIDC

 ■ Microsoft Active Directory

Introduction to Authentication and Authorization 499

Custom Build an Identity Provider
Custom builds were the original method of federation within AWS, but they have since
been supplanted by SAML, OIDC, and Microsoft Active Directory. With SAML, you can
build a custom IdP that verifies users and their identities. Though building a custom IdP
offers a high degree of customization, it is a complex process, and most customers now use
standard solutions.

Cross-Account Access
When you need to access resources across multiple AWS accounts, cross-account access
enables you to do so by using only one set of credentials. You can grant users access to
resources in company accounts without having to maintain multiple user entities, and your
users do not have to remember multiple passwords. Users can access the resources they
need in AWS accounts by switching AWS roles. Access is permitted by the policies attached
to each role. There are two accounts in cross-account access: the account in which the user
resides, or source account, and the account with the resources to which the user wants
access, or target account.

The target account has an IAM role that includes two components: a permissions policy
and a trust policy. The permissions policy controls access to AWS services and resources,
while the trust policy specifies who can assume the role and their external ID.

The source account is given an IAM role (AssumeRole) with a permissions policy that
allows you to assume this role. The target account issues short-term credentials to the
AssumeRole, which allows access to AWS services and the resources you specify in this
credential.

Use cross-account access when you own either the target account or the source account
and require no more than coordination between the owners of the source account and the
target account. Cross-account access allows users to access the AWS Management Console,
AWS APIs (control plane APIs and data plane APIs), and the AWS CLI.

Security Assertion Markup Language
Security Assertion Markup Language (SAML) provides federation between an IdP and a
service provider (SP) when you are in an AWS account and a trust relationship has been
established between the IdP and the SP. The IdP and the SP exchange metadata in an .xml
file that contains both the certificates and attributes that form the basis of the trust rela-
tionship between the IdP and the SP.

You interact only with the IdP, and all authentication and authorization occurs between
you and the IdP. Based on a successful authentication and authorization, the IdP makes an
assertion to the service provider. Based on the previously established trust relationship, the
service provider accepts this assertion and provides access.

Use SAML to provide access to the AWS Management Console, AWS APIs (control
plane APIs and data plane APIs), and the AWS CLI. SAML can also access Amazon
Cognito to control access to cloud services that exist outside AWS, such as software as a
solution (SaaS) applications.

500 Chapter 10 ■ Authentication and Authorization

OpenID Connect
OpenID Connect (OIDC) is the successor to SAML. OIDC is easier to configure than
SAML and uses tokens rather than assertions to provide access. Most use cases for OIDC
involve external versus internal users.

With OIDC, OpenID provider (OP) uses a relying party (RP) trust to track the service
provider. OP and RP exchange metadata by focusing on the OP providing information
to the RP about the location of its endpoints. The RP must register with the OP and then
receive a client ID and a client secret. This exchange establishes a trust relationship between
the OP and the RP.

Because you interact solitarily with the OP, all authentication and authorization occur
only between you and the OP. The OP issues a token to the service provider, which accepts
this token and provides access. OIDC includes three different types of tokens.

 ■ ID token establishes a user’s identity.

 ■ Access token provides access to APIs.

 ■ Refresh token allows you to acquire a new access token when the previous one expires.

Companies such as Google, Twitter, Facebook, and Amazon can also establish their
own OpenID provider.

After authentication and authorization occur, you can access numerous services, includ-
ing the AWS Management Console, AWS APIs, and AWS CLIs. You can use OIDC to
grant access to AWS services, including Amazon Cognito, Amazon AppStream 2.0, and
Amazon Redshift. You can also use OIDC to grant access to SaaS applications outside of
AWS.

Microsoft Active Directory
Microsoft Active Directory is the identity provider for a majority of corporations. You use
the Active Directory forest trusts to establish trust between an Active Directory domain
controller and AWS Directory Service for Microsoft Active Directory (AWS Managed
Microsoft AD). For Microsoft Active Directory, the domain controller is on-premises or in
the AWS Cloud.

In the Microsoft Active Directory setup, the Active Directory domain controller defines
the user. However, you add users to the groups that you define in the AWS Managed
Microsoft AD. Access to services depends on membership within these groups.

Use Microsoft Active Directory to provide data plane access to Amazon Elastic Compute
Cloud (Amazon EC2) instances running Windows, Amazon Relational Database Service
(Amazon RDS) instances running SQL Server, Amazon WorkSpaces, Amazon WorkDocs,
Amazon WorkMail, and, with limitations, the AWS Management Console.

AWS Single Sign-On
AWS Single Sign-On (AWS SSO) is an AWS service that manages SSO access. AWS SSO
allows users to sign in to a user portal with their existing corporate credentials and access

Introduction to Authentication and Authorization 501

both AWS accounts and business accounts. You can have multiple permission sets, allowing
for greater granularity and control over access.

Setting Up AWS Single Sign-On

To set up AWS SSO, do the following:

1. Enable AWS SSO.

2. Connect your directory.

3. Configure SSO to your AWS accounts.

4. Configure SSO to your cloud applications (if applicable).

Prerequisites for AWS SSO

There are several prerequisites for using AWS SSO:

 ■ Configure and enable all AWS Organizations features.

 ■ Use Organizations master account credentials for the initial configuration.

 ■ Configure a Microsoft Active Directory in the AWS Directory Service.

 ■ Ensure that the Active Directory resides in the US-East-1 Region.

AWS CLI Access
You can sign in to the AWS SSO user portal with your existing corporate credentials and
receive all AWS CLI credentials for your AWS accounts from a central location. These AWS
CLI credentials automatically expire after 60 minutes to prevent unauthorized access to
AWS accounts.

Management with AWS Organizations
AWS SSO enables management of SSO access and user permissions for your AWS accounts
managed through AWS Organizations. Additional setup in the individual accounts is not
required. AWS SSO automatically configures and maintains the necessary permissions in
your accounts. You can assign user permissions based on common job functions and cus-
tomize these permissions to meet your specific security requirements.

AWS SSO records all user portal sign-in activities in AWS CloudTrail, providing visibil-
ity into data, such as which users accessed specific accounts and applications from the user
portal. AWS SSO records details, including IP address, user name, date, and time of the
sign-in request. Changes made by administrators in the AWS SSO console are also recorded
in CloudTrail.

Integration with Microsoft Active Directory
AWS SSO integrates with Microsoft Active Directory through the Directory Service,
enabling you to sign in to the user portal using your Active Directory credentials. With the
Active Directory integration, you can manage SSO access to your accounts and applica-
tions for users and groups in your corporate directory. For instance, when you add DevOps

502 Chapter 10 ■ Authentication and Authorization

Active Directory users to your production AWS group, you are granted access to your pro-
duction AWS accounts automatically. This makes it easier to onboard new users and gives
existing users SSO access so that they can quickly access new accounts and applications.

Figure 10.1 shows the various AWS SSO options.

f i gu r e 10 .1 AWS SSO use cases model

On-Premises
Users and

Groups
On-Premises

Microsoft Active
Directory

AD
Connector/
AD Trust

Manage
Permissions to
AWS Accounts

Permissions

SSO Access

AWS Consoles

AWS Business
Cloud Applications

Office 365

Dropbox

Slack

OU = Development OU = Production
AWS Accounts Managed in

AWS Organizations

SSO Access

SSO AccessAWS SSO

AWS SSO Use Cases

Corporate Data Center

On-Premises AD Custom SAML
Applications

SAML-Enabled Applications
Built by Customers
or Their Partners

3

2

1

AWS Security Token Service
AWS Security Token Service (AWS STS) creates temporary security credentials and pro-
vides trusted users with those temporary security credentials. The trusted users then access
AWS resources with those credentials. Temporary security credentials work similarly to
long-term access key credentials, but with the following differences:

 ■ Temporary security credentials consist of an access key ID, a secret access key, and a
security token.

 ■ Temporary security credentials are short-term, and you configure them to remain valid
for a duration between a few minutes to several hours. After the credentials expire,
AWS no longer recognizes them or allows any kind of access from API requests made
with them.

 ■ Temporary security credentials are not stored with you; they are generated dynamically
and provided to you upon request. You can request new credentials before or after the
temporary security credentials expire, if you still have permission to do so.

Introduction to Authentication and Authorization 503

 Because of these differences, temporary credentials offer the following advantages:

 ■ You do not have to distribute or embed long-term AWS security credentials with an
application.

 ■ You can provide users access to your AWS resources without defining an AWS identity
for them. Temporary credentials are the basis for AWS roles and identity federation.

 ■ The temporary security credentials have a limited lifetime. You do not have to rotate or
explicitly revoke them when the user no longer requires them.

 ■ After temporary security credentials expire, they cannot be reused. You can specify
how long the credentials are valid, up to a maximum limit.

 AWS STS IdPs come from different sources, including the following:

 ■ IAM users from another account

 ■ Microsoft Active Directory

 ■ Users of IdPs that are SAML 2.0–based

 ■ Web IdPs

 ■ Customer identity brokers

 Use Amazon Cognito to authenticate for mobile applications. Amazon Cog-
nito supports the same IdPs as AWS STS. However, it also supports unau-
thenticated (or guest) access and provides a means for synchronizing user
data between multiple devices owned by the same user.

 AWS STS supports the following APIs:

 ■ AssumeRole

 ■ AssumeRoleWithSAML

 ■ AssumeRoleWithWebIdentity

 ■ DecodeAuthorizationMessage

 ■ GetCallerIdentity

 ■ GetFederationToken

 ■ GetSessionToken

AssumeRole This API provides a set of temporary security credentials to access AWS
resources. Use AssumeRole to grant access to existing IAM users who have identities in other
AWS accounts. Use this API if you need to support multi-factor authentication (MFA). By
default, the maximum duration of the credentials that this API issues is 60 minutes.

 The default maximum duration for AssumeRole APIs is 60 minutes.
However, you can change the maximum duration to 12 hours (720 minutes)
for a specific role.

504 Chapter 10 ■ Authentication and Authorization

AssumeRoleWithSAML AssumeRoleWithSAML provides a set of temporary security cre-
dentials (consisting of an access key ID , a secret access key , and a security token) to access
AWS resources. Use this API when you are using an identity store or directory that is
SAML-based, rather than having an identity from an IAM user in another AWS account.
This API does not support MFA.

 AssumeRoleWithWebIdentity AssumeRoleWithWebIdentity provides a set of tempo-
rary security credentials that you use to access AWS resources. Use this API when users
have been authenticated in a mobile or web application with a web IdP, such as Amazon
Cognito, Login with Amazon, Facebook, Google, or any OIDC-compatible identity
provider. This API does not support MFA.

 DecodeAuthorizationMessage DecodeAuthorizationMessage decodes additional
information about the authorization status of a request from an encoded message returned
in response to an AWS request. The message is encoded to prevent the requesting user from
seeing details of the authorization status, which can contain privileged information.

 The decoded message includes the following:

 ■ Whether the request was denied because of an explicit deny or because of the absence
of an explicit allow

 ■ Principal who made the request

 ■ Requested action

 ■ Requested resource

 ■ Values of condition keys in the context of the user’s request

 GetCallerIdentity The GetCallerIdentity API returns details about the IAM iden-
tity whose credentials call the API.

 GetFederationToken The GetFederationToken API provides a set of temporary secu-
rity credentials to access AWS resources. For example, a typical use is within a proxy appli-
cation that retrieves temporary security credentials on behalf of distributed applications
inside a corporate network.

 The permissions for the temporary security credentials returned by GetFederationToken
are a combination of the policy or policies that are attached to the IAM user, whose cre-
dentials call the GetFederationToken , and the policy passes as a parameter in the call.

 Because the call for the GetFederationToken action uses the long-term security credentials
of an IAM user, this call is appropriate in contexts where credentials can be safely stored.
The API credentials can have a duration of up to 36 hours. This API does not support
MFA.

 Remember that the most restrictive policy is the one enforced. So, if you
have a user who has a policy that ALLOWS access to an API, but a policy is
passed as a parameter that DENIES access to that API, the result is a DENY .

Introduction to Authentication and Authorization 505

GetSessionToken GetSessionsToken provides a set of temporary security credentials to
access AWS resources. You normally use GetSessionToken to enable MFA to protect pro-
grammatic calls to specific AWS APIs like Amazon EC2 StopInstances.

MFA-enabled IAM users call GetSessionToken and submit an MFA code that is associated
with their MFA device. Using the temporary security credentials that return from the call,
IAM users can then make programmatic calls to APIs that require MFA authentication.

Amazon Cognito
Amazon Cognito is a service that allows you to manage sign-in and permissions for mobile
and web applications through two services: Amazon Cognito Sync store and Amazon
Cognito Sync.

With Amazon Cognito Sync store, you can authenticate users using third-party social
identity providers or create your own identity store. With Amazon Cognito Sync, you can
synchronize identities across multiple devices and the web.

By using Amazon Cognito, you can grant users access to AWS resources without having
to embed AWS credentials into the web or mobile application. Amazon Cognito integrates
with AWS STS to identify the user and give the user a consistent identity throughout the
lifetime of an application, even if the device is offline or the user is accessing the applica-
tion on a different device. Amazon Cognito is a managed service, providing scaling, redun-
dancy, and high availability. You provide authentication with Amazon Cognito in one of
three ways:

 ■ Your own identity store

 ■ Social identity providers such as Amazon or Facebook

 ■ SAML-based identity solutions

Amazon Cognito provides a variety of mechanisms to secure the application. You can
configure guest access, multi-factor authentication, and confirmation of account with Short
Message Service (SMS) or email, among other mechanisms. Amazon Cognito integrates
with AWS CloudTrail to track creations, deletions, and configuration changes. You can
also use Amazon CloudWatch alarms to monitor for a specific activity and receive Amazon
Simple Notification Service (Amazon SNS) or email notifications, if that activity occurs.

Amazon Cognito uses identity for user pools and identity pools. You use Amazon
Cognito to access the AWS Management Console, AWS CLI, and AWS SDKs.

Microsoft Active Directory as Identity Provider
Many enterprises already use Microsoft Active Directory as their identity store. Integrating
Active Directory, rather than configuring a new identity store, simplifies administrative
overhead. AWS Managed Microsoft AD provides multiple ways to use Amazon Cloud
Directory and Microsoft Active Directory with other AWS services.

Directories store information about users, groups, and devices, which administrators use
to manage access to information and resources. AWS Directory Service provides multiple

506 Chapter 10 ■ Authentication and Authorization

directory choices for customers who want to use an existing Microsoft Active Directory
or Lightweight Directory Access Protocol (LDAP)–aware applications in the cloud. It also
offers those same choices to developers who need a directory to manage users, groups,
devices, and access.

 There are four different ways to implement Microsoft Active Directory in an AWS
infrastructure.

 ■ Run Microsoft Active Directory on Amazon EC2 with an AWS account.

 ■ Use Active Directory Connector (AD Connector) to connect AWS services with an on-
premises Microsoft Active Directory.

 ■ Create a Simple Active Directory (Simple AD) that provides basic Active Directory
compatibility.

 ■ Deploy AWS Managed Microsoft AD.

 AWS publishes a number of Quick Start reference deployment guides,
including a deployment guide for Active Directory Domain Services. For
more information, see https://docs.aws.amazon.com/quickstart/
latest/active-directory-ds/youlcome.html .

 Microsoft Active Directory on Amazon EC2 with AWS Account
 AWS provides a comprehensive set of services and tools for deploying Microsoft Windows–
based workloads in its secure cloud infrastructure. Active Directory Domain Services (AD
DS) and Domain Name System (DNS) are core Windows services that provide the founda-
tion for many enterprise-class Microsoft-based solutions, including Microsoft SharePoint,
Microsoft Exchange, and .NET applications.

 When deploying AD DS on Amazon EC2, you are responsible for deploying in a highly
available confi guration. You are also responsible for verifying that AD DS is backed up
and confi gured in a fault-tolerant mode. Microsoft Active Directory deploys either as a pri-
mary or secondary domain controller, and you can choose to use Amazon Machine Images
(AMI) or import your own virtual machine images.

 Active Directory Connector
 Active Directory Connector (AD Connector) connects your existing on-premises
Microsoft Active Directory with compatible AWS applications. AWS-compatible applica-
tions include Amazon WorkSpaces, Amazon QuickSight, Amazon WorkMail, and Amazon
EC2 for Windows Server instances, among others. With AD Connector acting as a proxy
service, you can add a service account to your Active Directory, and AD Connector elimi-
nates the need for directory synchronization or the cost and complexity of hosting a federa-
tion infrastructure.

 When you add users to AWS applications, AD Connector reads your existing Active
Directory to create lists of users and groups from which to select. When users sign in to

Introduction to Authentication and Authorization 507

the AWS applications, AD Connector forwards sign-in requests to your on-premises Active
Directory domain controllers for authentication.

 AD Connector is not compatible with Amazon Relational Database Service
(Amazon RDS) SQL Server.

 Management of your Active Directory does not change; you add new users and groups
and update passwords using the standard Active Directory administration tools in your
on-premises Active Directory. This helps you to consistently enforce your security policies,
such as password expiration, password history, and account lockouts, regardless of whether
users are accessing resources on-premises or on the AWS Cloud.

 AD Connector enables you to access the AWS Management Console and manage AWS
resources by signing in with your existing Active Directory credentials. AD Connector is
not compatible with Amazon RDS for SQL Server.

 You can use the AD Connector to enable MFA for your AWS application users by con-
necting it to your existing RADIUS-based MFA infrastructure. This provides an additional
layer of security when users access AWS applications.

 Simple Active Directory
Simple Active Directory (Simple AD) is a Microsoft Active Directory that is compatible
with AWS Directory Service and is powered by Samba 4. Simple AD is a standalone direc-
tory in the cloud, where you create and manage identities and manage access to applica-
tions. You can use many familiar Active Directory–aware applications and tools that
require basic Active Directory features.

 Simple AD supports basic Active Directory features such as user accounts, group mem-
berships, memberships for a Linux domain or Windows-based Amazon EC2 instances,
Kerberos-based SSO, and group policies. However, Simple AD does not support trust rela-
tionships, DNS dynamic update, schema extensions, MFA, communication over LDAPs,
PowerShell Active Directory cmdlets, or Flexible Single Master Operation (FSMO) role
transfer. In addition, Simple AD is not compatible with RDS SQL Server.

 Simple AD is compatible with the following AWS applications: Amazon WorkSpaces,
WorkDocs, Amazon QuickSight, and WorkMail. You can sign in to the AWS Management
Console and manage AWS resources with Simple AD user accounts.

 AWS Managed Microsoft AD
AWS Managed Microsoft AD is an actual Microsoft Windows Server Active Directory,
managed by AWS in the AWS Cloud. It enables you to migrate a broad range of Active
Directory–aware applications to the AWS Cloud. AWS Managed Microsoft AD works with
Microsoft SharePoint, Microsoft SQL Server Always-On Availability Groups, and many
.NET applications.

 Figure 10.2 illustrates Directory Service and its relation to AWS applications and
services: Amazon EC2, Active Directory–aware workloads, cloud applications, and on-
premises Active Directory.

508 Chapter 10 ■ Authentication and Authorization

f i gu r e 10 . 2 AWS Directory Service chart

5

4

3

21 AWS App & Services Amazon EC2

Cloud Applications

On-Premises AD

Corporate Data Center

AD-Aware Workloads

AWS Management
Console

Amazon
WorkSpaces

Amazon
Windows EC2

Instances

Manage,
Authenticate, & Authorize

Synchronize
Users

Azure AD

Office 365
SAML

Authenticate

TrustAuthenticate
& Authorize

Azure AD
Connect

Server

AD FS
Server

Federate

AWS Microsoft AD
Directory

Manage, Authenticate,
& Authorize

Enable, Authenticate, &
Authorize

Amazon Linux
EC2 Instances

RDS for SQL
Server

Amazon
WorkDocs

Amazon
QuickSight

Amazon
WorkMail

Amazon
Connect

Amazon
Chime

Remote
Desktop

Licensing
Manager

.NET
Applications

SharePoint SQL Server VPN
Connection

On-Premises
Microsoft Active

Directory

On-Premises User
Credentials

Directory Service includes key features that enable you to extend your schema, man-
age password policies, and enable secure LDAP communications through Secure Socket
Layer (SSL)/Transport Layer Security (TLS). The service is approved for applications in
the AWS Cloud that are subject to the United States Health Insurance Portability and
Accountability Act (HIPAA) or Payment Card Industry Data Security Standard (PCI DSS)
compliance when you enable compliance for your directory.

You can add users and groups to AWS Managed Microsoft AD and administration to
group policies using familiar Active Directory tools. You scale the directory by deploying
additional domain controllers and improve performance by distributing requests across a
larger number of domain controllers.

AWS provides monitoring, daily snapshots, and recovery as part of the service. You
can connect AWS Managed Microsoft AD with a trust and use credentials to an Active
Directory running on-premises. Trust relationship support includes one-way (both in and
out) and two-way.

AWS Managed Microsoft AD can support AWS managed applications and services,
including Amazon WorkSpaces, WorkDocs, Amazon QuickSight, Amazon Chime, Amazon
Connect, and Amazon RDS for SQL Server.

Summary
This chapter discussed the concepts of identity and authorization and how you can use
AWS services to provide them. You learned that identity and authorization can operate
at different planes of access—the control plane and the data plane. You also learned that

Resources to Review 509

these planes differ in terms of paths used, protocols configured, services managed, and cre-
dentials deployed.

In addition, you learned about the various AWS services and where you use identity and
authorization, including the following:

 ■ AWS SSO

 ■ AWS STS

 ■ Amazon Cognito

 ■ AWS Managed Microsoft AD

Exam Essentials
Understand what federation is. Know the difference between federation and
SSO. Understand when you would use federation and when you would use SSO.

Understand the role of an identity provider (IdP). Know what an IdP does, how it oper-
ates, and how it interacts with an identity consumer.

Know the different federation services that AWS offers. Understand which services act as
IdPs, which act as identity consumers, and which act as SSO.

Understand AWS Directory Service options. Know the use cases for Microsoft Active
Directory, Cloud Directory, and Amazon Cognito.

Understand how policies work. Know the structure of policies and how to apply them.

Recognize the role of policies in controlling access to AWS resources. Know how to use
AWS services to control access to non-AWS resources and how to use non-AWS services to
control access to AWS resources.

Understand the difference between the data plane and control plane with regard to pro-
tocols and commands. Know how AWS STS and AWS SSO work and how to implement
these services.

Resources to Review

AWS Security Token Service (AWS STS):

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Identity Federation in the AWS Cloud:

https://aws.amazon.com/identity/federation/

AWS Identity and Access Management (IAM):

https://docs.aws.amazon.com/iam/

AWS Directory Service:

https://aws.amazon.com/directoryservice

510 Chapter 10 ■ Authentication and Authorization

Amazon Cognito:

https://aws.amazon.com/cognito

AWS Single Sign-On:

https://docs.aws.amazon.com/singlesignon

Exercises

e x e r C i S e 10 .1

Setting up a Simple Active directory

In this exercise, you will set up an AWS Simple Active Directory (Simple AD). Simple AD is
a standalone directory that is powered by a Samba 4 Active Directory Compatible Server.
Because it’s a standalone managed directory, you do not have to manage user accounts
and group memberships. This is achieved through the Microsoft Active Directory.

Step 1: Create a Virtual Private Cloud

In this step, you will use the Amazon Virtual Private Cloud (Amazon VPC) wizard in the
Amazon VPC console to create a virtual private cloud. The wizard steps create a VPC with
a /16 IPv4 CIDR block and attach an internet gateway to the VPC.

1. In the AWS Management Console navigation pane, choose VPC and then choose
Launch VPC Wizard.

2. On the left, select VPC with a Single Public Subnet, and then choose Select.

To communicate with an Active Directory outside of AWS, you must create the
Simple AD directory in a public subnet.

3. On the next page, enter the following settings:

a. Enter a valid, unused IP CIDER block (for example 10.40.0.0/16).

b. Choose a valid name (for example, simple-ad-demo).

c. Choose a valid subnet (for example, 10.40.1.0/24)

d. Choose an Availability Zone in which to create the subnet. (Record your
selection; you will need this information for the next step.)

4. Choose Create VPC.

You have launched a VPC that has a public subnet, an internet gateway attached to
it, and the necessary route table and security group configurations to allow traffic to
flow between the subnet and the internet gateway. However, because Simple AD is a
highly available service, you must create a second public subnet on this VPC.

5. Navigate to the VPC dashboard and choose Subnets.

Exercises 511

6. Choose Create Subnet.

7. On the next page, enter the following settings:

a. Choose a name tag.

b. Choose the VPC that you created in the previous steps.

c. Choose an Availability Zone that is different from the one selected in the previ-
ous steps.

d. Choose a valid subnet.

8. Choose Create VPC.

You have created a VPC that has two public subnets. When you create a Simple AD
directory, each node is located in a different Availability Zone.

Step 2: Create Your Simple AD Instance in AWS

Create your AWS Managed Microsoft AD directory using the AWS Management Console.

1. In the AWS Directory Service console navigation pane, choose Directories and then
choose Set up directory.

2. On the Select directory type page, select AWS Simple AD and then choose Next.

3. On the Enter directory information page, provide the following and then choose Next.

a. Directory size (Small or Large).

b. Directory DNS name.

c. (Optional) Directory NetBIOS name (CORP, for example). If one is not provided, a
name is created by default.

d. An administrator password, which must be 8–24 characters in length. It must
also contain at least one character from three of the following four categories:
uppercase letters, lowercase letters, numbers, or nonalphanumeric characters.

e. (Optional) Description of the directory. This is useful in tracking your services
within AWS.

4. On the VPC and subnets page, provide the following information, and then choose Next.

a. For VPC, choose the VPC you created earlier (simple-ad-demo).

b. Under Subnets, choose the two subnets you created for the domain controllers.

5. Review your settings and choose Create directory.

It takes 5–10 minutes to create your directory. You may need to refresh the page.
When the directory creation is complete, the Status value changes to Active.

(continued)

512 Chapter 10 ■ Authentication and Authorization

e x e r C i S e 10 .1 (c ont inue d)

Step 3: Management and Maintenance of Simple AD Directory in AWS

When the status changes to Active, the AWS Managed Microsoft AD directory is ready to
do the following:

 ■ Manage the AWS applications and services available to users

 ■ Perform various maintenance activities, such as creating Amazon Simple Notification
Service (Amazon SNS) email or text messages to inform you of changes in status to
your directory, performing a point-in time backup (snapshot) of your directory, and
modifying the schema of your AWS Managed AD directory

e x e r C i S e 10 . 2

Setting up an AWS managed microsoft Ad

In this exercise, you will set up an AWS Managed Microsoft AD. Because this is an Active
Directory managed by AWS, you do not have to consider the size or type of compute
instances that will be running on this Active Directory. You will, however, have to choose
the Amazon VPC that this service will run on.

This service is designed for high availability, so two domain controllers are created.
Therefore, two corresponding subnets are used.

To simplify the installation, you will first create the necessary VPC, and then you will cre-
ate the AWS Managed Microsoft AD.

Step 1: Create a Virtual Private Cloud

Create your Amazon VPC by using the AWS Management Console.

1. In the AWS Services console navigation pane, choose VPC and then choose
Your VPCs.

2. Note the VPCs used (to avoid address conflict), and choose Create VPC.

3. In VPC name, enter, My Directory Service and specify an IPv4 CIDR block.

Choose a CIDR block that is not currently used (for example, 10.30.0.0/16).

4. For Hardware tenancy, select Default, and choose Create.

5. After the VPC is created, return to the VPC dashboard and select Subnets.

6. Choose Create subnet.

Exercises 513

7. In the Create Subnet dialog box, enter a name tag, choose the VPC you just created,
select an Availability Zone, and specify an IPv4 CIDR block within that VPC (for
 example, 10.30.1.0/24).

8. Choose Create.

9. Repeat steps 6–8 to create a second subnet, making sure to choose a different
Availability Zone and a different subnet other than the ones specified in step 7.

Step 2: Create Your AWS Managed Microsoft AD Directory in AWS

Create your AWS Managed Microsoft AD directory by using the AWS Management
 Console.

1. In the AWS Directory Service console navigation pane, choose Directories and then
choose Set up directory.

2. On the Select directory type page, choose AWS Managed Microsoft AD and
choose Next.

3. On the Enter directory information page, provide the following information and then
choose Next.

4. For Edition, you can select either Standard Edition or Enterprise Edition. For this
exercise, select Standard Edition.

For more information about editions, see AWS Directory Service for Microsoft Active
Directory at https://docs.aws.amazon.com/directoryservice/latest/admin-
guide/what_is.html#microsoftad.

5. For Directory DNS name, enter corp.example.com.

6. For Directory NetBIOS name, enter corp.

7. For Directory description, enter AWS DS Managed.

8. For Admin password, enter the password that you want to use for this account.

This admin account is automatically created during the directory creation process.
The password cannot include the word admin. The directory administrator password
is case-sensitive, and it must be 8–64 characters in length. It must also contain at
least one character from three of the following four categories:

 ■ Lowercase letters (a–z)

 ■ Uppercase letters (A–Z)

 ■ Numbers (0–9)

 ■ Nonalphanumeric characters (~!@#$%^&*_-+=`|\(){}[]:;"'<>,.?/)

9. In Confirm Password, enter the password again.

(continued)

514 Chapter 10 ■ Authentication and Authorization

10. On the Choose VPC and subnets page, provide the following information and then
choose Next.

a. For VPC, choose the option that begins with AWS-DS-VPC and ends
with (10.0.0.0/16).

b. For Subnets, choose the 10.0.128.0/20 and 10.0.144.0/20 public subnets.

c. On the Review & create page, review the directory information and make any
necessary changes. When the information is correct, choose Create directory.

Creating the directory takes 20–40 minutes. After the directory is created, the
Status value changes to Active.

Step 3: Management and Maintenance of AWS Managed Microsoft AD

After AWS Managed Microsoft AD is set up, you are able to perform the following
maintenance and management operations:

 ■ Manage the AWS applications and services available to users.

 ■ Share directories, see the Availability Zone and subnet of existing controllers, and
add additional controllers.

 ■ Create trust relationships, establish IP routing, enable log forwarding, and use
multi-factor authentication.

 ■ Create Amazon SNS email or text messages to inform you of changes in status to your
directory, perform a point-in time backup (snapshot) of your directory, and modify the
schema of your AWS Managed AD
directory.

e x e r C i S e 10 . 3

Setting up an Amazon Cloud directory

In this exercise, you will set up an Amazon Cloud Directory. Cloud Directory is a highly
available multitenant directory-based store where AWS is responsible for scaling. AWS
manages the directory infrastructure, while the administrators focus on building the
directories and the applications that use those directories.

Step 1: Create a Schema

You’ll first create a schema (which defines objects in a directory) and then assign that
schema to a directory. A single schema can be assigned to multiple directories, and a
directory can have multiple schemas assigned to it (though typically it does not).

e x e r C i S e 10 . 2 (c ont inue d)

Exercises 515

1. In the AWS Services console navigation pane, under Security, Identity &
Compliance, choose Directory Service ➢ Schemas.

2. To create a custom schema based on an existing one, in the table listing the
schemas, select the schema named person.

3. Choose Actions.

4. Choose Download schema.

5. In the location where you downloaded the schema, rename the file to test-person.

6. On the Schemas page, choose Upload new schema.

7. Select test-person and choose Upload.

8. To prevent modifications to the schema, choose schema test-person.

9. Choose Actions.

10. In Major Version, enter the identifier 1, and choose Publish.

You are returned to the Schemas page. You have two versions of the test-person
schema: one schema version shows versions and is listed under State as Published;
the other schema version does not show versions and is listed under State as
Development.

You have successfully created a schema that you will use to create a directory.

Step 2: Create a Directory

Before you can create a directory in Cloud Directory, Directory Service requires that you
first apply a schema to it. A directory cannot be created without a schema and typically
has one schema applied to it.

Create a directory that uses the schema you created in step 1.

1. In the AWS Directory Service console navigation pane, under Security, Identity &
Compliance, choose Directory Service ➢ Directories.

2. Choose Set up Cloud Directory.

3. Under Choose a schema to apply to your new directory, in Cloud Directory name,
enter test-cloud-directory.

4. Choose Custom schema.

5. Select the custom schema named test-person with the Status of Published, and
then choose Next.

6. Review the directory information and make the necessary changes. When the
information is correct, choose Create.

You have successfully created a Cloud Directory. You can modify and delete the directory,
including the schema associated with the directory.

516 Chapter 10 ■ Authentication and Authorization

e x e r C i S e 10 . 4

Setting up Amazon Cognito

In this exercise, you will set up Amazon Cognito, which is the service that provides
authentication, authorization, and user management for web and mobile applications.

The two main components of Amazon Cognito are user pools and identity pools. User
pools is a user directory that provides sign-up and sign-in services. Identity pools are
used to provide access to other AWS services.

You can use identity pools and user pools separately or together. In this exercise, you will
set up a user pool.

1. In the AWS Directory Services console navigation pane, under Security, Identity &
Compliance, choose Cognito and then choose Manage User Pools.

2. Provide a name for your user pool. Enter admin-group.

3. Specify how a user signs in. In this example, select user name, and then choose
Next step.

4. Retain the default settings and choose Next step.

You can set MFA as optional or required. After a user pool is configured, you cannot
change the MFA setting. Amazon Cognito uses Amazon SNS to send SMS messages. If
MFA is enabled, you must assign a role with the correct policy to send SMS messages.

5. Retain the default settings and choose Next step.

6. On the Attributes page, retain the default settings for email customization, and
choose Next step.

7. To manage the AWS infrastructure, apply tags. Enter the following information, and
then choose Next step:

a. In Tag Key, enter user

b. In Tag Value, enter admin-user.

8. Select No and choose Next step.

Amazon Cognito can detect and retain your user’s device. This step enables you to con-
figure that capability. In this example, however, you will select No. Choose Next step.

9. Retain the default settings and choose Next step.

You can configure how client applications gain access to the user pool. In this exer-
cise, no access is granted.

10. Retain the default settings and choose Next step.

You can configure AWS Lambda functions that can be triggered during the Amazon
Cognito operation. For this exercise, you will not configure any Lambda functions.

11. On the Review page, review your configurations, and choose Create pool.

You have successfully created a user pool in Amazon Cognito.

Review Questions 517

Review Questions
1. You need to grant a user, who is outside your AWS account, access to an object in an

Amazon Simple Storage Service (Amazon S3) bucket. Which is the best way to provide
access?

A. Create a role and assign that role to the user.

B. Create a user ID within Identity and Access Management (IAM) and assign the user ID
a policy that allows access.

C. Create a new AWS account, assign that user to the account, and then give the account
cross-account access.

D. Have the user create a user ID using a third-party identity provider (IdP), and based on
that user ID, assign a policy that permits access.

2. Which of the following is the purpose of an identity provider (IdP)?

A. To control access to applications

B. To control access to the AWS infrastructure

C. To minimize the opportunity to assign the incorrect policy

D. To answer the question “Who are you?”

3. Which of the following is the best way to minimize misuse of AWS credentials?

A. Set up multi-factor authentication (MFA).

B. Embed the credentials in the bastion host and control access to the bastion host.

C. Put a condition on all of your policies that allows execution only from your corporate
IP range.

D. Make sure that you have a limited number of credentials and limit the number of
people that can use them.

4. Which of the following is not a valid identity provider (IdP) for Amazon Cognito?

A. Google

B. Microsoft Active Directory

C. Your own identity store

D. A Security Assertion Markup Language (SAML) 1.0–based IdP

5. Which of the following is one benefit of using AWS as an identity provider (IdP) to access
non-AWS resources?

A. AWS cannot be used as an IdP for non-AWS services.

B. Using AWS as an IdP allows you to use Amazon CloudWatch to monitor activity.

C. Using AWS as an IdP allows you to use AWS CloudTrail to audit who is using the
service.

D. Using AWS as an IdP allows you to assign policies to non-AWS resources.

518 Chapter 10 ■ Authentication and Authorization

6. Which of the following are benefits from using the Active Directory Connector (AD
Connector)? (Select TWO.)

A. Easy setup

B. Ability to connect to multiple Active Directory domains with a single connection

C. Ability to configure changes to Active Directory on your existing Active Directory
console

D. Ability to support authentication to non-AWS services

7. Which of the following is a prerequisite for using AWS Single Sign-On (AWS SSO)?

A. Set up AWS Organizations and enable all features.

B. Make sure that your identity provider (IdP) is Security Assertion Markup Language
(SAML) 2.0 compatible.

C. Deploy AWS Simple Active Directory (Simple AD).

D. Deploy Amazon Cognito.

8. AWS Security Token Service (AWS STS) supports a number of different tokens.

 Which token would you use to establish a longer-term session?

A. AssumeRole

B. GetUserToken

C. GetFederationToken

D. GetSessionToken

9. Which of the following is not a service that AWS Managed Microsoft AD provides?

A. Daily snapshots

B. Ability to manage the Amazon Elastic Compute Cloud (Amazon EC2) instances that
AWS Managed Microsoft AD is running on

C. Monitoring

D. Ability to sync with on-premises Active Directory

10. You are using an existing RADIUS-based multi-factor authentication (MFA) infrastructure.

 Which AWS service is your best choice?

A. Active Directory Connector (AD Connector)

B. AWS Managed Microsoft AD

C. Simple Active Directory (Simple AD)

D. No AWS service would be suitable.

Refactor to
Microservices

The AWS CeRTified developeR –
ASSoCiATe exAM TopiCS CoveRed in
ThiS ChApTeR MAy inClude, buT ARe
noT liMiTed To, The folloWing:

Domain 4: Refactoring

 ✓ 4.1 Optimize application to best use AWS services and
features.

Content may include the following:

 ■ Amazon Simple Queue Service (Amazon SQS) message

queue service

 ■ Amazon Simple Notification Service (Amazon SNS)

producer/consumer (publisher/subscriber) messaging and

mobile notifications web

 ■ Amazon Kinesis Data Streams real-time ingestion and

real-time analytics

 ■ Replacement of Amazon Kinesis Data Firehose with the

CoDA service for data ingestion

 ■ Process and analysis of Amazon Kinesis Data Analytics data

with standard structured query language (SQL)

 ■ Process and detection of content patterns in Amazon Kinesis

Video Streams

 ■ Publishing messages when Amazon DynamoDB tables

change

 ■ Using AWS IoT Device Management to manage IoT devices

throughout their lifecycle

Chapter

11

AWS® Certified Developer Official Study Guide
By Nick Alteen, Jennifer Fisher, Casey Gerena, Wes Gruver, Asim Jalis,
Heiwad Osman, Marife Pagan, Santosh Patlolla and Michael Roth

 Amazon Web Services, Inc.

 ■ Amazon MQ message broker service for Apache ActiveMQ

 ■ Using AWS Step Functions to develop, launch, and

monitor the progress of workflows

Domain 5: Monitoring and Troubleshooting

Content may include the following:

 ■ Troubleshooting dead-letter queue

Introduction to Refactor
to Microservices
As applications grow, they become harder to manage and maintain. Application compo-
nents are tightly coupled with each other, and the failure of one component can cause the
failure of the whole application.

Microservices architecture is a method to design and build software applications as a
suite of modular services, each performing a specific functional task, which deploy and
access application components via well-defined standard application programming inter-
faces (APIs). Where possible, you automate the provisioning, termination, and configu-
ration of resources. A best-practice scenario is shown in Figure 11.1. In this case, if an
application fails, Amazon CloudWatch automatically detects the unhealthy instance and
alerts AWS Auto Scaling to launch and configure an identical server, notifies the adminis-
trator, and logs the action to your change management solution.

f i gu R e 11.1 Microservices in action

App server
crashes.

Amazon
CloudWatch
automatically

detects unhealthy
instance.

Automatically
notifies admin.

Automatically
logs action to a

change
management

solution.

Alerts AWS
Auto Scaling to
automatically
launch and
configure
identical
server.

Best Practice

522 Chapter 11 ■ Refactor to Microservices

Containers are software-defined execution environments that you can rapidly provision
and independently deploy in server and serverless environments. Microservices that run in
containers take portability and interoperability to a new level because the services func-
tion the same on-premises as they do in any cloud that supports containers. Independence
and modularity also provide opportunities to design for elastic scalability and operational
resilience.

To refactor to microservices is to separate the application components into separate
microservices so that each microservice has its own data store, scales independently, and
deploys on its own infrastructure. Refactoring includes rewriting and decoupling applica-
tions, re-architecting a solution, and determining whether you will perform a complete
refactor (lift and shift—all in) or only a partial refactor (lift and shift—hybrid).

To refactor to microservices requires a message infrastructure so that the microservices
can communicate with each other. Message queues communicate between applications.
AWS provides the message infrastructure that enables you to build microservice architec-
tures without the need to spend the time and effort for a connective infrastructure.

A serverless solution is provisioned at the time of need. You can store static web assets
externally, such as in an Amazon S3 bucket, and user authentication and user state storage
are handled by managed AWS offerings and services.

You can further safeguard your application against latency because of failure if you
avoid a single point of failure, as shown in Figure 11.2.

f i gu R e 11. 2 Avoiding single points of failure

App Server
Database

Server
(Primary)

Database
Server

(Secondary)

Main database
server goes offline.

Secondary server picks up
the load.

Create a secondary (standby)
database server and replicate
the data.Replication

Best Practice

Database
Server

(Secondary)App Server

This section describes the different services AWS provides to enable the building of
microservice architectures. The certification exam objectives for refactoring to microser-
vices include the following:

 ■ Optimizing an application to best use AWS offerings, services, and features

 ■ Migrating existing application code to run on AWS

Amazon Simple Queue Service 523

Amazon Simple Queue Service
Message-oriented middleware (MoM) supports messaging types in which the messages that
are produced (producers) can broadcast and publish to multiple message consumers, also
known as message subscribers.

Amazon Simple Queue Service (Amazon SQS) is a fully managed message queuing ser-
vice that makes it easy to decouple and scale microservices, distributed systems, and server-
less applications to assist in event-driven solutions. Amazon SQS both moves data between
distributed application components and helps you to decouple these components. Amazon
SQS is the best option for cloud-designed applications that need unlimited scalability,
capacity, throughput, and high availability. Amazon SQS temporarily stores messages from
a message producer while they wait for a message consumer to process the message.

With the use of Amazon SQS, application components send messages to each other and
do not have to wait for a response, as shown in Figure 11.3.

f i gu R e 11. 3 Amazon Simple Queue Service (Amazon SQS) flow

Producer ConsumerMessage Amazon SQS
Queue

Amazon SQS
QueueProducer ConsumerMessage

The producer is the component that sends the message. The consumer is the component
that pulls the message off the queue. The queue passively stores messages and does not
notify you of new messages. When you poll the Amazon SQS queue, the queue responds
with messages that it includes, as shown in Figure 11.4.

f i gu R e 11. 4 Amazon SQS queue

Producer 1

Amazon
SQS Queue

Producer 2

Consumer 1

Consumer 2

With Amazon SQS, multiple producers can write messages, and multiple consumers can
process the messages. One of the consumers processes each message, and when a consumer
processes a message, they remove it from the queue. That message is no longer available
for other consumers. If the amount of work on the queue exceeds the capacity for a single
consumer, you can add more consumers to help the process.

524 Chapter 11 ■ Refactor to Microservices

 Figure 11.5 illustrates the way that the Amazon SQS queue interacts with both Amazon
EC2 and the process servers.

 f i gu R e 11.5 Amazon Simple Queue Service

Users
Web Server

(EC2 Instance)

Amazon SQS Queue

Request Queue

Response Queue

Processing Servers
(AWS Auto Scaling

Group)

 As shown in Figure 11.6 , a sign-in service run on a single log server is dependent on the
reliability of the log server to send and receive messages. If the log server experiences any
issues, the sign-in service can go offl ine.

 f i gu R e 11.6 Log server

Server

Log ServerServer

Message

Server Message

Message

Use Amazon SQS Queue to Alleviate Log Server Failures

 If you replace the log server with an Amazon SQS queue with multiple log
servers, you can remove this point of failure.

 As the other servers in your application send their sign-in messages to
the queue, the sign-in server can pull messages off the queue and process
them, as shown in Figure 11.7 .

Amazon Simple Queue Service 525

 f i gu R e 11.7 Amazon SQS queue

Server

QueueServer

Server

Log Server

Log Server

Log Server

Message

Message

Message

Message

Message

Message

 There are several benefi ts to using the Amazon SQS queue:

 ■ If you need to take a sign-in server offline for maintenance, the service does not interrupt.
The messages remain in the queue until the sign-in server comes back online.

 ■ If the number of messages grows, you can scale your sign-in service and add more servers.

 ■ Amazon SQS automatically scales to handle an increase in incoming messages.

 ■ Messages remain in order and deliver only one message.

 ■ Messages can be sent to the dead-letter queue.

 ■ Messages have a visibility timeout, a message retention period, and a receive-message
wait time.

 ■ Messages can have a long polling interval or a short polling interval (default).

 The Amazon SQS is a distributed cluster of servers . There is no limit on the number of
producers that can write to the queue, and there is no limit on the number of messages that
the queue can store.

 Amazon SQS is a Payment Card Industry Data Security Standard (PCI DSS)
service.

 Amazon SQS Parameters
 An Amazon SQS message has three basic states:

 1. Sent to a queue by a producer

 2. Received from the queue by a consumer

 3. Deleted from the queue

 A message is stored after it is sent to a queue by a producer but not yet received from the
queue by a consumer (that is, between states 1 and 2). There is no limit to the number of
stored messages. A message is considered to be in-fl ight after it is received from a queue by
a consumer but not yet deleted from the queue (that is, between states 2 and 3). There is a
limit to the number of in-fl ight messages.

526 Chapter 11 ■ Refactor to Microservices

Limits that apply to in-flight messages are unrelated to the unlimited number of stored
messages.

For most standard queues (depending on queue traffic and message backlog), there can
be a maximum of approximately 120,000 in-flight messages (received from a queue by a
consumer but not yet deleted from the queue). If you reach this limit, Amazon SQS returns
the OverLimit error message. To avoid reaching the limit, delete messages from the queue
after they are processed. You can also increase the number of queues if you file an AWS
Support request.

For first-in, first-out (FIFO) queues, there can be a maximum of 20,000 in-flight mes-
sages (received from a queue by a consumer but not yet deleted from the queue). If you
reach this limit, Amazon SQS returns no error messages.

ReceiveMessage
The ReceiveMessage action waits for a message to arrive. Valid values are integers from
0 to 20 seconds, with the default value of 0.

Long Polling

Long polling helps reduce the cost of Amazon SQS by eliminating the number of empty
responses (when there are no messages available for a ReceiveMessage request) and false
empty responses (when messages are available but are not included in a response).

To ensure optimal message processing, do the following:

 ■ Set the ReceiveMessage wait time to 20 seconds, which is the default and the maximum
value. If 20 seconds is too long for your application, set a shorter ReceiveMessage wait
time (1 second minimum). You might have to modify your Amazon SQS client either to
enable longer requests or to use a shorter wait time for long polling.

 ■ If you implement long polling for multiple queues, use one thread for each queue
instead of a single thread for all queues. This enables your application to process the
messages in each of the queues as they become available.

VisibilityTimeout
The VisibilityTimeout action is the duration (in seconds) that the received messages
are hidden from subsequent retrieve requests after being retrieved by a ReceiveMessage
request. The default VisibilityTimeout for a message is 30 seconds. The minimum is 0
seconds. The maximum is 12 hours.

How you set the VisibilityTimeout depends on how long it takes your application to
process and delete a message. To ensure that there is sufficient time to process messages,
use one of the following strategies:

 ■ If you know (reasonably estimate) how long it takes to process a message, extend the mes-
sage’s VisibilityTimeout to the maximum time it takes to process and delete the message.

 ■ If you do not know how long it takes to process a message, create a heartbeat for your
consumer process: specify the initial VisibilityTimeout (for example, 2 minutes)
and then—as long as your consumer still works on the message—keep extending the
VisibilityTimeout by 2 minutes every minute.

Amazon Simple Queue Service 527

 To extend the VisibilityTimeout action for longer than 12 hours, con-
sider using AWS Step Functions.

 For example, if your application requires 10 seconds to process a message and you set
VisibilityTimeout to 15 minutes, you must wait for a relatively long time to attempt to
process the message again if the previous processing attempt fails. Alternatively, if your
application requires 10 seconds to process a message but you set VisibilityTimeout to
only 2 seconds, a duplicate message is received by another consumer while the original con-
sumer is still working on the original message.

 WaitTimeSeconds
WaitTimeSeconds is the duration (in seconds) for which the call waits for a message to
arrive in the queue before returning. If a message is available, the call returns sooner than
WaitTimeSeconds . If no messages are available and the wait time expires, the call returns
successfully with an empty list of messages.

 Rec eiveMessageWaitTimeSeconds
ReceiveMessageWaitTimeSeconds is the length of time, in seconds, for which a
ReceiveMessage action waits for a message to arrive. Valid values are integers from 0 to
20 (seconds), with the default value equal to 0.

 ChangeMessageVisibility
ChangeMessageVisibility changes the visibility timeout of a message in a queue to a new
value. The default VisibilityTimeout setting for a message is 30 seconds. The minimum is
0 seconds. The maximum is 12 hours.

 If you attempt to set VisibilityTimeout to a value greater than the
maximum time left, Amazon SQS returns an error. Amazon SQS doesn’t
automatically recalculate and increase the timeout to the maximum
remaining time.

 Unlike with a queue, when you change the VisibilityTimeout value for a
specific message, the TimeoutValue action applies immediately but is not
saved in memory for that message. If you do not delete a message after it
is received, the next time the message is received, the VisibilityTimeout
setting for the message reverts to the original TimeoutValue setting and
not to the value of the ChangeMessageVisibility action.

 For example, suppose that you have a message with a VisibilityTimeout
setting of 5 minutes. After 3 minutes, you call ChangeMessageVisibility with
a timeout of 10 minutes. You can continue to call ChangeMessageVisibility
to extend the VisibilityTimeout to the maximum allowed time. If you
try to extend the VisibilityTimeout beyond the maximum, your request
is rejected.

528 Chapter 11 ■ Refactor to Microservices

 DelaySeconds
DelaySeconds is the length of time, in seconds, that a specifi c message will be delayed.
Valid values are 0–900, with a maximum of 15 minutes. Messages with a positive
DelaySeconds value become available for processing after the delay period is fi nished. If
you do not specify a value, the default value for the queue applies.

 When you set FifoQueue , you cannot set DelaySeconds per message. You
can set this parameter only on a queue level.

 MessageRetentionPeriod
MessageRetentionPeriod is the length of time, in seconds, that Amazon SQS retains a
message. It is an integer representing seconds, from 60 (1 minute) to 1,209,600 (14 days).
Changes made to the MessageRetentionPeriod attribute can take up to 15 minutes to
take effect.

 DeleteMessage
 DeleteMessage deletes the specifi ed message from the specifi ed queue. To select the message
to delete, use the ReceiptHandle value of the message (not the MessageId that you receive
when you send the message). Amazon SQS can delete a message from a queue even if a
 VisibilityTimeout setting causes the message to be locked by another consumer. Amazon
SQS automatically deletes messages kept in a queue longer than the retention period confi g-
ured for the queue.

 Refer to Table 11.5 to view the differences between the Amazon Simple
Notification Service (Amazon SNS) and Amazon SQS event-driven
solutions.

 Dead-Letter Queue
 Amazon SQS supports dead-letter queues , which other queues (source queues) can target
for messages that cannot process (be consumed) successfully. Dead-letter queues are use-
ful when you debug your application or message system because the queues let you isolate
problematic messages to determine why their process did not succeed.

 Sometimes messages do not process because of a variety of possible issues, such as
erroneous conditions within the producer or consumer application or an unexpected state
change that causes an issue with your application code. For example, if a user places a
web order with a particular product ID but the product ID is deleted, the web store’s
code fails and displays an error, and the message with the order request is sent to a dead-
letter queue.

Amazon Simple Queue Service 529

Occasionally, producers and consumers might fail to interpret aspects of the protocol
that they use to communicate, causing message corruption or loss. Also, the consumer’s
hardware errors might corrupt message payload.

If the consumer of the source queue fails to process a message in the number of
times you specify, the redrive policy (RedrivePolicy) specifies the source queue, the
dead-letter queue, and the conditions under which Amazon SQS moves messages
from the former to the latter. When the ReceiveCount value for a message exceeds the
maxReceiveCount value for a queue, Amazon SQS moves the message to a dead-letter
queue. For example, if the source queue has a redrive policy with maxReceiveCount set
to 5 and the consumer of the source queue receives a message five times and it does not
delete, Amazon SQS moves the message to the dead-letter queue.

To specify a dead-letter queue, you can use the AWS Management Console or the AWS
SDK for Java for each queue that sends messages to a dead-letter queue. Multiple queues
can target a single dead-letter queue. The dead-letter queue uses the CreateQueue or
SetQueueAttributes action.

Use the same AWS account to create the dead-letter queue and the other queues that
send messages to the dead-letter queue. Also, dead-letter queues must reside in the same
region as the other queues that use the dead-letter queue. For example, if you create a
queue in the US East (Ohio) Region, and you want to use a dead-letter queue with that
queue, the second queue must also be in the US East (Ohio) Region.

The expiration of a message is based on its original enqueue timestamp. When a mes-
sage moves to a dead-letter queue, the enqueue timestamp does not change. For example, if
a message spends one day in the original queue before it moves to a dead-letter queue and
the retention period of the dead-letter queue is set to 5 days, the message is deleted from the
dead-letter queue after 3 days. Thus, AWS recommends that you set the retention period of
a dead-letter queue to be longer than the retention period of the original queue.

Benefits of Dead-Letter Queues
The main task of a dead-letter queue is to handle message failure. Use a dead-letter queue
to set aside and isolate messages that cannot be processed correctly to determine why their
processes failed. The dead-letter queue enables you to do the following:

 ■ Configure an alarm for any messages delivered to a dead-letter queue.

 ■ Examine logs for exceptions that might have caused messages to be delivered to a
dead-letter queue.

 ■ Analyze the contents of messages delivered to a dead-letter queue to diagnose software
or the producer’s or consumer’s hardware issues.

 ■ Determine whether you have given your consumer sufficient time to process messages.

Standard Queue Message Failures
Standard queues continue to process messages until the expiration of the retention period.
This ensures continuous processing of messages, which minimizes the chances of your queue
being blocked by messages that cannot process. It also ensures fast recovery for your queue.

530 Chapter 11 ■ Refactor to Microservices

Amazon SQS standard queues work by using scalability and throughput . To achieve
this, they trade off two qualities:

 ■ Order is not guaranteed.

 ■ Messages can appear twice.

 In a system that processes thousands of messages and in which you have a large num-
ber of messages that the consumer repeatedly fails to acknowledge and delete, standard
queues may increase costs and place an extra load on the hardware. Instead of trying
to process messages that fail until they expire, move them to a dead-letter queue after a
few process attempts.

 Standard queues support a high number of in-flight messages. If the
majority of your messages cannot be consumed and are not sent to a
dead-letter queue, your rate of processing valid messages can slow down.
Thus, to maintain the efficiency of your queue, you must ensure that your
application handles message processing correctly.

 Dead-Letter Queue First-In, First-Out Message Queues
 Amazon SQS uses FIFO message queues that place the messages in the queue in the
order that you receive them. The fi rst messages that you receive display fi rst in the queue.
Message groups also follow this order so that when you publish messages to different mes-
sage groups, each message group preserves the messages’ internal order.

 FIFO queues support 3,000 operations (read , write , and delete) per second with batch-
ing and support 300 operations per second without batching.

 Amazon SQS standard queues use scalability and throughput, unlike Amazon SQS FIFO
queues. To achieve this, they trade off two qualities:

 ■ Order is not guaranteed.

 ■ Messages can appear twice.

 If the removal of either or both of these two constraints is important, use Amazon SQS
FIFO queues. Amazon SQS FIFO queues provide order within message groups, and they
delete any duplicate messages that occur within 5-minute intervals.

 FIFO queues ensure single processing by consuming messages in sequence from a mes-
sage group. Thus, although the consumer can continue to retrieve ordered messages from
another message group, the fi rst message group remains unavailable until the message that
is blocking the queue processes successfully.

 FIFO queues support a lower number of in-flight messages. To ensure that
your FIFO queue does not get blocked by a message, you must make sure
that your application handles message processing correctly.

Amazon Simple Queue Service 531

 When to Use a Dead-Letter Queue
 Use dead-letter queues with Amazon SQS standard queues when your application does
not depend on the order of messages. Dead-letter queues help you troubleshoot incorrect
message transmission operations.

 The dead-letter queue of a FIFO queue must also be a FIFO queue. Simi-
larly, the dead-letter queue of a standard queue must also be a standard
queue.

 Even when you use dead-letter queues, continue to monitor your queues,
and retry to send messages that fail for transient reasons.

 Do use dead-letter queues to decrease the number of messages and to reduce the possibil-
ity that you expose your system to messages that you can receive but cannot process.

 Do not use a dead-letter queue with standard queues when you want to retry the trans-
mission of a message indefi nitely. For example, do not use a dead-letter queue if your pro-
gram must wait for a dependent process to become active or available.

 Do not use a dead-letter queue with a FIFO queue if you do not want to break the exact
order of messages or operations.

 Troubleshooting Dead-Letter Queues
 In some cases, Amazon SQS dead-letter queues might not behave as you expect. This section
gives an overview of common issues and shows how to resolve them.

 Viewing Messages Using the AWS Management Console Causes Messages to
Be Moved to a Dead-Letter Queue

 Amazon SQS counts a message you view in the AWS Management Console against the
queue’s redrive policy. As a result, if you view a message in the console the number of
times you specify in the queue’s redrive policy, the message moves to the queue’s dead-
letter queue.

 To adjust this behavior, do the following:

 ■ Increase the Maximum Receives setting for the corresponding queue’s redrive policy.

 ■ Avoid viewing the corresponding queue’s messages in the AWS Management Console.

 The Number of Messages Sent and Number of Messages Received for a
Dead-Letter Queue Do Not Match

 If you send a message to a dead-letter queue manually, the NumberOfMessagesSent metric
counts it. However, if a message is sent to a dead-letter queue because of a failed process
attempt, the metric does not count it. Thus, the values of NumberOfMessagesSent and
NumberOfMessagesReceived can be different.

532 Chapter 11 ■ Refactor to Microservices

 Amazon SQS Attributes, Dead-Letter Queue Settings,
and Server-Side Encryption Settings
 Table 11.1, Table 11.2, and Table 11.3 provide all the details of the Amazon SQS message
attributes, DLQ settings, and server-side encryption (SSE) settings.

 TA b le 11.1 Amazon SQS Message Attributes

Attribute Default Meaning

Default Visibility Timeout 30 seconds How long a message is hidden while it is
processed. Maximum limit is 12 hours.

Message Retention Period 4 days How long a queue retains a message before
deleting it.

Maximum Message Size 256-KB text Maximum size of a message with 10 items
maximum.

Delivery Delay 0 seconds How long to delay before publishing the
message to the queue.

Receive Message Wait Time 0 seconds Maximum time consumer receives call waits
for new messages.

Large Messages

 To send a message larger than 256 KB, use Amazon SQS to save the file in
Amazon Simple Storage Service (Amazon S3) and then send a link to the
file on Amazon SQS.

 TA b le 11. 2 Dead-Letter Queue Settings

Setting Meaning

Use Redrive Policy Send messages to the dead-letter queue if consumers keep
failing to process it.

Dead-Letter Queue Name of dead-letter queue.

Maximum Receives Maximum number of times a message is received before it is
sent to the dead-letter queue.

Amazon Simple Queue Service 533

TA b le 11. 3 Server-Side Encryption (SSE) Settings

Setting Meaning

Use SSE Amazon SQS encrypts all messages sent to
this queue.

AWS Key Management Service
(AWS KMS) Customer Master Key

The AWS KMS master key that generates the
data keys.

Data Key Reuse Period Length of time to reuse a data key before a new
one regenerates.

Monitoring Amazon SQS Queues Using
Amazon CloudWatch
Amazon CloudWatch monitors your AWS resources and the applications you run on AWS
in real time. You can use CloudWatch to collect and track metrics, which are variables that
you can measure for your resources and applications.

CloudWatch alarms send notifications or automatically make changes to the resources
you monitor based on rules that you define, for example, when a message is sent to the
dead-letter queue.

If you must pass messages to other users, create an Amazon SQS queue, subscribe all the
administrators to this queue, and then configure Amazon CloudWatch Events to send a
message on a daily cron schedule into the Amazon SQS queue.

CloudWatch provides a reliable, scalable, and flexible monitoring solution with no
need to set up, manage, and scale your own monitoring systems and infrastructure. You
may also use Amazon CloudWatch Logs to monitor, store, and access your log files from
Amazon EC2 instances, AWS CloudTrail, or other sources.

The AWS/Events namespace includes the DeadLetterInvocations metric, as shown
in Table 11.4. The DeadLetterInvocations metric uses Count as the unit, so Sum and
SampleCount are the most useful statistics.

TA b le 11. 4 Amazon CloudWatch Dead-Letter Queue

Metric Description

DeadLetterInvocations Measures the number of times a rule’s target is not invoked
in response to an event. This includes invocations that would
result in triggering the same rule again, causing an infinite loop.

Valid Dimensions: RuleName
Units: Count

534 Chapter 11 ■ Refactor to Microservices

Amazon Simple Notification Service
Amazon Simple Notification Service (Amazon SNS) is a flexible, fully managed producer/
consumer (publisher/subscriber) messaging and mobile notifications web service that coor-
dinates the delivery of messages to subscribing endpoints and clients. Amazon SNS coordi-
nates and manages the delivery or sending of messages to subscriber endpoints or clients to
assist in event-driven solutions.

Amazon SNS is based on the publish-subscribe model, and it allows the message pro-
ducer to send a message to a topic that has multiple subscribers that choose to receive the
same message. The message is delivered to multiple subscribers, which can then consume
the message to trigger subsequent processes. A topic allows multiple receivers of the mes-
sage to subscribe dynamically for identical copies of the same notification.

With Amazon SNS, you can easily set up, operate, and reliably send notifications to all
your endpoints at any scale. You can also send messages to a large number of subscribers,
including distributed systems and services and mobile devices. By default, Amazon SNS
offers 10 million subscriptions per topic and 100,000 topics per account. To request a
higher limit, contact AWS Support.

Amazon SNS enables you to send notifications from the cloud, and it allows applications
to publish messages that are immediately delivered to a subscriber, as shown in Figure 11.8.

f i gu R e 11. 8 Amazon SNS

Lambda

Publisher

Amazon SQS

HTTP/S

Email

SMS

Subscriber

Amazon SNS

SNS Topic

There are two types of clients in Amazon SNS: producers (publishers) and consumers
(subscribers).

Producers communicate asynchronously with subscribers by producing and sending
a message to a topic, which, in the context of Amazon SNS, is a logical access point and
communication channel. Subscribers, such as web servers, email addresses, Amazon SQS

Amazon Simple Notification Service 535

queues, and AWS Lambda functions, consume or receive the message or notification over
one of the supported protocols, such as Amazon SQS, HTTPS, email, Short Message
Service (SMS), and AWS Lambda, when the consumer subscribes to the topic.

The sequence of operations in Amazon SNS includes the following:

1. The administrator creates a topic.

2. Users subscribe to the topic by using email addresses, SMS numbers, Amazon SQS
queues, and other endpoints.

3. The administrator publishes a message on the topic.

4. The subscribers to the topic receive the message that was published.

If a user subscribes to the topic after a message was published, the user will not receive
the message. A subscriber receives messages that are published only after they have sub-
scribed to the topic. The topics do not buffer messages.

You can use Amazon SNS to produce a single message to multiple subscribers, as shown
in Figure 11.9.

f i gu R e 11. 9 Amazon SNS workflow

File pulled down
for processing.

File ingestion Put
message

Ready for
processing

queue.

File processing

File pushed
to bucket.

“Processing complete”
message sent to

Amazon SNS topic.

User given access
to published file.

User
subscribed

to topic.

For example, when a cryptocurrency price fluctuates, you must update the dashboard to
indicate the new price and update the value of the portfolio to reflect the new price. All users
who subscribed to your cryptocurrency topic then receive a notification on the new prices.

Amazon SNS supports the following endpoints:

 ■ AWS Lambda

 ■ Amazon SQS

 ■ HTTP and HTTPS

 ■ Email

 ■ SMS

 ■ Mobile PushRecords

536 Chapter 11 ■ Refactor to Microservices

Amazon SNS retries sending messages for HTTPS endpoints as a REST call to these end-
points. You can configure the number of retries and the delay between them.

Features and Functionality
Amazon SNS topic names have a limit of 256 characters. Topic names must be unique
within an AWS account and can include alphanumeric characters plus hyphens (-) and
underscores (_). After you delete a topic, you can reuse the topic name. When a topic is cre-
ated, Amazon SNS assigns a unique Amazon Resource Name (ARN) to the topic, which
includes the service name (SNS), AWS Region, AWS ID of the user, and topic name. The
ARN returns as part of the API call to create the topic. Whenever a producer or consumer
needs to perform any action on the topic, you reference the unique topic ARN.

For example, Amazon SNS clients use the ARN address to identify the right topic.

aws sns publish --topic-arn topic-arn --message "message" --message-attributes
'{"store":{"DataType":"String","StringValue":"example_corp"}}'

This is the ARN for a topic named mytopic that you create with the account ID
123456789012 and host in the US East Region:

arn:aws:sns:us-east-1:1234567890123456:mytopic

Do not attempt to build the topic ARN from its separate components—topics should use
the name the API calls to create the topic returns.

Amazon SNS APIs
Amazon SNS provides a set of simple APIs to enable event notifications for topic owners,
consumers, and producers.

Owner Operations
These are the owner operations:

CreateTopic: Creates a new topic.

DeleteTopic: Deletes a previously created topic.

ListTopics: Lists topics owned by a particular user (AWS account ID).

ListSubscriptionsByTopic: Lists subscriptions for a particular topic. It allows a
topic owner to see the list of all subscribers actively registered to a topic.

ListSubscriptions: Allows a user to get a list of all of their active subscriptions (to
one or more topics).

SetTopicAttributes: Sets/modifies topic attributes, including setting and modifying
producer/consumer permissions, transports supported, and so on.

GetTopicAttributes: Gets/views existing attributes of a topic.

AddPermission: Grants access to selected users for the specified actions.

RemovePermission: Removes permissions for selected users for the specified actions.

Amazon Simple Notification Service 537

Subscriber Operations
These are the subscriber operations:

 ■ Subscribe: Registers a new subscription on a particular topic, which will generate a
confirmation message from Amazon SNS.

 ■ ConfirmSubscription: Responds to a subscription confirmation message, confirm-
ing the subscription request to receive notifications from the subscribed topic.

 ■ UnSubscribe: Cancels a previously registered subscription.

 ■ ListSubscriptions: Lists subscriptions owned by a particular user (AWS account ID).

Clean Up
After you create a topic, subscribe to it, and publish a message to the topic. You unsubscribe
from the topics and delete them to clean up your environment from the Amazon SNS console.

The subscription is deleted unless it is a pending subscription, meaning that it has not
yet been confirmed. You cannot delete a pending subscription, but if it remains pending for
3 days, Amazon SNS automatically deletes it.

Transport Protocols
Amazon SNS supports notifications over multiple transport protocols. You can select trans-
ports as part of the subscription requests.

 ■ HTTP, HTTPS: Subscribers specify a URL as part of the subscription registration;
notifications are delivered through an HTTP POST to the specified URL.

 ■ Email, Email-JSON: Messages are sent to registered addresses as email. Email-JSON
sends notifications as a JSON object, while Email sends text-based email.

 ■ Amazon SQS: Users specify an Amazon SQS standard queue as the endpoint. Amazon
SNS enqueues a notification message to the specified queue (which subscribers can then
process with Amazon SQS APIs, such as ReceiveMessage and DeleteMessage). Ama-
zon SQS does not support FIFO queues.

 ■ SMS: Messages are sent to registered phone numbers as AWS SMS text messages.

Amazon SNS Mobile Push Notifications
With Amazon SNS, you can send push notification messages directly to apps on mobile
devices. Push notification messages sent to a mobile endpoint can appear in the mobile app
as message alerts, badge updates, or even sound alerts.

You send push notification messages to both mobile devices and desktops with the fol-
lowing push notification services:

 ■ Amazon Device Messaging (ADM)

 ■ Apple Push Notification Service (APNS) for both iOS and macOS

 ■ Baidu Cloud Push (Baidu)

538 Chapter 11 ■ Refactor to Microservices

 ■ Google Cloud Messaging for Android (GCM)

 ■ Microsoft Push Notification Service for Windows Phone (MPNS)

 ■ Windows Push Notification Services (WNS)

Push notification services, such as APNS and GCM, maintain a connection with each
app and mobile device registered to use their service. When an app and mobile device are
registered, the push notification service returns a device token. Amazon SNS uses the device
token to create a mobile endpoint to which it can send direct push notification messages.
For Amazon SNS to communicate with the different push notification services, you submit
your push notification service credentials to Amazon SNS.

You can also use Amazon SNS to send messages to mobile endpoints subscribed to a
topic. The concept is the same as subscribing other endpoint types. The difference is that
Amazon SNS communicates with the push notification services for the subscribed mobile
endpoints to receive push notification messages sent to the topic. Figure 11.10 shows a
mobile endpoint as a subscriber to an Amazon SNS topic. The mobile endpoint communi-
cates with push notification services, whereas the other endpoints do not.

f i gu R e 11.10 Amazon SNS mobile endpoint subscriber

Publisher

Amazon SQS

ADM

APNS

Baidu

GCM

MPNS

WNS

HTTP/S

Email

SMS

Subscriber

SNS Topic

Add Device Tokens or Registration IDs
When you first register an app and mobile device with a notification service, such as
Apple Push Notification Service (APNS) and Google Cloud Messaging for Android (GCM),
device tokens or registration IDs return from the notification service. When you add
the device tokens or registration IDs to Amazon SNS, they use the PlatformApplicationArn

Amazon Simple Notification Service 539

API to create an endpoint for the app and device. When Amazon SNS creates the endpoint,
an EndpointArn returns, and this is how Amazon SNS knows to which app and mobile
device to send the notifi cation message.

 You can add device tokens and registration IDs to Amazon SNS by using these methods:

 ■ Manually add a single token to AWS from the AWS Management Console.

 ■ Migrate existing tokens from a CSV file to AWS from the AWS Management Console.

 ■ Upload several tokens by using the CreatePlatformEndpoint API.

 ■ Register tokens from devices that will install your apps in the future.

 Create Amazon SNS Endpoints
 You can use one of two options to create Amazon SNS endpoints for device tokens or regis-
tration IDs.

Amazon Cognito Your mobile app requires credentials to create and associate endpoints
with your Amazon SNS platform application. AWS recommends that you use temporary
security credentials that expire after a period of time. You can use Amazon SNS to receive an
event with the new endpoint ARN, or you can use the ListEndpointByPlatformApplication
API to view the full list of endpoints registered with Amazon SNS.

Proxy Server If your application infrastructure is already set up for your mobile apps to
call in and register on each installation, you can use your server to act as a proxy and pass
the device token to Amazon SNS mobile push notifi cations. This includes any user data that
you would like to store. The proxy server connects to Amazon SNS with your AWS creden-
tials and uses the CreatePlatformEndpoint API call to upload the token information. The
newly created endpoint ARN is returned, which your server can store to make subsequent
publish calls to Amazon SNS.

 Billing, Limits, and Restrictions
 Amazon SNS includes a Free Tier, which allows you to use Amazon SNS free of charge for
the fi rst 1 million Amazon SNS requests, and with no charges for the fi rst 100,000 notifi ca-
tions over HTTP, no charges for the fi rst 100 notifi cations over SMS, and no charges for
the fi rst 1,000 notifi cations over email.

 With Amazon SNS, there is no minimum fee, and you pay only for what you use. You
pay $0.50 per 1 million Amazon SNS requests, $0.06 per 100,000 notifi cation deliveries
over HTTP, and $2 per 100,000 notifi cation deliveries over email. For SMS messaging,
users can send 100 free notifi cation deliveries, and for subsequent messages, charges vary
by destination country.

 By default, Amazon SNS offers 10 million subscriptions per topic and 100,000 topics
per account. To request a higher limit, contact AWS Support.

 Amazon SNS supports the same attributes and parameters as Amazon
SQS. For more information, refer to Table 11.2, Table 11.3 , and Table 11.4 .

540 Chapter 11 ■ Refactor to Microservices

When compared with Amazon SQS, which is a queue with a pull mechanism, Amazon
SNS is a fanout with a push mechanism to send messages to subscribers. This means that
the Amazon SNS message is sent to a topic and then replicated and pushed to multiple
Amazon SQS queues, HTTP endpoints, or email addresses. This operation eliminates the
need for the message consumers to poll for any new messages. There several differences
between the Amazon SNS and Amazon SQS event-driven solutions, as listed in Table 11.5.

TA b le 11.5 Amazon SNS and Amazon SQS Feature Comparison

Features Amazon SNS Amazon SQS

Message persistence Not persisted Persisted

Delivery mechanism Push (passive) Pull (active)

Producer/consumer Publish/subscribe (1 to N) Send/receive (1 to 1)

Amazon Kinesis Data Streams
Amazon Kinesis Data Streams is a service that ingests large amounts of data in real time
and performs real-time analytics on the data. Producers write data into Amazon Kinesis
Data Streams, and consumers read data from it.

Figure 11.11 illustrates the high-level architecture of Amazon Kinesis Data Streams. The
producers continually push (PushRecords) data to Amazon Kinesis Data Streams, and the
consumers process the data in real time. Consumers (such as a custom application running on
Amazon EC2, or an Amazon Kinesis Data Firehose delivery stream) can store their results by
using an AWS service, such as Amazon DynamoDB, Amazon Redshift, or Amazon Simple
Storage Service (Amazon S3).

f i gu R e 11.11 Amazon Kinesis Data Streams

Amazon S3

DynamoDB

Amazon Redshift

Amazon Elastic
MapReduce

EC2 Instances
EC2 Instance

EC2 Instance

EC2 Instance

EC2 Instance
Consumers

Client

Mobile Client

Traditional
Server

Producers Amazon Kinesis Stream

Shard 1

Shard 2

Shard N

Amazon Kinesis Data Streams 541

Multiple types of consumers can consume from the same Amazon Kinesis Data stream.
The messages are not deleted when they are consumed. The consumers save a reference to
the last message they view, and messages iterate based on sequence IDs to fetch the latest
messages.

To place (PutRecords) data into the stream, specify the name of the stream, a partition
key, and the data blob to add to the stream. The partition key determines the shard in the
stream to which to add the data record.

All data in the shard is sent to the same worker that processes the shard. The partition
key determines how to map a data record to a particular shard, so which partition key you
use depends on your application logic. The number of partition keys should typically be
much greater than the number of shards, and if you have enough partition keys, the data
can be evenly distributed across the shards in a stream.

For example, you use the two-letter abbreviation of the state for each partition key, such
as WA for Washington and WY for Wyoming. In this example, all records with a partition
key of WA reside in the Washington stream, and all records with a partition key of WY
reside in the Wyoming stream.

Multiple Applications
There are several differences between Amazon Kinesis Data Streams and Amazon SQS.

In Amazon SQS, when a consumer receives a message off the queue and then processes
and deletes it, the message is no longer available for any other consumer.

In Amazon Kinesis Data Streams, you can process the same message by multiple applica-
tions. Each application tracks which records it last processed. Then it requests the records
that came after it. It is the application’s responsibility to track its checkpoint within the
data stream.

Amazon Kinesis Data Streams do not delete records after they process them, as it is
possible that another application will request the message. Records automatically delete
after their retention interval expires, which you configure. The default retention interval
is 1 day, but you can extend it up to 7 days. Before the record’s interval expires, multiple
applications can consume the message.

High Throughput
Amazon Kinesis uses shards to configure and support high throughput. When you create
an Amazon Kinesis data stream, specify the number of shards in your stream. You can
increase or decrease the number of shards through the API.

On the producer side, the shard supports 1 MB per second of ingest, or 1,000 transac-
tions per second. Producers can write up to 1 MB per second of data, or 1000 writes.

On the consumer side, each shard supports 2 MB per second of reads, or five transac-
tions per second. Amazon Kinesis Data Streams support twice as much data for reads as
they do for writes (2 MB per second of read versus 1 MB per second of write) per shard.
This allows multiple applications to read from a stream to enable more reads. Because the
same records might be read by multiple applications, you require more throughput on
the read side.

542 Chapter 11 ■ Refactor to Microservices

Amazon Kinesis Data Streams support 5,000 transactions per second for writes, but
only five transactions per second for reads per shard. Reads frequently acquire many
records at once. When a read request asks for all the records that came in after the last
read, it acquires a large number of records. Because of this, five transactions per second per
shard is sufficient to handle reads.

To increase your throughput capacity, reshard the stream to adjust the number of shards.

Real-Time Analytics
Unlike Amazon SQS, Amazon Kinesis Data Streams enable real-time analytics, which pro-
duces metrics from incoming data as it arrives. The alternative is batch analytics in which
the data accumulates for a period, such as 24 hours, and then is analyzed as a batch job.
Real-time analytics allow you to detect patterns in the data immediately as it arrives, with
a delay of only a few seconds to a few minutes.

After you define your monitoring goals and create your monitoring plan, the next step is
to establish a baseline for normal Kinesis Video Streams performance in your environment.
Measure Kinesis Video Streams performance at various times and under different load con-
ditions. As you monitor Kinesis Video Streams, you should store a history of the monitored
data that you collect. You can compare current Kinesis Video Streams performance to this
historical data to help you identify normal performance patterns and performance anoma-
lies and devise methods to address issues that may arise.

Open Source Tools
Open source tools, such as Fluentd and Flume, support Amazon Kinesis Data Streams
as a destination, and you can use them to publish messages into an Amazon Kinesis data
stream.

Your custom applications, real-time or batch-oriented, can run on Amazon EC2
instances. These applications might process data with open source deep-learning algo-
rithms or use third-party applications that integrate with Kinesis Video Streams.

Producer Options
After you create the stream in Amazon Kinesis data stream, you need two applications to
build your pipeline: a collection of producers that write data into the stream and consum-
ers to read the data from the stream.

Here are options for you to build producers that can write into Amazon Kinesis Data
Streams:

Amazon Kinesis Agent This is an application that reads data, appends to a log file, and
writes to the stream. The benefit of the Amazon Kinesis Agent is that it does not require
you to write application code.

Amazon Kinesis Data Steams API You write an application to use the Amazon Kinesis
Data Streams API to put data on the stream.

Amazon Kinesis Data Firehose 543

Amazon Kinesis Producer Library (KPL) The KPL gives you a higher-level interface over
the low-level Amazon Kinesis Data Streams API. It has the logic to retry failures and to
buffer and batch-send multiple messages together. The KPL makes it easier to write mes-
sages into a stream than if you use the low-level API.

Consumer Options
Consumers have the following options for the Amazon Kinesis Data Streams:

Amazon Kinesis Data Streams API You can write an application with the Amazon
Kinesis Data Streams API to read data from a stream. To scale this to process large
volumes of data, create a shard for each consumer. With multiple consumers that run
independently, there is a risk that one of them might fail. To handle failure, coordinate
between the consumers. Use the Amazon Kinesis Client Library (KCL) to track your con-
sumers and shards.

Amazon Kinesis Client Library The Amazon Kinesis Client Library handles the com-
plexity of coordinating between different consumers that read from different shards in a
stream. It ensures that no shard is ignored, and no shard is processed by two consumers.
The library creates a table in Amazon DynamoDB with the same name as the application
name and uses this table to coordinate between the different consumers.

AWS Lambda AWS Lambda is another option that you can use to build Amazon Kinesis
Data Streams for consumers. AWS Lambda can scale and handle fault tolerance automati-
cally. It does not require the use of the KCL.

Amazon Kinesis Data Firehose
Amazon Kinesis Data Firehose can replace the CoDA service to ingest data. In many busi-
ness applications, you require a real-time pipeline, but you do not require latency of a few
seconds. You can afford to have latency that can run anywhere from 1–15 minutes.

Amazon Kinesis Data Firehose is easier to use than Amazon Kinesis Data Streams, as
it does not require you to write a consumer application. Data that arrives at the Amazon
Kinesis Data Firehose is automatically delivered to both Amazon S3 and the other des-
tinations. From Amazon S3, you can deliver the data to Amazon Redshift, Amazon
Elasticsearch Service, and Splunk.

Amazon Kinesis Data Firehose also handles dynamically scaling the underlying shards
of the stream based on the amount of traffic.

Amazon Kinesis Data Firehose buffers the data before it writes it to Amazon S3,
with a delayed reaction to real-time data based on the length of the buffer, as detailed in
Table 11.6.

544 Chapter 11 ■ Refactor to Microservices

TA b le 11.6 Amazon Kinesis Data Firehose Buffers

Parameter Min Max Description

Buffer size 1 MB 128 MB How much data Kinesis Data Firehose
buffers

Buffer interval 60 seconds 900 seconds How long to buffer data

With Amazon Kinesis Data Firehose, you do not need to write consumer applications
or manage resources. Configure data producers to send data to Amazon Kinesis Data
Firehose, and it will automatically deliver the data to the destination you specify. You can
also configure Amazon Kinesis Data Firehose to transform your data before you deliver it.
For example, you run a news site, and you analyze the stream of clicks from users who
read the articles on your site. You want to use this analysis to move the most popular arti-
cles to the top of the page to capture news stories that are going viral. It is simple to verify
that a story acquires a large number of hits, with a lag of only a few minutes.

Amazon Kinesis Data Analytics
Amazon Kinesis Data Analytics enables you to process and analyze streaming data with
standard structured query language (SQL). It also enables you to run SQL code against
streaming sources to perform time-series analytics, feed real-time dashboards, and create
real-time metrics. Amazon Kinesis Data Analytics supports ingesting from either Amazon
Kinesis Data Streams or Amazon Kinesis Data Firehose, and it continuously reads and
processes streaming data. You can configure destinations where Amazon Kinesis Data
Analytics sends the results, as shown in Figure 11.12. Amazon Kinesis Data Analytics sup-
ports the following destinations:

 ■ Amazon Kinesis Data Firehose

 ■ Amazon S3

 ■ Amazon Redshift

 ■ Amazon ES

 ■ Splunk

 ■ AWS Lambda

 ■ Amazon Kinesis Data Streams

Amazon Kinesis Video Streams 545

f i gu R e 11.12 Amazon Kinesis Data Analytics flow

Amazon
Kinesis stream

In-application
input streams

Reference table

In-application
output streams

In-application
error stream

or

Firehouse
delivery stream

Application
code

Amazon Kinesis Analytics Application

Streaming input

S3 object
Reference data

Amazon
Kinesis stream

and/or

Application
output

Firehouse
delivery stream

Amazon S3
bucket or
Amazon

Redshift table

Use cases for Amazon Kinesis Data Analytics include the following:

Generate time series analytics You can calculate metrics over time windows and stream
values to Amazon S3 or Amazon Redshift through a Firehose delivery stream.

Feed real-time dashboards You can send aggregated and processed streaming data results
downstream to feed real-time dashboards.

Create real-time metrics You can create custom metrics and triggers for use in real-time
monitoring, notifications, and alarms.

Amazon Kinesis Video Streams
Use the Amazon Kinesis Video Streams service to push device video content into AWS and
then onto the cloud to process that content and detect patterns in it.

You can use Amazon Kinesis Video Streams to build computer vision and machine
learning applications.

A single stream can support one producer connection and three consumer connections at
a time.

546 Chapter 11 ■ Refactor to Microservices

Amazon DynamoDB Streams
Amazon DynamoDB Streams integrates with Amazon DynamoDB to publish a message
every time a change is made in a table. When you insert, delete, or update an item, Amazon
DynamoDB produces an event, which publishes it to the Amazon DynamoDB Streams, as
shown in Figure 11.13. To use this table-level feature, enable Amazon DynamoDB Streams
on the table.

f i gu R e 11.13 Amazon DynamoDB Stream

DynamoDB Streams DynamoDB
Table

Updates GetRecords

Shards AWS Lambda
Function

DynamoDB Stream

Partition A

Partition B

Partition C

Stream of item changes
Exactly once, guaranteed
delivery
Strictly ordered by key
Durable, scalable
Fully-managed
24-hour data retention
Sub-second latency
Event source for AWS
Lambda

1

2

3

Amazon DynamoDB Streams Use Case
Amazon DynamoDB Streams is a database trigger for Amazon DynamoDB tables that you
can use in any situation in which you continuously poll the database to indicate if a variable
changes. An example would be a customer who publishes a vote in an Amazon DynamDB
table called votes in an online application. With Amazon DynamoDB Streams, you can
automatically track that change in both the votes table and in the consumer table to update
the aggregate votes counted.

Amazon DynamoDB Streams Consumers
Amazon DynamoDB integrates with AWS Lambda so that you can create triggers, which
are pieces of code that automatically respond to events in DynamoDB Streams. With trig-
gers, you can build applications that react to data modifications in DynamoDB tables.

An AWS Lambda function or application that accesses the Amazon DynamoDB Streams
API consumes the event when it publishes in the stream.

If you enable DynamoDB Streams on a table, you can associate the stream ARN with a
Lambda function that you write. Immediately after you modify an item in the table, a new
record appears in the table’s stream. AWS Lambda polls the stream and invokes your AWS
Lambda function synchronously when it detects new stream records.

AWS IoT Device Management 547

The AWS Lambda function can perform any actions you specify, such as to send a noti-
fication or initiate a workflow. For example, you can write a Lambda function simply to
copy each stream record to persistent storage, such as Amazon S3, to create a permanent
audit trail of write activity in your table. Or, suppose that you have a mobile gaming app
that writes to a GameScores table. Whenever the TopScore attribute of the GameScores table
updates, a stream record writes to the table’s stream. This event could then trigger an AWS
Lambda function that posts a congratulatory message on a social media network. The
function would ignore any stream records that are not updates to GameScores or that do
not modify the TopScore attribute.

Amazon DynamoDB Streams Concurrency and Shards
When you run an Amazon DynamoDB as a database backend, a large number of changes
can occur at the same time. Amazon DynamoDB Streams publishes the changes in your
table into multiple shards.

If you create a consumer application using AWS Lambda, each AWS Lambda instance
processes the messages in a particular shard. This enables concurrent processing and allows
Amazon DynamoDB Streams to scale to handle a high volume of concurrent changes. At
any given time, each partition in an Amazon DynamoDB table maps to a single shard. The
single shard captures all updates to that partition.

AWS IoT Device Management
AWS IoT Device Management is a cloud-based service that makes it easy for customers to
manage IoT devices securely throughout their lifecycle. Customers can use AWS IoT Device
Management to onboard device information and configuration, organize their device
inventory, monitor their fleet of devices, and remotely manage devices deployed across
many locations. This remote management includes over-the-air (OTA) updates to device
software.

AWS IoT is a service that manages devices associated with the Internet of Things, col-
lects data from them, and sends out commands with updates to their state. The devices
can communicate to the service with Message Queuing Telemetry Transport (MQTT) or
HTTP. MQTT is a fire-and-forget asynchronous communication protocol that uses binary
encoding. To view the AWS flow for IoT, refer to Figure 11.14.

548 Chapter 11 ■ Refactor to Microservices

f i gu R e 11.14 AWS IoT Device Management

DEVICE SDK
Set of client libraries

to connect, authenticate
and exchange messages

AUTHENTICATION
AUTHORIZATION

AWS IoT

Secure with mutual
authentication and encryption

DEVICE REGISTRY
Identity and Management

of your things

DEVICE GATEWAY
Communicate with
devices via MQTT

RULES ENGINE
Transform messages
based on rules and

route to AWS
Services

DEVICE SHADOW
APPLICATIONS

Persistent thing state
during intermittent

connections

AWS Services
- - - - -

3P Services

AWS IoT API
HTTP

Rules Engine
When messages enter the AWS IoT Device Management service, the service dispatches
them to different AWS endpoints. AWS IoT rule actions specify what to do when a rule is
triggered. AWS IoT can dispatch the messages to AWS Lambda, an Amazon Kinesis data
stream, a DynamoDB database, and other services. This dispatch is done through the AWS
IoT rules engine. Rules give your devices the ability to interact with AWS products and ser-
vices. Rules are analyzed, and actions occur based on the MQTT topic stream.

The IoT rules engine supports the following actions:

CloudWatch alarm action Use this to change the Amazon CloudWatch alarm state.
Specify the state change reason and value in this call.

Amazon CloudWatch metric action The CloudWatch metric action allows you to
capture an Amazon CloudWatch metric. Specify the metric namespace, name, value, unit,
and timestamp.

DynamoDB action The dynamoDB action allows you to write all or part of an MQTT mes-
sage to an Amazon DynamoDB table.

DynamoDBv2 action The dynamoDBv2 action allows you to write all or part of an MQTT
message to an Amazon DynamoDB table. Each attribute in the payload is written to a sepa-
rate column in the Amazon DynamoDB database.

Elasticsearch action The elasticsearch action allows you to write data from MQTT
messages to an Amazon ES domain. You can query and visualize data in Amazon ES with
tools such as Kibana.

AWS IoT Device Management 549

Firehose action A firehose action sends data from an MQTT message that triggers the
rule to a Kinesis Data Firehose stream.

IoT Analytics action An iotAnalytics action sends data from the MQTT message that
triggers the rule to an AWS IoT Analytics channel.

Kinesis action The kinesis action allows you to write data from MQTT messages into a
Kinesis stream.

Lambda action A lambda action calls an AWS Lambda function to pass it to a MQTT
message that triggers the rule.

Republish action The republish action allows you to republish the message that triggers
the role to another MQTT topic.

S3 action An s3 action writes the data from the MQTT message that triggers the rule to
an Amazon S3 bucket.

 Salesforce action A salesforce action sends data from the MQTT message that triggers
the rule to a Salesforce IoT Input Stream.

SNS action An sns action sends the data from the MQTT message that triggers the rule
as an Amazon SNS push notifi cation.

 Amazon SQS action An sqs action sends data from the MQTT message that triggers the
rule to an Amazon SQS queue.

Step Functions action A stepFunctions action starts execution of an AWS Step Functions
state machine.

 The AWS IoT rules engine does not currently retry delivery for messages
that fail to publish to another service.

 Message Broker
 The AWS IoT message broker is a publish/subscribe broker service that enables you to
send messages to and receive messages from IoT. When you communicate with AWS IoT,
a client sends a message to a topic address such as Sensor/temp/room1 . The message broker
then sends the message to all clients that have registered to receive messages for that topic.
The act of sending the message is referred to as publishing . The act of registering to receive
messages for a topic fi lter is referred to as subscribing .

 The topic namespace is isolated for each account and region pair. For example, the
 Sensor/temp/room1 topic for an account is independent from the Sensor/temp/room1 topic
for another account. This is true of regions, too. The Sensor/temp/room1 topic in the same
account in us-east-1 is independent from the same topic in us-east-2 .

 AWS IoT does not send and receive messages across AWS accounts
and regions.

550 Chapter 11 ■ Refactor to Microservices

The message broker maintains a list of all client sessions and the subscriptions for each
session. When a message publishes on a topic, the broker checks for sessions with subscrip-
tions that map to the topic. The broker then forwards the message to all sessions that have
a currently connected client.

Device Shadow
The AWS IoT device shadow is an always-available representation of the device, which
allows communications back from cloud applications to the IoT devices. Cloud applications
can update the device shadow even when the underlying IoT device is offline. Then when
the device is brought back online, it synchronizes its final state with a query to the AWS IoT
service for the current state of the instances.

A device’s shadow is a JavaScript Object Notation (JSON) document that stores and
retrieves current state information for a device. The device shadow service maintains a
shadow for each device that you connect to AWS IoT. You can use the shadow to get and
set the state of a device over MQTT or HTTP, regardless of whether the device is con-
nected to the internet. Each device’s shadow is uniquely identified by the name of the corre-
sponding thing. The device shadow service acts as an intermediary that allows devices and
applications to retrieve and update a device’s shadow.

Amazon MQ
Amazon MQ is a managed message broker service for Apache ActiveMQ that makes it easy to
migrate to a message broker on the cloud. Amazon MQ is a managed Apache Active MQ that
runs on Amazon EC2 instances that you select. AWS manages the instances, the operating
system, and the Apache Active MQ software stack. You place these instances in your Amazon
Virtual Private Cloud (Amazon VPC) and control access to them through security groups.

Amazon MQ makes it easy to migrate to a message broker on the cloud. A message
broker allows software applications and components to communicate with the use of vari-
ous programming languages, operating systems, and formal messaging protocols.

A broker is a message broker environment that runs on Amazon MQ. It is the basic
building block of Amazon MQ. The combined description of the broker instance class
(m5, t2) and size (large, micro) is a broker instance type (for example, mq.m5.large).

A single-instance broker is composed of one broker in one Availability Zone. The broker
communicates with your application and with an AWS storage location.

An active/standby broker for high availability consists of two brokers in two different
Availability Zones, which you configure in a redundant pair. These brokers communicate
synchronously with your application and with a shared storage location.

You can enable automatic minor version upgrades to new versions of the broker engine,
as Apache releases new versions. Automatic upgrades occur during the 2-hour maintenance
window that you define by the day of the week, the time of day (in the 24-hour format),
and the time zone (UTC, by default).

AWS Step Functions 551

Amazon MQ works with your existing applications and services without the need to
manage, operate, or maintain your own messaging system.

Amazon MQ is a managed message broker service that provides compatibility with
many popular message brokers. AWS recommends Amazon MQ to migrate applications
from current message brokers that rely on compatibility with APIs, such as JMS, or
protocols like Advanced Message Queuing Protocol (AMQP), MQTT, OpenWire, and
STOMP.

Amazon SQS and Amazon SNS are queue and topic services that are highly scal-
able, simple to use, and do not require you to set up message brokers. AWS recommends
these services for new applications that can benefit from nearly unlimited scalability and
simple APIs.

AWS Step Functions
The AWS Step Functions service enables you to launch and develop workflows that can
run for up to several months, and it allows you to monitor the progress of these workflows.
You can coordinate the components of distributed applications and microservices by using
visual workflows to build applications quickly, scale and recover reliably, and evolve appli-
cation easily. Figure 11.15 displays the AWS Step Functions service.

f i gu R e 11.15 AWS Step Functions

Evolve
Swap out tasks, change

the order of steps, or add
new steps-all without

changing code

Run

Provide any needed input
and run your workflow as
many times as needed, for

up to one year

Populate

Connect tasks to code
hosted in functions,

containers, instances and
on-premises servers

Configure

Define your workflow as a
series of steps, such as
tasks, choices, parallel

execution, and timeouts

AWS Step Functions
Build distributed

applications using
visual workflows

State Machine
The state machine is the workflow template that is made up of a collection of states. Each
time you launch a workflow, you provide it with an input. Each state that is part of the
state machine receives the input, modifies it, and passes it to the next state.

These workflow templates are called state machines. You can use AWS Step Functions
as event sources to trigger AWS Lambda. Figure 11.16 is an example of using the AWS Step
Functions service.

552 Chapter 11 ■ Refactor to Microservices

f i gu R e 11.16 State machine code and visual workflow

Start

ExtractImageMetadata

ImageTypeCheck

TransformMetadata

Rekognition Thumbnail

StoreImageMetadata

End

NotSupportedImageType

Use AWS Step Functions to build visual workflows that enable fast translation of busi-
ness requirements into technical requirements. You can build applications in a matter of
minutes. When your needs change, you can swap or reorganize components without cus-
tomizing any code.

AWS Step Functions manages state, checkpoints, and restarts for you to make sure that
your application executes in order and as you would expect. Built-in try/catch, retry, and
rollback capabilities deal with errors and exceptions automatically.

AWS Step Functions manages the logic of your application for you, and it implements
basic primitives such as branching, parallel execution, and timeouts. This removes extra
code that may be repeated in your microservices and functions.

A finite state machine can express an algorithm as a number of states, their relation-
ships, and their input and output. AWS Step Functions allows you to coordinate individual
tasks by expressing your workflow as a finite state machine, written in the Amazon States
Language. Individual states can decide based on their input, perform actions, and pass
output to other states. In Step Functions, you can express your workflows in the Amazon
States Language, and the Step Functions console provides a graphical representation of
that state machine to help visualize your application logic.

AWS Step Functions 553

 Names identify states, which can be any string, but must be unique within the state
machine specifi cation. Otherwise, it can be any valid string in JSON text format.

 An instance of a state exists until the end of its execution.

 States can perform the following functions in your state machine:

Task state: Performs work in your state machine

Choice state: Makes a choice between branches of execution

Fail or Succeed state: Stops an execution with a failure or success

Pass state: Passes inputs to outputs or inject corrected data

Wait state: Provides a delay for a certain amount of time or until a specifi ed time/date

Parallel state: Begins parallel branches of execution

 Here is an example state named HelloWorld , which performs an AWS Lambda function:

 "HelloWorld": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:HelloFunction",
 "Next": "AfterHelloWorldState",
 "Comment": "Run the HelloWorld Lambda function"
 }

 States share the following common features:

 ■ Each state must have a Type field to indicate what type of state it is.

 ■ Each state can have an optional Comment field to hold a human-readable comment
about, or description of, the state.

 ■ Each state (except a Succeed or Fail state) requires a Next field or, alternatively, can
become a terminal state if you specify an End field.

 These fi elds are common within each state:

 ■ Type (Required): The state’s type.

 ■ Next : The name of the next state that runs when the current state finishes. Some state
types, such as Choice , allow multiple transition states.

 ■ End : Designates this state as a terminal state (it ends the execution) if set to true . There
can be any number of terminal states per state machine. State supports only one Next
or End statement. Some state types, such as Choice , do not support or use the End field.

554 Chapter 11 ■ Refactor to Microservices

 ■ Comment (Optional): Holds a human-readable description of the state.

 ■ InputPath (Optional): A path that selects a portion of the state’s input to pass to the
state’s task process. If omitted, it has the value $, which designates the entire input.

 ■ OutputPath (Optional): A path that selects a portion of the state’s input to pass to the
state’s output. If omitted, it has the value $, which designates the entire input.

To see the Amazon Function State Language, refer to Figure 11.17.

f i gu R e 11.17 Amazon Function State Language

Start

End

StartState Start
Function

Final
Function

FinalState

{
 "Comment": "An example of the ASL.",
 "StartAt": "StartState",
 "States": {
 "StartState": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east...,
 "Next”: “FinalState"
 }
 "FinalState": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east...,
 "End": true
 }
 }
}

Task State
A task state involves a form of compute. A task executes on an AWS Lambda function
or on an Amazon EC2 instance. An activity is a task that executes on an Amazon EC2
instance.

A task state ("Type": "Task") represents a single unit of work that a state machine
performs.

In addition to the common state fields, task state fields include the following:

Resource (Required): Amazon Resource Name (ARN) that uniquely identifies the spe-
cific task to execute.

ResultPath (Optional): Specifies where in the input to place the results from the task
Resource. The input is filtered as prescribed by the OutputPath field (if present) before
being used as the state’s output.

Retry (Optional): An array of objects, called Retriers, that define a retry policy if the
state encounters runtime errors.

Catch (Optional): An array of objects, called Catchers, that define a fallback state.
This state is executed if the state encounters runtime errors and the retry policy has
been exhausted or is not defined.

AWS Step Functions 555

TimeoutSeconds (Optional): If the task runs longer than the specified number of
 seconds, this state fails with a States.Timeout error name. This must be a positive,
nonzero integer. If not provided, the default value is 99999999.

HeartbeatSeconds (Optional): If more time than the specified seconds elapses
between heartbeats from the task, then this state fails with a States.Timeout error
name. This must be a positive, nonzero integer less than the number of seconds speci-
fied in the TimeoutSeconds field. If not provided, the default value is 99999999.

A Task state either must set the End field to true if the state ends the execution or must pro-
vide a state in the Next field that runs upon completion of the Task state. Here’s an example:

"ActivityState": {
 "Type": "Task",
 "Resource": "arn:aws:states:us-east-1:123456789012:activity:HelloWorld",
 "TimeoutSeconds": 300,
 "HeartbeatSeconds": 60,
 "Next": "NextState"
}

The ActivityState schedules the HelloWorld activity for execution in the us-east-1
region on the caller’s account. When HelloWorld completes, the Next state (NextState) runs.

If this task fails to complete within 300 seconds or it does not send heartbeat notifica-
tions in intervals of 60 seconds, then the task is marked as failed. Set a Timeout value and
a HeartbeatSeconds interval for long-running activities.

Specify Resource Amazon Resource Names in Tasks
To specify the Resource field’s Amazon Resource Name (ARN), use the syntax:

arn:partition:service:region:account:task_type:name

where:

 ■ partition is the AWS Step Functions partition to use, most commonly aws.

 ■ service indicates the AWS service that you use to execute the task, which is one of the
following values:

 ■ states for an activity

 ■ lambda for an AWS Lambda function

 ■ region is the AWS region in which the Step Functions activity/state machine type or
AWS Lambda function has been created.

 ■ account is your Account ID.

 ■ task_type is the type of task to run. It is one of the following:

 ■ activity: An activity

 ■ function: An AWS Lambda function

 ■ name is the registered resource name (activity name or AWS Lambda function name).

556 Chapter 11 ■ Refactor to Microservices

Step Functions Referencing ARNs

 You cannot reference ARNs across partitions with Step Functions. For
example, aws-cn cannot invoke tasks in the aws partition, and vice versa.

 Task Types
 Task types support activity and AWS Lambda functions.

Activity Activities represent workers (processes or threads) that you implement and host,
which perform a specifi c task.

 Activity resource ARNs use the following syntax:

 arn:partition:states:region:account:activity:name

 Create activities with Step Functions (using a CreateActivity API action
or the Step Functions console) before their first use.

AWS Lambda Functions Lambda tasks execute a function using AWS Lambda. To specify
an AWS Lambda function, use the ARN of the AWS Lambda function in the Resource
fi eld. AWS Lambda function Resource ARNs use the following syntax:

 arn:partition:lambda:region:account:function:function_name
 Here's an example:
 "LambdaState": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:HelloWorld",
 "Next": "NextState"
 }

 When the AWS Lambda function you specify in the Resource fi eld completes, its output
is sent to the state you identify in the Next fi eld (NextState).

 Choice State
 The Choice state enables control fl ow between several different paths based on the input
you select. In a choice state, you place a condition on the input. The state machine evalu-
ates the condition, and it follows the path of the fi rst condition that is true about the input.

 A Choice state may have more than one Next , but only one within each
Choice Rule. A Choice state cannot use End .

 A Choice state ("Type": "Choice") adds branch logic to a state machine.

AWS Step Functions 557

 Other Choice state fi elds include the following:

Choices (Required) An array of Choice Rules that determines which state the state
machine transitions to next

 Default (Optional, Recommended) The name of the state to transition to if none of the
transitions in Choices is taken

Choice states do not support the End field. They also use Next only inside
their Choices field.

 You must specify the $.type field. If the state input does not contain the
 $.type field, the execution fails, and an error displays in the execution
history.

 This is an example of a Choice state and other states to which it transitions:

 "ChoiceStateX": {
 "Type": "Choice",
 "Choices": [
 {
 "Not": {
 "Variable": "$.type",
 "StringEquals": "Private"
 },
 "Next": "Public"
 },
 {
 "Variable": "$.value",
 "NumericEquals": 0,
 "Next": "ValueIsZero"
 },
 {
 "And": [
 {
 "Variable": "$.value",
 "NumericGreaterThanEquals": 20
 },
 {
 "Variable": "$.value",
 "NumericLessThan": 30

558 Chapter 11 ■ Refactor to Microservices

 }
],
 "Next": "ValueInTwenties"
 }
],
 "Default": "DefaultState"
},

"Public": {
 "Type" : "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:Foo",
 "Next": "NextState"
},

"ValueIsZero": {
 "Type" : "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:Zero",
 "Next": "NextState"
},

"ValueInTwenties": {
 "Type" : "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:Bar",
 "Next": "NextState"
},

"DefaultState": {
 "Type": "Fail",
 "Cause": "No Matches!"
}

In this example, the state machine starts with the input value:

{
 "type": "Private",
 "value": 22
}

Step Functions transitions to the ValueInTwenties state, based on the value field.
If there are no matches for the Choice state’s Choices, the state in the Default field runs

instead. If there is no value in the Default state, the execution fails with an error.

AWS Step Functions 559

Choice Rules
A Choice state must have a Choices field whose value is a nonempty array and whose every
element is an object called a Choice Rule. A Choice Rule contains the following:

Comparison Two fields that specify an input variable to compare, the type of comparison,
and the value to which to compare the variable.

Next field The value of this field must match a state name in the state machine.

This example checks whether the numerical value is equal to 1:

{
 "Variable": "$.foo",
 "NumericEquals": 1,
 "Next": "FirstMatchState"
}

This example checks whether the string is equal to MyString:

{
 "Variable": "$.foo",
 "StringEquals": "MyString",
 "Next": "FirstMatchState"
}

This example checks whether the string is greater than MyStringABC:

{
 "Variable": "$.foo",
 "StringGreaterThan": "MyStringABC",
 "Next": "FirstMatchState"
}

This example checks whether the timestamp is equal to 2018-01-01T12:00:00Z:

{
 "Variable": "$.foo",
 "TimestampEquals": "2018-01-01T12:00:00Z",
 "Next": "FirstMatchState"
}

Step Functions examines each of the Choice Rules in the order that they appear in the
Choices field and transitions to the state you specify in the Next field of the first Choice
Rule in which the variable matches the value equal to the comparison operator.

The comparison supports the following operators:

 ■ And

 ■ BooleanEquals

560 Chapter 11 ■ Refactor to Microservices

 ■ Not

 ■ NumericEquals

 ■ NumericGreaterThan

 ■ NumericGreaterThanEquals

 ■ NumericLessThan

 ■ NumericLessThanEquals

 ■ Or

 ■ StringEquals

 ■ StringGreaterThan

 ■ StringGreaterThanEquals

 ■ StringLessThan

 ■ StringLessThanEquals

 ■ TimestampEquals

 ■ TimestampGreaterThan

 ■ TimestampGreaterThanEquals

 ■ TimestampLessThan

 ■ TimestampLessThanEquals

 For each of these operators, the value corresponds to the appropriate type: string, num-
ber, Boolean, or timestamp. Step Functions do not attempt to match a numeric fi eld to a
string value. However, because timestamp fi elds are logically strings, you can match a time-
stamp fi eld by a StringEquals comparator.

 For interoperability, do not assume that numeric comparisons work with
values outside the magnitude or precision that the IEEE 754-2008 binary64
data type represents. In particular, integers outside of the range [-253+1,
253-1] might fail to compare in the way that you would expect.

 Timestamps (for example, 2016-08-18T17:33:00Z) must conform to RFC3339 profi le
ISO 8601, with the following further restrictions:

 ■ An uppercase T must separate the date and time portions.

 ■ An uppercase Z must denote that a numeric time zone offset is not present.

 To understand the behavior of string comparisons, see the Java compareTo documenta-
tion here:

https://docs.oracle.com/javase/8/docs/api/java/lang/
String.html#compareTo-java.lang.String-

 The values of the And and Or operators must be nonempty arrays of Choice Rules that do
not themselves contain Next fi elds. Likewise, the value of a Not operator must be a single
Choice Rule with no Next fi elds.

AWS Step Functions 561

You can create complex, nested Choice Rules using And, Not, and Or. However, the Next
field can appear only in a top-level Choice Rule.

Parallel State
The Parallel state enables control flow to execute several different execution paths at the
same time in parallel. This is useful if you have activities or tasks that do not depend on
each other, can execute in parallel, and can help your workflow complete faster.

You can use the Parallel state ("Type": "Parallel") to create parallel branches of
execution in your state machine.

In addition to the common state fields, Parallel states introduce these additional fields:

Branches (Required) An array of objects that specify state machines to execute in parallel.
Each such state machine object must have the fields States and StartAt and mean the same
as those in the top level of a state machine.

ResultPath (Optional) Specifies where in the input to place the output of the branches. The
OutputPath field (if present) filters the input before it becomes the state’s output.

Retry (Optional) An array of objects, called Retriers, which define a retry policy in case
the state encounters runtime errors.

Catch (Optional) An array of objects, called Catchers, which define a fallback state that
executes in case the state encounters runtime errors and you do not define the retry policy
or it has been exhausted.

A Parallel state causes AWS Step Functions to execute each branch. The state starts
with the name of the state in that branch’s StartAt field, as concurrently as possible, and
waits until all branches terminate (reach a terminal state) before it processes the Parallel
state’s Next field. Here’s an example:

{
 "Comment": "Parallel Example.",
 "StartAt": "LookupCustomerInfo",
 "States": {
 "LookupCustomerInfo": {
 "Type": "Parallel",
 "End": true,
 "Branches": [
 {
 "StartAt": "LookupAddress",
 "States": {
 "LookupAddress": {
 "Type": "Task",
 "Resource":
 "arn:aws:lambda:us-east-1:123456789012:function:AddressFinder",
 "End": true

562 Chapter 11 ■ Refactor to Microservices

 }
 }
 },
 {
 "StartAt": "LookupPhone",
 "States": {
 "LookupPhone": {
 "Type": "Task",
 "Resource":
 "arn:aws:lambda:us-east-1:123456789012:function:PhoneFinder",
 "End": true
 }
 }
 }
]
 }
 }
}

In this example, the LookupAddress and LookupPhone branches execute in parallel.
Figure 11.18 displays the workflow in the Step Functions console.

f i gu R e 11.18 Parallel state visual workflow

Start

LookupAddress LookupPhone

End

Each branch must be self-contained. A state in one branch of a Parallel state must not
have a Next field that targets a field outside of that branch, nor can any other state outside
the branch transition into that branch.

AWS Step Functions 563

Parallel State Output
A Parallel state provides each branch with a copy of its own input data (InputPath). It
generates output, which is an array with one element for each branch that contains the out-
put from that branch. There is no requirement that all elements be of the same type. You
can insert the output array into the input data (and the whole sent as the Parallel state’s
output) with a ResultPath field. Here’s an example:

{
 "Comment": "Parallel Example.",
 "StartAt": "FunWithMath",
 "States": {
 "FunWithMath": {
 "Type": "Parallel",
 "End": true,
 "Branches": [
 {
 "StartAt": "Add",
 "States": {
 "Add": {
 "Type": "Task",
 "Resource": "arn:aws:swf:us-east-1:123456789012:task:Add",
 "End": true
 }
 }
 },
 {
 "StartAt": "Subtract",
 "States": {
 "Subtract": {
 "Type": "Task",
 "Resource": "arn:aws:swf:us-east-1:123456789012:task:Subtract",
 "End": true
 }
 }
 }
]
 }
 }
}

564 Chapter 11 ■ Refactor to Microservices

 If the FunWithMath state was given the array [3, 2] as input, then both the Add and
Subtract states receive that array as input. The output of Add would be 5 , that of Subtract
would be 1 , and the output of the Parallel state would be an array.

 [5, 1]

 Error Handling

 If any branch fails, because of an unhandled error or by a transition to a Fail state, the entire
 Parallel state fails, and all of its branches stop. If the error is not handled by the Parallel
state itself, Step Functions stops the execution with an error.

 When a Parallel state fails, invoked AWS Lambda functions continue to
run, and activity workers that process a task token do not stop.

 To stop long-running activities, use heartbeats to detect whether Step Functions has
stopped its branch, and stop workers that are processing tasks. If the state has failed, call-
ing SendTaskHeartbeat , SendTaskSuccess , or SendTaskFailure generates an error.

 You cannot stop AWS Lambda functions that are running. If you have implemented a
fallback, use a Wait state so that cleanup work happens after the AWS Lambda function
fi nishes.

 End State
 A state machine completes its execution when it reaches an end state . Each state defi nes
either a next state or an end state, and the end state terminates the execution of the step
function.

 Input and Output
 Each execution of the state machine requires an input as a JSON object and passes that
input to the fi rst state in the workfl ow. The state machine receives the initial input by the
process initiating the execution. Each state modifi es the input JSON object that it receives
and injects its output into this object. The fi nal state produces the output of the state
machine.

 Individual states receive JSON as the input and usually pass JSON as the output to the
next state. Understand how this information fl ows from state to state and learn how to
fi lter and manipulate this data to design and implement workfl ows in AWS Step Functions
effectively.

 In the Amazon States Language, three components fi lter and control the fl ow of JSON
from state to state: InputPath , OutputPath , and ResultPath .

 Figure 11.19 shows how JSON information moves through a task state. InputPath
selects which components from the input to pass to the task of the Task state, for example,
an AWS Lambda function. ResultPath then selects what combination of the state input

AWS Step Functions 565

and the task result to pass to the output. OutputPath can fi lter the JSON output to limit
further the information that passes to the output.

 f i gu R e 11.19 Input and output processing

State Input

State Output

ResultPath

OutputPath

InputPathTask State

Activity Worker/
Lambda function

InputPath , OutputPath , and ResultPath each use paths to manipulate JSON as it moves
through each state in your workfl ow.

ResultPath uses reference paths, which limit scope so that it can identify
only a single node in JSON.

 Paths and Reference Paths
 In this section, you will learn how to use paths and reference paths to process inputs and
outputs.

Paths In Amazon States Language, a path is a string that begins with $ that you can use
to identify components within JSON text. Paths follow the JsonPath syntax.

Reference paths A reference path is a path whose syntax can identify only a single node in
a JSON structure.

 You can access object fi elds with only a dot (.) and square brackets ([]) notation.

 Paths and reference paths do not support the operators @ .. , : ? * and
functions such as length() .

566 Chapter 11 ■ Refactor to Microservices

 For example, state input data contains the following values:

 {
 "foo": 123,
 "bar": ["a", "b", "c"],
 "car": {
 "cdr": true
 }
 }

 In this case, the reference paths return the following:

 $.foo => 123
 $.bar => ["a", "b", "c"]
 $.car.cdr => true

 Certain states use paths and reference paths to control the fl ow of a state machine or
confi gure a state’s options.

 Paths in InputPath , ResultPath , and OutputPath Fields

 To specify how to use part of the state’s input and what to send as output to the next state,
you can use InputPath , OutputPath , and ResultPath .

 For InputPath and OutputPath , you must use a path that follows the JsonPath syntax.
 For ResultPath , you must use a reference path.

 InputPath The InputPath fi eld selects a portion of the state’s input to pass to the state’s
task to process. If you omit the fi eld, it receives the $ value, which represents the entire
input. If you use null , the input is not sent to the state’s task, and the task receives JSON
text representing an empty object {} .

 A path can yield a selection of values. Here’s an example:

 { "a": [1, 2, 3, 4] }

 If you apply the path $.a[0:2] , the result is as follows:

 [1, 2]

 ResultPath If a state executes a task, the task results are sent along as the state’s output,
which becomes the input for the next task.

 If a state does not execute a task, the state’s own input is sent, unmodifi ed, as its output.
However, when you specify a path in the value of a state’s ResultPath and OutputPath
fi elds, different scenarios become possible.

 The ResultPath fi eld takes the results of the state’s task that executes and places them in
the input. Next, the OutputPath fi eld selects a portion of the input to send as the state’s

AWS Step Functions 567

output. The ResultPath fi eld might add the results of the state’s task that executes to the
input, overwrites an existing part, or overwrites the entire input.

 ■ If the ResultPath matches an item in the state’s input, only that input item is over-
written with the results of executing the state’s task. The entire modified input
becomes available to the state’s output.

 ■ If the ResultPath does not match an item in the state’s input, an item adds to the
input. The item contains the results of executing the state’s task. The expanded
input becomes available to the state’s output.

 ■ If the ResultPath has the default value of $, it matches the entire input. In this case,
the results of the state execution overwrite the input entirely, and the input becomes
available to pass along.

 ■ If the ResultPath is null , the results of executing the state are discarded, and the
input remains the same.

ResultPath field values must be reference paths.

OutputPath If the OutputPath matches an item in the state’s input, only that input item is
selected. This input item becomes the state’s output.

 ■ If the OutputPath does not match an item in the state’s input, an exception specifies
an invalid path.

 ■ If the OutputPath has the default value of $, this matches the entire input com-
pletely. In this case, the entire input passes to the next state.

 ■ If the OutputPath is null , JSON text represents an empty object, {} , and is sent to
the next state.

 The following example demonstrates how InputPath , ResultPath , and OutputPath
fi elds work in practice. Consider this input for the current state:

 {
 "title": "Numbers to add",
 "numbers": { "val1": 3, "val2": 4 }
 }

 In addition, the state has the following InputPath , ResultPath , and OutputPath fi elds:

 "InputPath": "$.numbers",
 "ResultPath": "$.sum",
 "OutputPath": "$"

568 Chapter 11 ■ Refactor to Microservices

The state’s task receives only the numbers object from the input. In turn, if this task
returns 7, the output of this state equals the following:

{
 "title": "Numbers to add",
 "numbers": { "val1": 3, "val2": 4 }
 "sum": 7
}

You can modify the OutputPath as follows:

"InputPath": "$.numbers",
"ResultPath": "$.sum",
"OutputPath": "$.sum"

As before, you use the following state input data:

{
 "numbers": { "val1": 3, "val2": 4 }
}

However, now the state output data is 7.

AWS Step Functions Use Case
You can use state machines to process long-running workflows. For example, if a customer
orders a book and it requires several different events, use the state machine to run all the
events. When the customer orders the book, the state machine creates a credit card transac-
tion, generates a tracking number for the book, notifies the warehouse to ship the order,
and then emails the tracking number to the customer. The AWS Step Functions service runs
all these steps.

The benefit of AWS Step Functions is that it enables the compute to be stateless. The
AWS Lambda functions and the Amazon EC2 instances provide compute to the state
machine to execute in a stateless way. AWS Lambda functions and Amazon EC2 do not
have to remember the information about the state of the current execution. The AWS Step
Functions service remembers the information about the state of the current execution.

Summary
This chapter covered the different services to refactor larger systems into smaller compo-
nents that can communicate with each other through infrastructure services. To be success-
ful, the refactoring infrastructure must exist, which enables the different components to
communicate with each other. You also now know about the different infrastructure com-
munication services that AWS provides for different use cases.

Exam Essentials 569

Exam Essentials
Know how refactoring to microservices is beneficial and what services it includes. This
includes the use of the Amazon Simple Queue Service (Amazon SQS), Amazon Simple
Notification Service (Amazon SNS), Amazon Kinesis Data Streams, Amazon Kinesis
services, Amazon DynamoDB Streams, AWS Internet of Things (IoT), Amazon Message
Query (Amazon MQ), and AWS Step Functions.

Know about the Amazon Simple Queue Service. Know that the Amazon Simple Queue
Service (Amazon SQS) is a fully managed message queuing service that makes it easy to
decouple and scale microservices, distributed systems, and serverless applications. There
will be questions about the dead-letter queue and how to pass messages with Amazon
CloudWatch.

Know about the Amazon Simple Notification Service. Familiarize yourself with the
Amazon Simple Notification Service (Amazon SNS) and how it is a flexible, fully managed
producer/consumer (publisher/subscriber) messaging and mobile notifications web service
for coordinating the delivery of messages to subscribing to endpoints and clients. Amazon
SNS coordinates and manages the delivery or sending of messages to subscriber endpoints
or clients.

Know about Amazon Kinesis Data Streams. Study how Amazon Kinesis Data Streams is
a service for ingesting large amounts of data in real time and for performing real-time
analytics on the data. Producers write data into Amazon Kinesis Data Streams, and
consumers read data from it. Be familiar with the use of multiple applications, high
throughput, real-time analytics, and open source tools that Kinesis supports. There will
be questions about producer and consumer options on the exam.

Know about Amazon Kinesis Data Firehose. Familiarize yourself with Amazon Kinesis
Data Firehose latency. Amazon Kinesis Data Firehose also handles automatic scaling of the
underlying shards of the stream based on the amount of traffic.

Know about Amazon Kinesis Data Analytics. There will also be questions about how
Amazon Kinesis Data Analytics enables you to process and analyze streaming data with
standard SQL. Make sure that you know which destinations it supports.

Know about Amazon Kinesis Video Streams. Know that the Amazon Kinesis Video
Streams service allows you to push device video content into AWS and then onto the cloud
to process that content and detect patterns in it. You can also use Amazon Kinesis Video
Streams to build computer vision and machine learning applications.

Know about Amazon DynamoDB Streams. Remember that Amazon DynamoDB Streams
allows Amazon DynamoDB to publish a message every time a change is made in a table.
When you insert, update, or delete an item, Amazon DynamoDB produces an event that
publishes it to the Amazon DynamoDB Streams. Familiarize yourself with tables, consum-
ers, concurrency, and streams.

570 Chapter 11 ■ Refactor to Microservices

Know about AWS Internet of Things (AWS IoT). Make sure that you know that AWS IoT
Device Management is a cloud-based device management service that makes it easy for cus-
tomers to manage IoT devices securely throughout their lifecycle. Memorize information on
the rules engine, message, broker, and device shadow.

Know about Amazon MQ. Know that the primary use for Amazon MQ is to enable cus-
tomers who use Apache Active MQ to migrate to the cloud. A message broker allows soft-
ware applications and components to communicate with various programming languages,
operating systems, and formal messaging protocols. Know how the Amazon SQS and
Amazon SNS differ from Amazon MQ.

Know about AWS Step Functions. The exam includes questions that require a thor-
ough understanding of AWS Step Functions. Ensure that you know each step in the state
machine, task state, Choice state, Parallel state, and end state. Remember the inputs and
outputs in the step functions.

Know how state information flows and how to filter it. Understand how this information
flows from state to state and learn how to filter and manipulate this data to design and
implement workflows effectively in AWS Step Functions.

Resources to Review
Amazon Simple Notification Service (Amazon SNS):

https://aws.amazon.com/sns/

Amazon SNS Documentation:

https://docs.aws.amazon.com/sns/latest/dg/welcome.html

Amazon SNS FAQs:

https://aws.amazon.com/sns/faqs/

Amazon SNS Message Filtering:

https://docs.aws.amazon.com/sns/latest/dg/message-filtering.html

Amazon SNS Mobile Push Notifications:

https://docs.aws.amazon.com/sns/latest/dg/SNSMobilePush.html

Amazon SNS Mobile Push High-Level Steps:

https://docs.aws.amazon.com/sns/latest/dg/mobile-push-pseudo.html

Add Amazon SNS Device Tokens or Registration IDs:

https://docs.aws.amazon.com/sns/latest/dg/
mobile-push-send-devicetoken.html

Amazon Simple Queue Service (Amazon SQS) Documentation:

https://aws.amazon.com/documentation/sqs/?id=docs_gateway

Resources to Review 571

Amazon SQS Dead-Letter Queues:

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-dead-letter-queues.html

Amazon SQS FAQs:

https://aws.amazon.com/sqs/faqs/

Amazon SQS Features:

https://aws.amazon.com/sqs/features/

Amazon SQS Resources:

https://aws.amazon.com/sqs/resources/

Amazon SQS Visibility Timeout:

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-visibility-timeout.html

Amazon SQS FIFO Queues:

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/FIFO-queues.html

Amazon CloudWatch Documentation:

https://aws.amazon.com/documentation/cloudwatch/

What is Amazon CloudWatch?

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
WhatIsCloudWatch.html

Pass Messages via Amazon CloudWatch:

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
US_SetupSNS.html

Amazon Kinesis:

https://aws.amazon.com/kinesis/

Amazon Kinesis Data Streams Data Streams:

https://aws.amazon.com/kinesis/data-streams/

Amazon Kinesis Data Streams Resources:

https://aws.amazon.com/kinesis/data-streams/resources/

Resharding Amazon Kinesis Data Streams:

https://docs.aws.amazon.com/streams/latest/dev/
kinesis-using-sdk-java-resharding.html

Splitting Amazon Kinesis Data Streams Shards:

https://docs.aws.amazon.com/streams/latest/dev/
kinesis-using-sdk-java-resharding-split.html

572 Chapter 11 ■ Refactor to Microservices

Amazon Kinesis Data Firehose Data Delivery:

https://docs.aws.amazon.com/firehose/latest/dev/basic-deliver.html

Amazon Kinesis Data Firehose FAQs:

https://aws.amazon.com/kinesis/data-firehose/faqs/

Amazon Kinesis Data Firehose Streaming:

https://aws.amazon.com/kinesis/data-firehose/

Amazon Kinesis Video Streams and How It Works:

https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/
how-it-works.html

Amazon Kinesis Video Streams and What It is:

https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/
what-is-kinesis-video.html

Amazon Kinesis Analytics RecordFormat:

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/
API_RecordFormat.html

Amazon Kinesis Analytics API CSV Mapping Parameters:

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/
API_CSVMappingParameters.html

Amazon Kinesis Analytics API Mapping Parameters:

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/
API_MappingParameters.html

Amazon Kinesis Analytics Source Reference:

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/
how-it-works-input.html#source-reference

Amazon DynamoDB Streams KCL Adapter:

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
Streams.KCLAdapter.html

Amazon DynamoDB Streams:

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
Streams.html

AWS IoT Analytics User Guide

https://aws.amazon.com/documentation/iotanalytics/?id=docs_gateway

AWS Internet of Things (IoT):

https://docs.aws.amazon.com/iotanalytics/latest/userguide/welcome.html

AWS IoT Analytics Rule Actions:

https://docs.aws.amazon.com/iot/latest/developerguide/
iot-rule-actions.html

Exercises 573

Amazon MQ:

https://aws.amazon.com/amazon-mq/

AWS Step Functions:

https://aws.amazon.com/step-functions/

AWS Step Functions Documentation:

https://aws.amazon.com/documentation/step-functions/

AWS Step Functions Input/Output Filters:

https://docs.aws.amazon.com/step-functions/latest/dg/
concepts-input-output-filtering.html

AWS Step Functions State Languages:

https://docs.aws.amazon.com/step-functions/latest/dg/
amazon-states-language-states.html

Amazon States Languages:

https://docs.aws.amazon.com/step-functions/latest/dg/
concepts-amazon-states-language.html

Exercises

e x e R C i S e 11 .1

Create an Amazon SQS Queue, Add Messages, and Receive Messages

In this exercise, you will use the AWS SDK for Python (Boto) to create an Amazon SQS
queue, and then you will put messages in the queue. Finally, you will receive messages
from this queue and delete them.

1. Make sure that you have AWS administrator credentials set up in your account.

2. Install the AWS SDK for Python (Boto).

Refer to https://aws.amazon.com/sdk-for-python/.

3. Enter the following code into your development environment for Python or the
IPython shell.

This is the code that you downloaded at the beginning of the exercises.

Test SQS.
import boto3

Pretty print.
import pprint

(continued)

574 Chapter 11 ■ Refactor to Microservices

pp = pprint.PrettyPrinter(indent=2)

Create queue.
sqs = boto3.resource('sqs')
queue = sqs.create_queue(QueueName='test1')
print(queue.url)

Get existing queue.
queue = sqs.get_queue_by_name(QueueName='test1')
print(queue.url)

Get all queues.
for queue in sqs.queues.all(): print queue

Send message.
response = queue.send_message(MessageBody='world')
pp.pprint(response)

Send batch.
response = queue.send_messages(Entries=[
 { 'Id': '1', 'MessageBody': 'world' },
 { 'Id': '2', 'MessageBody': 'hello' }])
pp.pprint(response)

Receive and delete all messages.
for message in queue.receive_messages():
 pp.pprint(message)
 message.delete()

Delete queue.
queue.delete()

4. Run the code.

This creates a queue, sends messages to it, receives messages from it, deletes the
messages, and then deletes the queue.

5. To experiment with the queue further, remove the comment //queue.delete() from
the last line, which deletes the queue.

6. After you are satisfied with your changes, delete the code.

e x e R C i S e 11 .1 (c ont inue d)

Exercises 575

e x e R C i S e 11 . 2

Send an SMS Text Message to your Mobile phone with Amazon SnS

In this exercise, you will use Amazon SNS to publish an SMS message to your mobile
phone. This solution can be useful when you run a job that will take several hours to com-
plete, and you do not want to wait for it to finish. Instead, you can have your app send you
an SMS text message when it is done.

1. Enter the following code into your development environment for Python or the
IPython shell.

This is the code that you downloaded at the beginning of the exercises.

import boto3

Create SNS client.
sns_client = boto3.client('sns')

Send message to your mobile number.
(Replace dummy mobile number with your number.)
sns_client.publish(
 PhoneNumber='1-222-333-3333',
 Message='Hello from your app')

2. Replace the PhoneNumber value with your own number.

The 1 at the beginning is the U.S. country code, 222 is the area code, and 333-3333 is
the mobile phone number.

3. Run the code.

Check your phone to view the message.

e x e R C i S e 11 . 3

Create an Amazon Kinesis data Stream and Write/Read data

In this exercise, you will create an Amazon Kinesis data stream, put records on it (write to
the stream), and then get those records back (read from the stream). At the end, you will
delete the stream.

1. Enter this code into your development environment for Python or the IPython shell.

This is the code that you downloaded at the beginning of the exercises.

import boto3
import random

(continued)

576 Chapter 11 ■ Refactor to Microservices

import json

Create the client.
kinesis_client = boto3.client('kinesis')

Create the stream.
kinesis_client.create_stream(
 StreamName='donut-sales',
 ShardCount=2)

Wait for stream to be created.
waiter = kinesis_client.get_waiter('stream_exists')
waiter.wait(StreamName='donut-sales')

Store each donut sale using location as partition key.
location = 'california'
data = b'{"flavor":"chocolate","quantity":12}'
kinesis_client.put_record(
 StreamName='donut-sales',
 PartitionKey=location, Data=data)
print("put_record: " + location + " -> " + data)

Next lets put some random records.

List of location, flavors, quantities.
locations = ['california', 'oregon', 'washington', 'alaska']
flavors = ['chocolate', 'glazed', 'apple', 'birthday']
quantities = [1, 6, 12, 20, 40]

Generate some random records.
for i in xrange(20):

 # Generate random record.
 flavor = random.choice(flavors)
 location = random.choice(locations)
 quantity = random.choice(quantities)
 data = json.dumps({"flavor": flavor, "quantity": quantity})

 # Put record onto the stream.
 kinesis_client.put_record(
 StreamName='donut-sales',
 PartitionKey=location, Data=data)

e x e R C i S e 11 . 3 (c ont inue d)

Exercises 577

 print("put_record: " + location + " -> " + data)

Get the records.

Get shard_ids.
response = kinesis_client.list_shards(StreamName='donut-sales')
shard_ids = [shard['ShardId'] for shard in response['Shards']]
print("list_shards: " + str(shard_ids))

For each shard_id print out the records.
for shard_id in shard_ids:

 # Print current shard_id.
 print("shard_id=" + shard_id)

 # Get a shard iterator from this shard.
 # TRIM_HORIZON means start from earliest record.
 response = kinesis_client.get_shard_iterator(
 StreamName='donut-sales',
 ShardId=shard_id,
 ShardIteratorType='TRIM_HORIZON')
 shard_iterator = response['ShardIterator']

 # Get records on shard and print them out.
 response = kinesis_client.get_records(ShardIterator=shard_iterator)
 records = response['Records']
 for record in records:
 location = record['PartitionKey']
 data = record['Data']
 print("get_records: " + location + " -> " + data)

Delete the stream.
kinesis_client.delete_stream(
 StreamName='donut-sales')

Wait for stream to be deleted.
waiter = kinesis_client.get_waiter('stream_not_exists')

waiter.wait(StreamName='donut-sales')

2. Run the code.

Observe the output and how all the records for a specific location occur in the same
shard. This is because they have the same partition keys. All records with the same parti-
tion key are sent to the same shard.

578 Chapter 11 ■ Refactor to Microservices

e x e R C i S e 11 . 4

Create an AWS Step functions State Machine 1

In this exercise, you will create an AWS Step Functions state machine. The state machine
will extract price and quantity from the input and inject the billing amount into the output.

This state machine will calculate how much to bill a customer based on the price and
quantity of an item they purchased.

1. Sign in to the AWS Management Console and open the Step Functions console at
https://console.aws.amazon.com/step-functions/.

2. Select Get Started.

3. On the Define state machine page, select Author from scratch.

4. In Name type, enter order-machine.

5. Enter the code for the state machine definition.

This is the code that you downloaded at the beginning of the exercises.

{
 "StartAt": "CreateOrder",
 "States": {
 "CreateOrder": {
 "Type": "Pass",
 "Result": {
 "Order" : {
 "Customer" : "Alice",
 "Product" : "Coffee",
 "Billing" : { "Price": 10.0, "Quantity": 4.0 }
 }
 },
 "Next": "CalculateAmount"
 },
 "CalculateAmount": {
 "Type": "Pass",
 "Result": 40.0,
 "ResultPath": "$.Order.Billing.Amount",
 "OutputPath": "$.Order.Billing",
 "End": true
 }
 }
}

Exercises 579

6. On the State machine definition page, select Reload.

This updates the visual representation of the state machine. The state machine con-
sists of two states: CreateOrder and CalculateAmount. They are both Pass types
and pass hardcoded values.

This is useful for build the outline of your final state machine. You can also use this
to debug ResultPath and OutputPath. ResultPath determines where in the input to
inject the result. OutputPath determines what data passes to the next state.

7. Select Create state machine.

8. Select Start execution.

9. In Input type, enter {}.

10. Select Start execution.

11. Expand Output, and it should look like the following:

{
 "Price": 10,
 "Quantity": 4,
 "Amount": 40
}

In CalculateAmount, "ResultPath": "$.Order.Billing.Amount" injected Amount
under Billing under Order. Then in the same element, "OutputPath": "$.Order.
Billing" threw away the rest of the input and passed only the contents of the Billing
element forward. This is why the output contains only Price, Quantity, and Amount.

12. (Optional) Experiment with different values of ResultPath to understand how it
affects where the result of a state inserts into the input.

13. (Optional) Experiment with different values of OutputPath to understand how it
affects what part of the data passes to the next state.

e x e R C i S e 11 . 5

Create an AWS Step functions State Machine 2

In this exercise, you will create an AWS Step Functions state machine. The state machine
will contain a conditional branch. It will use the Choice state to choose which state to
transition to next.

(continued)

580 Chapter 11 ■ Refactor to Microservices

The state machine inspects the input and based on it decides whether the user ordered
green tea, ordered black tea, or entered invalid input.

1. Sign in to the AWS Management Console and open the Step Functions console at:
https://console.aws.amazon.com/step-functions/.

2. Select Get Started.

3. On the Define state machine page, select Author from scratch.

4. In Name type, enter tea-machine.

5. Enter the state machine definition.

This is the code that you downloaded at the beginning of the exercises.

{
 "Comment" :
 "Input should look like {'tea':'green'} with double quotes instead of
single.",
 "StartAt": "MakeTea",
 "States" : {
 "MakeTea": {
 "Type": "Choice",
 "Choices": [
 {"Variable":"$.tea","StringEquals":"green","Next":"Green"},
 {"Variable":"$.tea","StringEquals":"black","Next":"Black"}
],
 "Default": "Error"
 },
 "Green": { "Type": "Pass", "End": true, "Result": "Green tea" },
 "Black": { "Type": "Pass", "End": true, "Result": "Black tea" },
 "Error": { "Type": "Pass", "End": true, "Result": "Bad input" }
 }
}

6. On the State machine definition page, select Reload.

This updates the visual representation of the state machine. The MakeTea state is
a Choice state. Based on the input it receives, it will branch out to Green, Black, or
Error.

7. Select Create state machine.

8. Select Start execution.

e x e R C i S e 11 . 5 (c ont inue d)

Exercises 581

9. In Input type, enter this value:

{ "tea" : "green" }

10. Select Start execution.

11. Select Expand Output, and it should look like this:

"Green tea"

12. (Optional) Experiment with different inputs to the state machine.

For example, try the following inputs:

For Input type, enter black tea. This input works.

{ "tea" : "black" }

For Input type, enter orange tea. This produces an error.

{ "tea" : "orange" }

13. Change the state machine so that orange tea also works.

582 Chapter 11 ■ Refactor to Microservices

Review Questions
1. When a user submits a build into the build system, you want to send an email to the user,

acknowledging that you have received the build request, and start the build. To perform
these actions at the same time, what type of a state should you use?

A. Choice

B. Parallel

C. Task

D. Wait

2. Suppose that a queue has no consumers. The queue has a maximum message retention
period of 14 days. After 14 days, what happens?

A. After 14 days, the messages are deleted and move to the dead-letter queue.

B. After 14 days, the messages are deleted and do not move to the dead-letter queue.

C. After 14 days, the messages are not deleted.

D. After 14 days, the messages become invisible.

3. What is size of an Amazon Simple Queue Service (Amazon SQS) message?

A. 256 KB

B. 128 KB

C. 1 MB

D. 5 MB

4. You want to send a 1 GB file through Amazon Simple Queue Service (Amazon SQS). How
can you do this?

A. This is not possible.

B. Save the file in Amazon Simple Storage Service (Amazon S3) and then send a link to
the file on Amazon SQS.

C. Use AWS Lambda to push the file.

D. Bypass the log server so that it does not get overloaded.

5. You want to design an application that sends a status email every morning to the system
administrators. Which option will work?

A. Create an Amazon SQS queue. Subscribe all the administrators to this queue. Set up an
Amazon CloudWatch event to send a message on a daily cron schedule into the Ama-
zon SQS queue.

B. Create an Amazon SNS topic. Subscribe all the administrators to this topic. Set up an
Amazon CloudWatch event to send a message on a daily cron schedule to this topic.

Review Questions 583

C. Create an Amazon SNS topic. Subscribe all the administrators to this topic. Set up
an Amazon CloudWatch event to send a message on a daily cron schedule to an AWS
Lambda function that generates a summary and publishes it to this topic.

D. Create an AWS Lambda function that sends out an email to the administrators every
day directly with SMTP.

6. What is the size of an Amazon Simple Notification Service (Amazon SNS) message?

A. 256 KB

B. 128 KB

C. 1 MB

D. 5 MB

7. You have an Amazon Kinesis data stream with one shard and one producer. How many
consumer applications can you consume from the stream?

A. One consumer

B. Two consumers

C. Limitless number of consumers

D. Limitless number of consumers as long as all consumers consume fewer than 2 MB and
five transactions per second

8. A company has a website that sells books. It wants to find out which book is selling the
most in real time. Every time a book is purchased, it produces an event. What service can
you use to provide real-time analytics on the sales with a latency of 30 seconds?

A. Amazon Simple Queue Service (Amazon SQS)

B. Amazon Simple Notification Service (Amazon SNS)

C. Amazon Kinesis Data Streams

D. Amazon Kinesis Data Firehose

9. A company sells books in the 50 states of the United States. It publishes each sale into an
Amazon Kinesis data stream with two shards. For the partition key, it uses the two-letter
abbreviation of the state, such as WA for Washington, WY for Wyoming, and so on. Which
of the following statements is true?

A. The records for Washington are all on the same shard.

B. The records for both Washington and Wyoming are on the same shard.

C. The records for Washington are on a different shard than the records for Wyoming.

D. The records for Washington are evenly distributed between the two shards.

584 Chapter 11 ■ Refactor to Microservices

10. What are the options for Amazon Kinesis Data Streams producers?

A. Amazon Kinesis Agent

B. Amazon Kinesis Data Steams API

C. Amazon Kinesis Producer Library (KPL)

D. Open-Source Tools

E. All of these are valid options.

Serverless Compute

The AWS CerTified developer –
ASSoCiATe exAm TopiCS Covered in
ThiS ChApTer mAy inClude, buT Are
noT limiTed To, The folloWing:

Domain 1: Deployment

 ✓ 1.3 Prepare the application deployment package to be
deployed to AWS.

 ✓ 1.4 Deploy serverless applications.

Domain 2: Security

 ✓ 2.1 Make authenticated calls to AWS Services.

Domain 3: Development with AWS Services

 ✓ 3.1 Write code for serverless applications.

 ✓ 3.4 Write code that interacts with AWS services by using
APIs, SDKs, and AWS CLI.

Domain 5: Monitoring and Troubleshooting

 ✓ 5.1 Write code that can be monitored.

 ✓ 5.2 Perform root cause analysis on faults found in
testing or production.

Chapter

12

AWS® Certified Developer Official Study Guide
By Nick Alteen, Jennifer Fisher, Casey Gerena, Wes Gruver, Asim Jalis,
Heiwad Osman, Marife Pagan, Santosh Patlolla and Michael Roth

 Amazon Web Services, Inc.

Introduction to Serverless Compute
Serverless compute is a cloud computing execution model in which the AWS Cloud acts as
the server and dynamically manages the allocation of machine resources. AWS bases the
price on the amount of resources the application consumes rather than on prepurchased
units of capacity.

For decades, people used local computers to interpret, process, and execute code, and
they have encountered relatively few serious issues when they ran powerful web and data
processing applications on their servers. However, this model has its problems.

The first issue with running servers is that you have to purchase them; a costly endeavor
depending on the number of servers that you require for your project. Servers also depreci-
ate and become obsolete, which facilitates the need to replace them.

Second, you must patch servers on a frequent and consistent manner to prevent security
exploits. They require time-consuming maintenance to prolong their longevity. Servers
may also experience hardware failures, which you must diagnose and repair. All of this
consumes both time and money, which could be spent on other efforts such as improving
applications.

Third, the needs of the users change over time. When an application first releases, it is
not frequently accessed, and infrastructure needs are minimal. Over time, the application
grows, and the infrastructure must also grow to accommodate it. This requires more serv-
ers, more maintenance, and more hardware costs. It also requires more time, as to add new
servers to your data center can take several weeks or months.

AWS Lambda
AWS Lambda is the AWS serverless compute platform that enables you to run code with-
out provisioning or managing servers. With AWS Lambda, you can run code for nearly any
type of application or backend service—with zero administration. Only upload your code,

AWS Lambda 587

and AWS Lambda performs all the tasks you require to run and scale your code with high
availability. You can configure code to trigger automatically from other AWS ser vices, or
call it directly from any web or mobile app. AWS Lambda is sometimes referred to as a func-
tion-as-a-service (FaaS). AWS Lambda executes code whenever the function is triggered,
and no Amazon Elastic Compute Cloud (Amazon EC2) instances need to be spun up in
your infrastructure.

AWS Lambda offers several key benefits over Amazon EC2. First, there are no servers to
manage. You are no longer responsible for provisioning or managing servers, patching serv-
ers, or worrying about high availability.

Second, you do not have to concern yourself with scaling. AWS Lambda automati-
cally scales your application by running code in response to each trigger. Your code runs
in parallel and processes each trigger individually, scaling precisely with the size of the
workload.

Third, when you run Amazon EC2 instances, you are responsible for costs associated
with the instance runtime. It does not matter whether your site receives little to no traffic—
if the server is running, there are costs. With AWS Lambda, if no one executes the function
or if the function is not triggered, no charges are incurred.

With the use of AWS Lambda and other AWS services, you can begin to decouple the
application, which allows you to improve your ability to both scale horizontally and create
asynchronous systems.

Where Did the Servers Go?
Serverless computing still requires servers, but the server management and capacity plan-
ning decisions are hidden from the developer or operator. You can use serverless code with
code you deploy in traditional styles, such as microservices. Alternatively, you can write
applications to be purely serverless with no provisioned servers.

AWS Lambda uses containerization to run your code. When your function is triggered,
it creates a container. Then your code executes and returns your application or services the
result. If a container is created on the first invocation, AWS refers to this as a cold start.
Once the container starts to run, it remains active for several minutes before it terminates.
If an invocation runs on a container that is already available, that invocation runs on a
warm container.

By default, AWS Lambda runs containers inside the AWS environment, and not
within your personal AWS account. However, you can also run AWS Lambda inside
your Amazon Virtual Private Cloud (Amazon VPC). Figure 12.1 shows the execution
flow process.

588 Chapter 12 ■ Serverless Compute

f i gu r e 12 .1 AWS Lambda execution flow

Event Invokes a
Lambda Function

AWS
Lambda

New Function Container
(Cold)

Active Function Containers
(Warm)

Amazon
S3

After a new function container is created:
• The function code package is downloaded.
• The Lambda runtime environment is started.

NoYes

Is there an active container
available for this Lambda function

that isn’t busy processing
another event?

Note: AWS Lambda does not simply
provision containers one at a time to
exactly meet demand. Based on usage
patterns, AWS Lambda may create
multiple new containers at once to help
increase the chance that a future event
will be processed by an already running
function container.

Monolithic vs. Microservices Architecture
Microservices are an architectural and organizational approach to software development
whereby software is composed of small independent services that communicate over well-
defined application programming interfaces (APIs). Small, self-contained teams own these
services.

Historically, applications have been developed as monolithic architectures. With mono-
lithic architectures, all processes are tightly coupled and run as a single service. If one process
of the application experiences a spike in demand, you have to scale the entire architecture. To
add or improve a monolithic application’s features, it becomes more complicated as the code
base grows. This complexity limits experimentation and makes it difficult to implement new
ideas. Monolithic architectures increase the risk for application availability, as many depen-
dent and tightly coupled processes increase the impact of a single process failure.

Microservices are more agile, and scaling is more flexible than with monolithic applica-
tions. You can deploy new portions of your code faster and more easily. With AWS Lambda
and other services, you can begin to create microservices for your application.

AWS Lambda Functions
This section discusses how to use AWS Lambda to execute functions, such as how to cre-
ate, secure, trigger, debug, monitor, improve, and test AWS Lambda functions.

AWS Lambda Functions 589

 Languages AWS Lambda Supports
 AWS Lambda functions currently support the following languages:

 ■ C# (.NET Core 1.0)

 ■ C# (.NET Core 2.0)

 ■ Go 1. x

 ■ Java 8

 ■ Node.js 4.3

 ■ Node.js 6.10

 ■ Node.js 8.10

 ■ Python 2.7

 ■ Python 3.6

 Creating an AWS Lambda Function
 You can use any of the following methods to access AWS services and create an AWS
Lambda function that will call an AWS service:

 ■ AWS Management Console— graphical user interface (GUI)

 ■ AWS command line interface (AWS CLI)— Linux Shell and Windows PowerShell

 ■ AWS Software Development Kit (AWS SDK)— Java, .NET, Node.js, PHP, Python,
Ruby, Go, Browser, and C++

 ■ AWS application programming interface (API)— send HTTP/HTTPS requests
manually using API endpoints

 In this chapter, you will create an AWS Lambda function and properties
with the AWS Management Console. In the “Exercises” section, you will
use AWS CLI and the Python SDK for the AWS Lambda function.

 Launch the AWS Management Console, and select the AWS Lambda service under the
Compute section (see Figure 12.2).

590 Chapter 12 ■ Serverless Compute

 f i gu r e 12 . 2 AWS Management Console

 When you create an AWS Lambda function, there are three options:

Author from scratch Manually create all settings and options.

 Blueprints Select a preconfi gured template that you can modify.

 Serverless application repository Deploy a publicly shared application with the
AWS Serverless Application Model (AWS SAM).

 There is no charge for this repository, as it is where you deploy a prebuilt
application and then modify it.

 When authoring from scratch, you must provide three details to create an AWS Lambda
function:

 ■ Name— name of the AWS Lambda function

 ■ Runtime— language in which the AWS Lambda function is written

 ■ Role— permissions of your functions

 After you name the function and select a runtime language, you defi ne an AWS Identity
and Access Management (IAM) role .

 Execution Methods/Invocation Models
 There are two invocation models for AWS Lambda.

 ■ Nonstreaming Event Source (Push Model)— Amazon Echo, Amazon Simple Storage Service
(Amazon S3), Amazon Simple Notification Service (Amazon SNS), and Amazon Cognito

 ■ Streaming Event Source (Pull Model)— Amazon Kinesis or Amazon DynamoDB stream

AWS Lambda Functions 591

Additionally, you can execute an AWS Lambda function synchronously or
asynchronously. The InvocationType parameter determines when to invoke an AWS
Lambda function. This parameter has three possible values:

 ■ RequestReponse—Execute synchronously.

 ■ Event—Execute asynchronously.

 ■ DryRun—Test that the caller permits the invocation but does not execute the function.

With an event source (push model), a service such as Amazon S3 invokes the AWS
Lambda function each time an event occurs with the bucket you specify.

Figure 12.3 illustrates the push model flow.

1. You create an object in a bucket.

2. Amazon S3 detects the object-created event.

3. Amazon S3 invokes your AWS Lambda function according to the event source map-
ping in the bucket notification configuration.

4. AWS Lambda verifies the permissions policy attached to the AWS Lambda function to
ensure that Amazon S3 has the necessary permissions.

5. AWS Lambda executes the AWS Lambda function, and the AWS Lambda function
receives the event as a parameter.

f i gu r e 12 . 3 Amazon S3 push model

AWS Account

1

2

3

5

4

Amazon S3

Source
Bucket

Target
Bucket

AWS Lambda Execution
Role

Access
Policy

Lambda
Function

User

With a pull model invocation, AWS Lambda polls a stream and invokes the function
upon detection of a new record on the stream. Amazon Kinesis uses the pull model.

592 Chapter 12 ■ Serverless Compute

Figure 12.4 illustrates the sequence for a pull model.

1. A custom application writes records to an Amazon Kinesis stream.

2. AWS Lambda continuously polls the stream and invokes the AWS Lambda function
when the service detects new records on the stream. AWS Lambda knows which stream
to poll and which AWS Lambda function to invoke based on the event source mapping
you create in AWS Lambda.

3. Assuming that the attached permissions policy, which allows AWS Lambda to poll the
stream, is verified, then AWS Lambda executes the function.

f i gu r e 12 . 4 Amazon Kinesis pull model

AWS Account

1

2
Amazon
Kinesis

Custom app
Stream

Event
Source

Mapping

Lambda
Function

Execution
Role

AWS Lambda

3

Figure 12.4 uses an Amazon Kinesis stream, but the same principle applies when you
work with an Amazon DynamoDB stream.

The final way to invocate an AWS Lambda function applies to custom applications
with the RequestReponse invocation type. Using this invocation method, AWS Lambda
executes the function synchronously, returns the response immediately to the calling
application, and alerts you to whether the invocation occurs.

Your application creates an HTTP POST request to pass the necessary parameters
and invoke the function. To use this type of invocation model, you must set the
RequestResponse in the X-Amz–Invocation–Type HTTP header.

Securing AWS Lambda Functions
AWS Lambda functions include two types of permissions.

Execution permissions enable the AWS Lambda function to access other AWS resources
in your account. For example, if the AWS Lambda function needs access to Amazon S3
objects, you grant permissions through an AWS IAM role that AWS Lambda refers to as an
execution role.

Inside the AWS Lambda Function 593

Invocation permissions are the permissions that an event source needs to communicate
with your AWS Lambda function. Depending on the invocation model (push or pull), you
can either update the access policy you associate with your AWS Lambda function (push)
or update the execution role (pull).

AWS Lambda provides the following AWS permissions policies:

LambdaBasicExecutionRole Grants permissions only for the Amazon CloudWatch
logactions to write logs. Use this policy if your AWS Lambda function does not access any
other AWS resources except writing logs.

LambdaKinesisExecutionRole Grants permissions for Amazon Kinesis data stream
and Amazon CloudWatch log actions. If you are writing an AWS Lambda function to pro-
cess Amazon Kinesis stream events, attach this permissions policy.

LambdaDynamoDBExecutionRole Grants permissions for Amazon DynamoDB stream
and Amazon CloudWatch log actions. If you are writing an AWS Lambda function to pro-
cess Amazon DynamoDB stream events, attach this permissions policy.

LambdaVPCAccessExecutionRole Grants permissions for Amazon EC2 actions to
manage elastic network interfaces. If you are writing an AWS Lambda function to access
resources inside the Amazon VPC service, attach this permissions policy. The policy also
grants permissions for Amazon CloudWatch log actions to write logs.

Inside the AWS Lambda Function
The primary purpose of AWS Lambda is to execute your code. You can use any libraries,
artifacts, or compiled native binaries that execute on top of the runtime environment
as part of your function code package. Because the runtime environment is a Linux-
based Amazon Machine Image (AMI), always compile and test your components within
the matching environment. To accomplish this, use AWS Serverless Application Model
(AWS SAM) CLI to test AWS Lambda functions locally, which is also referred to as AWS
SAM CLI (https://github.com/awslabs/aws-sam-cli).

Function Package
Two parts of the AWS Lambda function are considered critical: the function package
and the function handler. The function code package contains everything you need to be
available locally when your function is executed. At minimum, it contains your code for the
function itself, but it may also contain other assets or files that your code references upon
execution. This includes binaries, imports, or configuration files that your code/function
needs. The maximum size of a function code package is 50 MB compressed and 250 MB
extracted/decompressed.

You can create the AWS Lambda function by using the AWS Management Console,
SDK, API, or with the CreateFunction API.

594 Chapter 12 ■ Serverless Compute

Use the AWS CLI to create a function with the commands, as shown here:

aws lambda create-function \
--region us-east-2 \
--function-name MyCLITestFunction \
--role arn:aws:iam:account-id:role/role_name \
--runtime python3.6 \
--handler MyCLITestFunction.my_handler \
--zip-file fileb://path/to/function/file.zip

Function Handler
When the AWS Lambda function is invoked, the code execution begins at the handler.
The handler is a method inside the AWS Lambda function that you create and include in
your package. The handler syntax depends on the language you use for the AWS Lambda
function.

For Python, the handler is written as follows:

def aws lambda_handler(event, context):
 return "My First AWS Lambda Function"

For Java, it is written as follows:

MyOutput output handlerName(MyEvent event, Context context) {
 return "My First AWS Lambda Function"
 }

For Node.js, it is written as follows:

exports.handlerName = function(event, context, callback) {
 return "My First AWS Lambda Function"
 }

And for C#, it is written as follows:

myOutput HandlerName(MyEvent event, ILambdaContext context) {
 return "My First AWS Lambda Function"
 }

When the handler is specified and invoked, the code inside the handler executes. Your
code can call other methods and functions within other files and classes that you store
in the ZIP archive. The handler function can interact with other AWS services and make
third-party API requests to web services that it might need to interact with.

Inside the AWS Lambda Function 595

 Event Object
 You can pass event objects that you pass into the handler function. For example, the
Python function is written as follows:

 def aws lambda_handler(event, context):
 return "My First AWS Lambda Function"

 This fi rst object you pass is the event object. The event includes all the data and meta-
data that your AWS Lambda function needs to implement the logic.

 If you use the Amazon API Gateway service with the AWS Lambda
function, it contains details of the HTTPS request that was made by the
API client. Values, such as the path, query string, and the request body,
are within the event object. The event object has different data depending
on the event that it creates. For example, Amazon S3 has different values
inside the event object than the Amazon API Gateway service.

 Context Object
 The second object that you pass to the handler is the context object . The context object
contains data about the AWS Lambda function invocation itself. The context and structure
of the object vary based on the AWS Lambda function language. There are three primary
data points that the context object contains.

AWS Requestid Tracks specifi c invocations of an AWS Lambda function, and it is impor-
tant for error reports or when you need to contact AWS Support.

 Remaining time Amount of time in milliseconds that remain before your function time-
out occurs. AWS Lambda functions can run a maximum of 300 seconds (5 minutes) as of
this writing, but you can confi gure a shorter timeout.

 Logging Each language runtime provides the ability to stream log statements to Amazon
CloudWatch Logs. The context object contains information about which Amazon CloudWatch
Log stream your log statements are sent to.

596 Chapter 12 ■ Serverless Compute

Configuring the AWS Lambda Function
This section details how to configure the AWS Lambda functions.

Descriptions and Tags
An AWS best practice is to tag and give descriptions of your resources. As you start to scale
services and create more resources on the AWS Cloud, identifying resources becomes a
challenge if you do not implement a tagging strategy.

Memory
After you write your AWS Lambda function code, configure the function options. The first
parameter is function memory. For each AWS Lambda function, increase or decrease the
function resources (amount of random access memory). You can allocate 128 MB of RAM
up to 3008 MB of RAM in 64-MB increments. This dictates the amount of memory avail-
able to your function when it executes and influences the central processing unit (CPU) and
network resources available to your function.

Timeout
When you write your code, you must also configure how long your function executes for
before a timeout is returned. The default timeout value is 3 seconds; however, you can
specify a maximum of 300 seconds (5 minutes), the longest timeout value. You should not
automatically set this function for the maximum value for your AWS Lambda function, as
AWS charges based on execution time in 100-ms increments. If you have a function that
fails quickly, you spend less money, because you do not wait a full 5 minutes to fail. If you
wait on an external dependency that fails or you have programmed code incorrectly in your
function, AWS Lambda processes the error for 5 minutes, or you can set it to fail within a
fraction of that time to save time, cost, and resources.

After the execution of an AWS Lambda function completes or a timeout occurs, the
response returns and all execution ceases. This includes any processes, subprocesses, or
asynchronous process that your AWS Lambda function may have spawned during its
execution.

Network Configuration
There are two ways to integrate your AWS Lambda functions with external dependencies
(other AWS services, publicly hosted web services, and such) with an outbound network
connection: default network configuration and Amazon VPC.

With the default network configuration, your AWS Lambda function communicates
from inside an Amazon VPC that AWS Lambda manages. The AWS Lambda function can
connect to the internet, but not to any privately deployed resources that run within your
own VPCs, such as Amazon EC2 servers.

Configuring the AWS Lambda Function 597

 Your AWS Lambda function uses an Amazon VPC network confi guration to
communicate through an elastic network interface (NIC). This interface is provisioned
within the Amazon VPC and subnets, which you choose within your own account. You can
assign NIC to security groups, and traffi c routes based on the route tables of the subnets
where you place the NIC with the Amazon EC2 service.

 If your AWS Lambda function does not need to connect to any privately deployed
resources, such as an Amazon EC2, select the default networking option, as the VPC
option requires you to manage more details when implementing an AWS Lambda function.
These details include the following:

 ■ Select an appropriate number of subnets, while you keep in mind the principles of high
availability and Availability Zones.

 ■ Allocate enough IP addresses for each subnet.

 ■ Implement an Amazon VPC network design that permits your AWS Lambda function
to have the correct connectivity and security to meet your requirements.

 ■ Increase the AWS Lambda cold start times if your invocation pattern requires a new
NIC to create just in time.

 ■ Configure a network address translation (NAT) (instance or gateway) to enable out-
bound internet access.

 If you deploy an AWS Lambda function with access to your Amazon VPC, use the fol-
lowing formula to estimate the NIC capacity:

 Projected peak concurrent executions * (Memory in GB / 3GB)

 If you had a peak of 400 concurrent executions, use 512 MB of memory.
This results in about 68 network interfaces. You therefore need an Amazon
VPC with at least 68 IP addresses available. This provides a /25 network
that includes 128 IP addresses, minus the five that AWS uses. Next, you
subtract the AWS addresses from the /25 network, which gives you 123 IP
addresses.

 AWS Lambda easily integrates with AWS CloudTrail , which records and delivers log
fi les to your Amazon S3 bucket to monitor API usage inside your account.

 Concurrency
 Though AWS allows you to scale infi nitely, AWS recommends that you fi ne-tune your con-
currency options. By default, the account-level concurrency within a given region is set with
1,000 functions as a maximum to provide you 1,000 concurrent functions to execute . You
can request a limit increase for concurrent executions from the AWS Support Center.

 To view the account-level setting, use the GetAccountSettings API and view the
AccountLimit object and the ConcurrentExecutions element.

 For example, run this command in the AWS CLI:

 aws lambda get-account-settings

598 Chapter 12 ■ Serverless Compute

This returns the following:

{
 "AccountLimit": {
 "CodeSizeUnzipped": number,
 "CodeSizeZipped": number,
 "ConcurrentExecutions": number,
 "TotalCodeSize": number,
 "UnreservedConcurrentExecutions": number
 },
 "AccountUsage": {
 "FunctionCount": number,
 "TotalCodeSize": number
 }
}

Concurrency Limits
Set a function-level concurrent execution limit. By default, the concurrent execution limit is
enforced against the sum of the concurrent executions of all functions. The shared concur-
rent execution pool is referred to as the unreserved concurrency allocation. If you have not
set up any function-level concurrency limit, the unreserved concurrency limit is the same
as the account level concurrency limit. Any increases to the account-level limit will have a
corresponding increase in the unreserved concurrency limit.

You can optionally set the concurrent execution limit for a function. Here are some
examples:

 ■ The default behavior is described as a surge of concurrent executions in one function,
preventing the function you have isolated with an execution limit from being throttled.
By setting a concurrent execution limit on a function, you reserve the specified concur-
rent execution value for that function.

 ■ Functions scale automatically based on the incoming request rate, but not all
resources in your architecture may be able to do so. For example, relational databases
have limits on how many concurrent connections they can handle. You can set the
concurrent execution limit for a function to align with the values of its downstream
resources support.

 ■ If your function connects to an Amazon VPC based resource, each concurrent
execution consumes one IP within the assigned subnet. You can set the concurrent
execution limit for a function to match the subnet size limits.

 ■ If you need a function to stop processing any invocations, set the concurrency to 0 and
then throttle all incoming executions.

Configuring the AWS Lambda Function 599

 By setting a concurrency limit on a function, AWS Lambda ensures that the
allocation applies individually to that function, regardless of the number of
traffic-processing remaining functions. If that limit is exceeded, the func-
tion is throttled. How that function behaves when throttled depends on the
event source.

 Dead Letter Queues
 All applications and services experience failure. Reasons that an AWS Lambda function
can fail include (but are not limited to) the following:

 ■ Function times out while trying to reach an endpoint

 ■ Function fails to parse input data successfully

 ■ Function experiences resource constraints, such as out-of-memory errors or other
timeouts

 If any of these failures occur, your function generates an exception, which you handle
with a dead letter queue (DLQ). A DLQ is either an Amazon Simple Notifi cation Service
(Amazon SNS) topic or an Amazon Simple Queue Service (Amazon SQS) queue, which you
confi gure as the destination for all failed invocation events. If a failure event occurs, the
DLQ retains the message that failed, analyzes it further, and reprocesses it if necessary.

 For asynchronous event sources (InvocationType is a declared event), after two retries
with automatic back-off between the retries, the event enters the DLQ, and you confi gure it
as either an Amazon SNS topic or Amazon SQS queue.

 After you enable DLQ on an AWS Lambda function, an Amazon CloudWatch metric
(DeadLetterErrors) is available. The metric increments whenever the dead letter message
payload cannot be sent to the DLQ at any time.

 Environment Variables
 AWS recommends that you separate code and confi guration settings. Use environment
variables for confi guration settings. Environment variables are key-value pairs that you
create and modify as part of your function confi guration. These key-value pairs pass
variables to your AWS Lambda function at execution time.

 By default, environment variables are encrypted at rest, using a default KMS key of
aws/lambda . Examples of environment variables that you can store include database (DB)
connection strings and the type of environment (PROD , DEV , TEST , and such).

 Versioning
 You can publish one or more versions and aliases for your AWS Lambda functions.
Versioning is an important feature to develop serverless compute architectures, as it
allows you to create multiple versions without affecting what is currently deployed in

600 Chapter 12 ■ Serverless Compute

the production environment. Each AWS Lambda function version has a unique Amazon
Resource Name (ARN). After you publish a version, it is immutable, and you cannot
change it.

After you create an AWS Lambda function, you can publish a version of that function.
Here’s an example with the AWS CLI:

aws lambda publish-version \
--region region \
--function-name myCoolFunction \
--profile devuser

This returns the version number along with other details after the command executes.

{
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "CodeSha256": "Sha265Hash",
 "FunctionName": "myCoolFunction",
 "CodeSize": 218,
 "MemorySize": 128,
 "FunctionArn": "arn:aws:lambda:region:account:function:myCoolFunction:1",
 "Version": "1",
 "Role": "arn:aws:iam::account:role/service-role/lambda-basic",
 "Timeout": 3,
 "LastModified": "2018-05-11T14:59:47.753+0000",
 "Handler":lambda_function.lambda_handler",
 "Runtime": "python3.6",
 "Description": ""
}

Creating an Alias
After you create a version of an AWS Lambda function, you could use that version number
in the ARN to reference that exact version of the function. However, if you release an
update to the AWS Lambda function, you must then locate all the places where you call
that ARN inside the application and change the ARN to the new version number. Instead,
assign an alias to a particular version and use that alias in the application.

Assign an alias of PROD to the newly created version 1, and use the alias version of
the ARN in the application. This way, you change the AWS Lambda function without
affecting the production environment. When you are ready to move the function to
production for the next version, reassign the alias to a different version, as you can

Invoking AWS Lambda Functions 601

reassign the alias while the version numbers remain static. To create an alias with the
AWS CLI, use this:

aws lambda create-alias \
--region region \
--function-name myCoolFunction \
--description "My Alias for Production" \
--function-version "1" \
--name PROD \
--profile devuser

Now point applications to the PROD alias for the AWS Lambda function. This allows
you to modify the function and improve code without affecting production. To migrate the
PROD alias to the next version, run the command where 4 is the example version.

aws lambda update-alias \
--region region \
--function-name myCoolFunction \
--function-version 4 \
--name PROD \
--profile devuser

The production system points to version 4 of the AWS Lambda function. As you can see
with versioning and aliases, you can continue to innovate your service without affecting the
current production systems.

Invoking AWS Lambda Functions
There are many ways to invoke an AWS Lambda function. You can use the push or pull
method, use a custom application, or use a schedule and event to run an AWS Lambda
trigger. AWS Lambda supports the following AWS services as event sources:

 ■ Amazon S3

 ■ Amazon DynamoDB

 ■ Amazon Kinesis Data Streams

 ■ Amazon SNS

 ■ Amazon Simple Email Service

 ■ Amazon Cognito

 ■ AWS CloudFormation

 ■ Amazon CloudWatch Logs

 ■ Amazon CloudWatch Events

602 Chapter 12 ■ Serverless Compute

 ■ AWS CodeCommit

 ■ Scheduled events (powered by Amazon CloudWatch Events)

 ■ AWS Config

 ■ Amazon Alexa

 ■ Amazon Lex

 ■ Amazon API Gateway

 ■ AWS IoT Button

 ■ Amazon CloudFront

 ■ Amazon Kinesis Data Firehose

 ■ Manually invoking a Lambda function on demand

Monitoring AWS Lambda Functions
As with all AWS services and all applications, it is critical to monitor your environment and
application. With AWS Lambda, there are two primary tools to monitor functions to ensure
that they are running correctly and efficiently: Amazon CloudWatch and AWS X-Ray.

Using Amazon CloudWatch
Amazon CloudWatch monitors AWS Lambda functions. By default, AWS Lambda enables
these metrics: invocation count, invocation duration, invocation errors, throttled invoca-
tions, iterator age, and DLQ errors.

You can leverage the reported metrics to set CloudWatch custom alarms. You can create
a CloudWatch alarm that watches a single CloudWatch metric. The alarm performs one or
more actions based on the value of the metric. The action can be an Amazon EC2 action,
an Amazon EC2 Auto Scaling action, or a notification sent to an Amazon SNS topic.

The AWS Lambda namespace includes the metrics shown in Table 12.1.

TA b le 12 .1 AWS Lambda Amazon CloudWatch Metrics

Metric Description

Invocations Measures the number of times a function is invoked in response to
an event or invocation API call.

Replaces the deprecated RequestCount metric.

Includes successful and failed invocations but does not include
throttled attempts. This equals the billed requests for the function.

AWS Lambda sends these metrics to CloudWatch only if they have
a nonzero value.

Units: Count

Monitoring AWS Lambda Functions 603

Metric Description

Errors Measures the number of invocations that failed as the result of
errors in the function (response code 4XX).
Replaces the deprecated ErrorCount metric. Failed invocations
may trigger a retry attempt that succeeds. This includes the fol-
lowing:

 ■ Handled exceptions (for example, context.fail(error))
 ■ Unhandled exceptions causing the code to exit
 ■ Out-of-memory exceptions
 ■ Timeouts
 ■ Permissions errors

This does not include invocations that fail because invocation
rates exceeded default concurrent limits (error code 429) or fail-
ures resulting from internal service errors (error code 500).
Units: Count

DeadLetterErrors Incremented when AWS Lambda is unable to write the failed event
payload to DLQs that you configure. This could be because of the
following:

 ■ Permissions errors
 ■ Throttles from downstream services
 ■ Misconfigured resources
 ■ Timeouts

Units: Count

Using AWS X-Ray
AWS X-Ray is a service that collects data about requests that your application serves,
and it provides tools to view, filter, and gain insights into that data to identify issues and
opportunities for optimization. For any traced request to the application, information
displays about the request and response, but also about calls that the application makes to
downstream AWS resources, microservices, databases, and HTTP web APIs.

There are three main parts to the X-Ray service:

 ■ Application code runs and uses the AWS X-Ray SDK (Node.js, Java, and .NET, Ruby,
Python, and Go).

 ■ AWS X-Ray daemon is an application that listens for traffic on User Datagram Proto-
col (UDP) port 2000, gathers raw segment data, and relays it to the AWS X-Ray API.

 ■ AWS X-Ray displays in the AWS Management Console.

With the AWS SDK, you integrate X-Ray into the application code. The AWS SDK
records data about incoming and outgoing requests and sends it to the X-Ray daemon,

604 Chapter 12 ■ Serverless Compute

which relays the data in batches to X-Ray. For example, when your application calls
Amazon DynamoDB to retrieve user information from an Amazon DynamoDB table, the
X-Ray SDK records data from both the client request and the downstream call to Amazon
DynamoDB.

When the SDK sends data to the X-Ray daemon, the SDK sends JSON segment docu-
ments to a daemon process listening for UDP traffic. The X-Ray daemon buffers segments
in a queue and uploads them to X-Ray in batches. The X-Ray daemon is available for
Linux, Windows, and macOS, and it is included on both AWS Elastic Beanstalk and AWS
Lambda platforms.

When the daemon sends the data to X-Ray, X-Ray uses trace data from the AWS
resources that power the cloud applications to generate a detailed service graph. The service
graph shows the client, your frontend service, and backend services that your frontend
service calls to process requests and persist data. Use the service graph to identify bottle-
necks, latency spikes, and other issues to improve the performance of your applications.

With X-Ray and the service map, as shown in Figure 12.5, you can visualize how your
application is running and troubleshoot any errors.

f i gu r e 12 .5 AWS X-Ray service map

Clients

random-name
AWS::Lambda

avg. 688ms
1 t/min

random-name
AWS::Lambda::Function

avg. 629ms
1 t/min

Scorekeep
AWS::ElasticBeanstalk::Environment

avg. 443ms
9 t/min

SNS
AWS::SNS

avg. 570ms
2 t/min

scorekeep-move
AWS::DynamoDB::Table

avg. 11ms
4 t/min

scorekeep-game
AWS::DynamoDB::Table

avg. 109ms
30 t/min

scorekeep-session
AWS::DynamoDB::Table

avg. 52ms
21 t/min

scorekeep-state
AWS::DynamoDB::Table

avg. 9ms
8 t/min

scorekeep-user
AWS::DynamoDB::Table

avg. 16ms
1 t/min

Exam Essentials 605

Summary
In this chapter, you learned about serverless compute, explored what it means to use a
serverless service, and took an in-depth look at AWS Lambda. With AWS Lambda, you
learned how to create a Lambda function with the AWS Management Console and AWS
CLI and how to scale Lambda functions by specifying appropriate memory allocation
settings and properly defining timeout values. Additionally, you took a closer look at the
Lambda function handler, the event object, and the context object to use data from an
event source with AWS Lambda. Finally, you looked at how to invoke Lambda functions
by using both the push and pull models and monitor functions. We wrapped up the chapter
with a brief look at Amazon CloudWatch and AWS X-Ray.

Exam Essentials
Know how to use execution context for reuse. Take advantage of execution context reuse
to improve the performance of your AWS Lambda function. Verify that any externalized
configuration or dependencies that your code retrieves are stored and referenced locally
after initial execution. Limit the re-initialization of variables or objects on every invocation.
Instead, use static initialization/constructor, global/static variables, and singletons. Keep
connections (HTTP or database) active, and reuse any that were established during a previ-
ous invocation.

Know how to use environmental variables. Use environment variables to pass opera-
tional parameters to your AWS Lambda function. For example, if you are writing to an
Amazon S3 bucket, instead of hardcoding the bucket name to which you are writing,
configure the bucket name as an environment variable.

Know how to control the dependencies in your function’s deployment package. The
AWS Lambda execution environment contains libraries, such as the AWS SDK, for the
Node.js and Python runtimes. To enable the latest set of features and security updates,
AWS Lambda periodically updates these libraries. These updates may introduce subtle
changes to the behavior of your AWS Lambda function. Package all your dependencies with
your deployment package to have full control of the dependencies that your function uses.

Know how to minimize your deployment package size to its runtime necessities.
Minimizing your deployment package size reduces the amount of time that it takes for your
deployment package to download and unpack ahead of invocation. For functions authored
in Java or .NET Core, it is best to not upload the entire AWS SDK library as part of your
deployment package. Instead, select only the modules that include components of the SDK
you need, such as Amazon DynamoDB, Amazon S3 SDK modules, and AWS Lambda core
libraries.

606 Chapter 12 ■ Serverless Compute

Know how memory works. Performing AWS Lambda function tests is a crucial step to
ensure that you choose the optimum memory size configuration. Any increase in memory
size triggers an equivalent increase in CPU that is available to your function. The memory
usage for your function is determined per invocation, and it displays in the Amazon
CloudWatch Logs.

Know how to load test your AWS Lambda function to determine an optimum timeout value.
It is essential to analyze how long your function runs to determine any problems with a
dependency service. Dependency services may increase the concurrency of the function beyond
what you expect. This is especially important when your AWS Lambda function makes
network calls to resources that may not handle AWS Lambda’s scaling.

Know how permissions for IAM policies work. Use the most-restrictive permissions
when you set AWS IAM policies. Understand the resources and operations that your AWS
Lambda function needs, and limit the execution role to these permissions.

Know how to use AWS Lambda metrics and Amazon CloudWatch alarms. Use AWS
Lambda metrics and Amazon CloudWatch alarms (instead of creating or updating a metric
from within your AWS Lambda function code). This is a much more efficient way to track
the health of your AWS Lambda functions, and it allows you to catch issues early in the
development process. For instance, you can configure an alarm based on the expected
duration of your AWS Lambda function execution time to address any bottlenecks or
latencies attributable to your function code.

Know how to capture application errors. Leverage your log library and AWS Lambda
metrics and dimensions to catch application errors, such as ERR, ERROR, and WARNING.

Know how to create and use dead letter queues (DLQs). Create and use DLQs to address
and replay asynchronous function errors.

Resources to Review
AWS Lambda Documentation:

https://aws.amazon.com/documentation/lambda/

AWS Lambda Developer Guide

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

Invoke AWS Lambda Functions:

https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-functions.html

Invoke AWS API:

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

CreateFunction API:

https://docs.aws.amazon.com/lambda/latest/dg/API_CreateFunction.html

Exercises 607

 Function Handler Syntax:

https://docs.aws.amazon.com/lambda/latest/dg/programming-model-v2.html

 AWS Lambda Pricing:

https://aws.amazon.com/lambda/pricing/

 AWS Lambda with Amazon CloudWatch Metrics:

https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-
access-metrics.html

 AWS Lambda Execution Environment and Libraries:

https://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html

 Python SDK Reference:

https://boto3.readthedocs.io/en/latest/reference/services/index.html

 Invoke AWS Lambda Functions:

https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function
.html#supported-event-source-dynamo-db

 AWS Lambda Deployment Package:

https://docs.aws.amazon.com/lambda/latest/dg/deployment-package-v2.html

 AWS Lambda Limits:

https://docs.aws.amazon.com/lambda/latest/dg/limits.html

 AWS Serverless Application Model (SAM) Local (AWS SAM Local):

https://github.com/awslabs/aws-sam-cli

 Exercises

 To complete these exercises, download the AWS Certified Developer –
Associate Exam code examples for Chapter 12, Chapter12_Code.zip , from
Resources at http://www.wiley.com/go/sybextestprep .

 For these exercises, you are a developer for a shoe company. The shoe company has
a third-party check processor who sends checks, pay stubs, and direct deposits to the
shoe company’s employees. The third-party service requires a JSON document with
the employee’s name, the number of hours they worked for the current week, and the
employee’s hourly rate. Unfortunately, the shoe company’s payroll system exports this
data only in CSV format. Devise a serverless method to convert the exported CSV fi le
to JSON.

608 Chapter 12 ■ Serverless Compute

e x e r C i S e 12 .1

Create an Amazon S3 bucket for CSv ingestion

To solve this, create two Amazon S3 buckets (CSV ingestion and JSON output) and an
AWS Lambda function to process the file.

After you export the CSV file, upload the file to Amazon S3. First, create an Amazon S3
bucket with the following Python code:

 import boto3
Variables for the bucket name and the region we will be using.
Important Note: s3 Buckets are globally unique, as such you need to change the
name of the bucket to something else.
Important Note: If you would like to use us-east-1 as the region, when making
the s3.create_bucket call, then do not specify any region.
bucketName = "shoe-company-2018-ingestion-csv-demo"
bucketRegion = "us-west-1"

Creates an s3 Resource; this is a higher level API type service for s3.
s3 = boto3.resource('s3')

Creates a bucket
bucket = s3.create_bucket(ACL='private',Bucket=bucketName,CreateBucketConfiguration
={'LocationConstraint': bucketRegion})

This Python code creates a resource for interacting with the Amazon S3 service. After the
resource is created, you can call the function .create_bucket to create a bucket.

After executing this Python code, verify that the bucket has been successfully created
inside the Amazon S3 console. If it is not successfully created, the most likely cause is
that the bucket name is not unique; therefore, renaming the bucket should solve the
issue.

e x e r C i S e 12 . 2

Create an Amazon S3 bucket for final output JSon

To create the second bucket for final output, run the following:

 import boto3
Variables for the bucket name and the region we will be using.
Important Note: s3 Buckets are globally unique, as such you need to change the
name of the bucket to something else.

Exercises 609

 # Important Note: If you would like to use us-east-1 as the region, when
making the s3.create_bucket call, then do not specify any region.

bucketName = "shoe-company-2018-final-json-demo"
bucketRegion = "us-west-1"

Creates an s3 Resource; this is a higher level API type service for s3.
s3 = boto3.resource('s3')

Creates a bucket
bucket = s3.create_bucket(ACL='private',Bucket=bucketName,CreateBucketConfiguratio
n={'LocationConstraint': bucketRegion})

In the first exercise, you created the initial bucket for ingestion of the .csv file. This bucket
will be used for the final JSON output. Again, if you see any errors here, look at the error
logs. Verify that the bucket exists inside the Amazon S3 console. You will verify the
buckets programmatically in the next exercise.

e x e r C i S e 12 . 3

verify list buckets

To verify the two buckets, use the Python 3 SDK and run the following:

 import boto3
Variables for the bucket name and the region we will be using.
Important Note: Be sure to use the same bucket names you used in the previous
two exercises.
bucketInputName = "shoe-company-2018-ingestion-csv-demo"
bucketOutputName = "shoe-company-2018-final-json-demo"
bucketRegion = "us-west-1"

Creates an s3 Resource; this is a higher level API type service for s3.
s3 = boto3.resource('s3')

Get all of the buckets
bucket_iterator = s3.buckets.all()

Loop through the buckets

for bucket in bucket_iterator:
 if bucket.name == bucketInputName:
 print("Found the input bucket\t:\t", bucket.name)
 if bucket.name == bucketOutputName:
 print("Found the output bucket\t:\t", bucket.name)

(continued)

610 Chapter 12 ■ Serverless Compute

 Here, you are looping through the buckets, and if the two that you created are found, they
are displayed. If everything is successful, then you should see output similar to the fol-
lowing:

 Found the output bucket : shoe-company-2018-final-json-demo
 Found the input bucket : shoe-company-2018-ingestion-csv-demo

 e x e r C i S e 12 . 4

prepare the AWS lambda function

 To perform the conversion using the AWS CLI and the Python SDK, create the AWS
Lambda function. The AWS CLI creates the AWS Lambda function. The Python SDK pro-
cesses the fi les inside the AWS Lambda service.

 In the following code, change the bucket names to bucket names you defi ned. The
lambda_handler function passes the event parameter. This allows you to acquire the
Amazon S3 bucket name.

 Save this code to a fi le called lambda_function.py, and then compress the fi le.

You can use a descriptive file name; however, remember to update the
handler code in Exercise 12.6.

 import boto3
 import csv
 import json
 import time
 # The csv and json modules provide functionality for parsing
 # and writing csv/json files. We can use these modules to
 # quickly perform a data transformation
 # You can read about the csv module here:
 # https://docs.python.org/2/library/csv.html
 # and JSON here:
 # https://docs.python.org/2/library/json.html

 # Create an s3 Resource: https://boto3.readthedocs.io/en/latest/guide/resources.html
 s3 = boto3.resource('s3')
 csv_local_file = '/tmp/input-payroll-data.csv'
 json_local_file = '/tmp/output-payroll-data.json'

 # Change this value to whatever you named the output s3 bucket in the previous
exercise

e x e r C i S e 12 . 3 (c ont inue d)

Exercises 611

output_s3_bucket = 'shoe-company-2018-final-json-demo'

def lambda_handler(event, context):

 # Need to get the bucket name
 bucket_name = event['Records'][0]['s3']['bucket']['name']
 key = event['Records'][0]['s3']['object']['key']

 # Download the file to our AWS Lambda container environment
 try:
 s3.Bucket(bucket_name).download_file(key, csv_local_file)
 except Exception as e:
 print(e)
 print('Error getting object {} from bucket {}. Make sure they exist and your

bucket is in the same region as this function.'.format(key, bucket_name))
 raise e

 # Open the csv and json files
 csv_file = open(csv_local_file, 'r')
 json_file = open(json_local_file, 'w')

 # Get a csv DictReader object to convert file to json
 dict_reader = csv.DictReader(csv_file)

 # Create an Employees array for JSON, use json.dumps to pass in the string
 json_conversion = json.dumps({'Employees': [row for row in dict_reader]})

 # Write to our json file
 json_file.write(json_conversion)

 # Close out the files
 csv_file.close()
 json_file.close()

 # Upload finished file to s3 bucket
 try:
 s3.Bucket(output_s3_bucket).upload_file(json_local_file, 'final-output-

payroll.json')
 except Exception as e:
 print(e)
 print('Error uploading object {} to bucket {}. Make sure the file paths

are correct.'.format(key, bucket_name))
 raise e

 print('Payroll processing completed at: ', time.asctime(time.localtime(time.
time())))

 return 'Payroll conversion from CSV to JSON complete.'

(continued)

612 Chapter 12 ■ Serverless Compute

After you create the code for the function, upload this file to Amazon S3 with the AWS
CLI. This saves the code locally on your desktop and runs the following command. Be
sure to compress the file.

aws s3 cp lambda_function.zip s3://shoe-company-2018-ingestion-csv-demo

If the following command successfully executed, you should see something similar to the
following printed to the console:

upload: .\lambda_function.zip to s3://shoe-company-2018-ingestion-csv-demo/lambda_
function.zip

You may also verify that the file has been uploaded by using the AWS Management
Console inside the Amazon S3 service.

e x e r C i S e 12 . 5

Create AWS iAm roles

In this exercise, create an AWS IAM role so that the AWS Lambda function has the correct
permissions to execute the function with the AWS CLI. Create a JSON file of the trust rela-
tionship, which allows the AWS Lambda service to assume this particular IAM role with
the Security Token Service.

Also create a policy document. A predefined policy document was distributed in the code
example that you downloaded in Exercise 12.1. However, if you prefer to create the file
manually, you can do so. The following is required for the exercise to work correctly:

lambda-trust-policy.json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

e x e r C i S e 12 . 4 (c ont inue d)

Exercises 613

After the lambda-trust-policy.json document has been created, run the following
command to create the IAM role:

aws iam create-role -–role-name PayrollProcessingLambdaRole --description
"Provides AWS Lambda with access to s3 and cloudwatch to execute the
PayrollProcessing function" --assume-role-policy-document file://lambda-trust-
policy.json

A JSON object returns. Copy the RoleName and ARN roles for the next steps.

{
 "Role": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 }
 }
]
 },
 "RoleId": "roleidnumber",
 "CreateDate": "2018-05-19T17:30:05.020Z",
 "RoleName": "PayrollProcessingLambdaRole",
 "Path": "/",
 "Arn": "arn:aws:iam::accountnumber:role/PayrollProcessingLambdaRole"
 }
}

After you create an AWS role, attach a policy to the role. There are two types of AWS
policies: AWS managed and customer managed. AWS creates predefined policies
that you can use called AWS managed policies. You may create customer managed
policies specific to your requirements.

For this example, you will use an AWS managed policy built for AWS Lambda called
AWSLambdaExecute. This provides AWS Lambda access to Amazon CloudWatch Logs
and Amazon S3 GetObject and PutObject API calls.

aws iam attach-role-policy --role-name PayrollProcessingLambdaRole --policy-arn
arn:aws:iam::aws:policy/AWSLambdaExecute

(continued)

614 Chapter 12 ■ Serverless Compute

 If this command successfully executes, it does not return results. To verify that the IAM
role has been properly confi gured, from the AWS Management Console, go to the
IAM service. Click Roles, and search for PayrollProcessingLambdaRole . On the
Per missions tab, verify that the AWSLambdaExecute policy has been attached. On
the Trust relationships tab, verify that the trusted entities states the following: “The
identify provider(s) lambda.amazonaws.com .”

 You have successfully uploaded the Python code that has been compressed to Amazon
S3, and you created an IAM role. In the next exercise, you will create the AWS Lambda
function.

 e x e r C i S e 12 . 6

Create the AWS lambda function

 In this exercise, create the AWS Lambda function. You can view the AWS Lambda API ref-
erence here:

 https://docs.aws.amazon.com/cli/latest/reference/lambda/index.html

For the --handler parameter, make sure that you specify the name of the .py
file you created in Exercise 12.4. Also, make sure that for the S3Key parameter,
you specify the name of the compressed file inside the Amazon S3 bucket.

 Run this AWS CLI command:

 aws lambda create-function --function-name PayrollProcessing --runtime python3.7
--role arn:aws:iam::accountnumber:role/PayrollProcessingLambdaRole --handler
lambda_function.lambda_handler --description "Converts Payroll CSVs to JSON
and puts the results in an s3 bucket." --timeout 3 --memory-size 128 --code
S3Bucket=shoe-company-2018-ingestion-csv-demo,S3Key=lambda_function.zip --tags
Environment="Production",Application="Payroll" --region us-west-1

 If the command was successful, you receive a JSON response similar to the following:

 {
 "FunctionName": "PayrollProcessing",
 "FunctionArn": "arn:aws:lambda:us-east-2:accountnumber:function:

PayrollProcessing",
 "Runtime": "python3.7",
 "Role": "arn:aws:iam::accountnumber:role/PayrollProcessingLambdaRole",
 "Handler": "payroll.lambda_handler",
 "CodeSize": 1123,
 "Description": "Converts Payroll CSVs to JSON and puts the results in an s3

bucket.",

e x e r C i S e 12 . 5 (c ont inue d)

Exercises 615

 "Timeout": 3,
 "MemorySize": 128,
 "LastModified": "2018-12-10T06:36:27.990+0000",
 "CodeSha256": "NUKm2kp/fLzVr58t8XCTw6YGBmxR2E1Q9MHuW11QXfw=",
 "Version": "$LATEST",
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "RevisionId": "ae30524f-26a9-426a-b43a-efa522cb1545"
}

You have successfully created the AWS Lambda function. You can verify this from the
AWS Management Console and opening the AWS Lambda console.

e x e r C i S e 12 . 7

give Amazon S3 permission to invoke an AWS lambda function

In this exercise, use the AWS Lambda CLI add-permission command to invoke the AWS
Lambda function.

aws lambda add-permission --function-name PayrollProcessing --statement-id
lambdas3permission --action lambda:InvokeFunction --principal s3.amazonaws.com
--source-arn arn:aws:s3:::shoe-company-2018-ingestion-csv-demo --source-account
yourawsaccountnumber --region us-west-1

After you run this command and it is successful, you should receive a JSON response
that looks similar to the following:

{
 "Statement": {
 "Sid": "lambdas3permission",
 "Effect": "Allow",
 "Principal": {
 "Service": "s3.amazonaws.com"
 },
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:us-east-2:accountnumber:function:PayrollProce

ssing",
 "Condition": {
 "StringEquals": {
 "AWS:SourceAccount": "accountnumber"
 },

(continued)

616 Chapter 12 ■ Serverless Compute

 "ArnLike": {
 "AWS:SourceArn": "arn:aws:s3:::shoe-company-2018-ingestion-csv-demo"
 }
 }
 }
}

This provides a function policy to the AWS Lambda function that allows the S3 bucket
that you created to call the action lambda:InvokeFunction. You can verify this by
navigating to the AWS Lambda service inside the AWS Management Console. In the
Designer section, click the key icon to view permissions, and under Function policy, you
will see the policy you just created.

e x e r C i S e 12 . 8

Add the Amazon S3 event Trigger

In this exercise, add the trigger for Amazon S3 using AWS CLI for the s3api commands.
The notification-config.json file was provided in the exercise files. Its contents are as
follows:

{
 "LambdaFunctionConfigurations": [
 {
 "Id": "s3PayrollFunctionObjectCreation",
 "LambdaFunctionArn": "arn:aws:lambda:us-west-1:accountnumber:function:

PayrollProcessing",
 "Events": [
 "s3:ObjectCreated:*"
],
 "Filter": {
 "Key": {
 "FilterRules": [
 {
 "Name": "suffix",
 "Value": ".csv"
 }
]
 }

e x e r C i S e 12 . 7 (c ont inue d)

Exercises 617

 }
 }
]
}
aws s3api put-bucket-notification-configuration ––bucket shoe-company-2018-
ingestion-csv-demo ––notification-configuration file://notification-config.json

If the execution is successful, no response is sent. To verify that the trigger has been
added to the AWS Lambda function, navigate to the AWS Lambda console inside the
AWS Management Console, and verify that there is now an Amazon S3 trigger.

e x e r C i S e 12 . 9

Test the AWS lambda function

To test the AWS Lambda function, use the AWS CLI to upload the CSV file to the Amazon
S3 bucket; then check whether the function transforms the data and puts the result file in
the output bucket.

aws s3 cp input-payroll-data.csv s3://shoe-company-2018-ingestion-csv-demo

If everything executes successfully, in the output bucket that you created, you should see
the transformed JSON file. You accepted input into one Amazon S3 bucket as a .csv,
transformed it to serverless by using AWS Lambda, and then stored the resulting .json
file in a separate Amazon S3 bucket. If you do not see the file, retrace your steps through
the exercises. It is a good idea to view the Amazon CloudWatch Logs, which can be found
on the Monitoring tab in the AWS Lambda console. This way, you can determine whether
there are any errors.

618 Chapter 12 ■ Serverless Compute

Review Questions
1. A company currently uses a serverless web application stack, which consists of Amazon API

Gateway, Amazon Simple Storage Service (Amazon S3), Amazon DynamoDB, and AWS
Lambda. They would like to make improvements to their AWS Lambda functions but do
not want to impact their production functions.

 How can they accomplish this?

A. Create new AWS Lambda functions with a different name, and update resources to
point to the new functions when they are ready to test.

B. Copy their AWS Lambda function to a new region where they can update their
resources to the new region when ready.

C. Create a new AWS account, and re-create all their serverless infrastructure for their
application testing.

D. Publish the current version of their AWS Lambda function, and create an alias as PROD.
Then, assign PROD to the current version number, update resources with the PROD alias
ARN, and create a new version of the updated AWS Lambda function and assign an
alias of $DEV.

2. What is the maximum amount of memory that you can assign an AWS Lambda function?

A. AWS runs the AWS Lambda function; it is a managed service, so you do not need to
configure memory settings.

B. 3008 MB

C. 1000 MB

D. 9008 MB

3. What is the default timeout value for an AWS Lambda function?

A. 3 seconds

B. 10 seconds

C. 15 seconds

D. 25 seconds

4. A company uses a third-party service to send checks to its employees for payroll. The com-
pany is required to send the third-party service a JSON file with the person’s name and
the check amount. The company’s internal payroll application supports exporting only to
CSVs, and it currently has cron jobs set up on their internal network to process these files.
The server that is processing the data is aging, and the company is concerned that it might
fail in the future. It is also looking to have the AWS services perform the payroll function.

 What would be the best serverless option to accomplish this goal?

A. Create an Amazon Elastic Compute Cloud (Amazon EC2) and the necessary cron job
to process the file from CSV to JSON.

B. Use AWS Import/Export to create a virtual machine (VM) image of the on-premises
server and upload the Amazon Machine Images (AMI) to AWS.

Review Questions 619

C. Use AWS Lambda to process the file with Amazon Simple Storage Service
(Amazon S3).

D. There is no way to process this file with AWS.

5. What is the maximum execution time allowed for an AWS Lambda function?

A. 60 seconds

B. 120 seconds

C. 230 seconds

D. 300 seconds

6. Which language is not supported for AWS Lambda functions?

A. Ruby

B. Python 3.6

C. Node.js

D. C# (.NET Core)

7. How can you increase the limit of AWS Lambda concurrent executions?

A. Use the Support Center page in the AWS Management Console to open a case and send
a Server Limit Increase request.

B. AWS Lambda does not have any limits for concurrent executions.

C. Send an email to limits@amazon.com with the subject “AWS Lambda Increase.”

D. You cannot increase concurrent executions for AWS Lambda.

8. A company is receiving permission denied after its AWS Lambda function is invoked and
executes and has a valid trust policy. After investigating, the company realizes that its AWS
Lambda function does not have access to download objects from Amazon Simple Storage
Service (Amazon S3).

 Which type of policy do you need to correct to give access to the AWS Lambda function?

A. Function policy

B. Trust policy

C. Execution policy

D. None of the above

9. A company wants to be able to send event payloads to an Amazon Simple Queue Service
(Amazon SQS) queue if the AWS Lambda function fails.

 Which of the following configuration options does the company need to be able to do this
in AWS Lambda?

A. Enable a dead-letter queue.

B. Define an Amazon Virtual Private Cloud (Amazon VPC) network.

C. Enable concurrency.

D. AWS Lambda does not support such a feature.

620 Chapter 12 ■ Serverless Compute

10. A company wants to be able to pass configuration settings as variables to their AWS
Lambda function at execution time.

 Which feature should the company use?

A. Dead-letter queues

B. AWS Lambda does not support such a feature.

C. Environment variables

D. None of the above

Serverless
Applications

The AWS CerTified developer –
ASSoCiATe exAm TopiCS Covered in
ThiS ChApTer mAy inClude, buT Are
noT limiTed To, The folloWing:

Domain 1: Deployment

 ✓ 1.4 Deploy serverless applications.

Domain 2: Security

 ✓ 2.1 Make authenticated calls to AWS Services.

 ✓ 2.3 Implement application authentication and
authorization.

Domain 3: Development with AWS Services

 ✓ 3.1 Write code for serverless applications.

 ✓ 3.2 Translate functional requirements into application
design.

 ✓ 3.3 Implement application design into application code.

 ✓ 3.3 Write code that interacts with AWS Services by
using APIs, SDKs, and AWS CLI.

Domain 5: Monitoring and Troubleshooting

 ✓ 5.1 Write code that you can monitor.

Chapter

13

AWS® Certified Developer Official Study Guide
By Nick Alteen, Jennifer Fisher, Casey Gerena, Wes Gruver, Asim Jalis,
Heiwad Osman, Marife Pagan, Santosh Patlolla and Michael Roth

 Amazon Web Services, Inc.

Introduction to Serverless Applications
In the previous chapter, you learned about AWS Lambda and how you can write functions that
run in a serverless manner. A serverless application is typically a combination of AWS Lambda
and other Amazon services. You build serverless applications to allow developers to focus on
their core product instead of the need to manage and operate servers or runtimes in the cloud
or on-premises. This reduces overhead and lets developers reclaim time and energy that can be
better spent developing reliable, scalable products and new features for applications.

Serverless applications have the following three main benefits:

 ■ No server management

 ■ Flexible scaling

 ■ Automated high availability

Without server management, you no longer have to provision or maintain servers. With
AWS Lambda, you upload your code, run it, and focus on your application updates.

With flexible scaling, you no longer have to disable Amazon Elastic Compute Cloud
(Amazon EC2) instances to scale them vertically, groups do not need to be auto-scaled, and
you do not need to create Amazon CloudWatch alarms to add them to load balancers. With
AWS Lambda, you adjust the units of consumption (memory and execution time) and AWS
adjusts the rest of the instance appropriately.

Finally, serverless applications have built-in availability and fault tolerance. You do not
need to architect for these capabilities, as the services that run the application provide them
by default. Additionally, when periods of low traffic occur in the web application, you do
not spend money on Amazon EC2 instances that do not run at their full capacity.

Web Server with Amazon Simple
Storage Service (Presentation Tier)
Amazon Simple Storage Service (Amazon S3) can store HTML, CSS, images, and JavaScript
files within an Amazon S3 bucket, and can host the website like a traditional web server.
Though Amazon S3 hosts static websites, today many websites are dynamic applications,

Web Server with Amazon Simple Storage Service (Presentation Tier) 623

where you can use JavaScript to create HTTP requests. These HTTP requests are sent to a
Representational State Transfer (REST) endpoint service called Amazon API Gateway , which
allows the application to save and retrieve data dynamically.

 Amazon API Gateway opens up a variety of application tier possibilities. An internet-
accessible HTTPS API can be consumed by any client capable of HTTPS communication.
Some common presentation tier examples that you could use for your application’s include
the following:

Mobile app Not only can you integrate with custom business logic via Amazon API Gate-
way and AWS Lambda, you can use Amazon Cognito to create and manage user identities.

Static website content hosted in Amazon S3 You can enable your Amazon API Gateway
APIs to be cross-origin resource sharing–compliant. This allows web browsers to invoke
your APIs directly from within the static web pages.

Any other HTTPS-enabled client device Many devices can connect and communicate via
HTTPS. There is nothing unique or proprietary about how clients communicate with the
APIs that you create with the Amazon API Gateway service; it is pure HTTPS. No specifi c
client software or licenses are required.

 Additionally, there are several JavaScript frameworks that are widely available today,
such as Angular and React, which allow you to benefi t from a Model-View-Controller
(MVC) architecture.

 Amazon S3 Static Website

 For the remainder of this chapter, the example bucket’s name is
 examplebucket . This is for illustration purposes only, as Amazon
S3 bucket names must be globally unique.

 To create an Amazon S3 static website, you fi rst need to create a bucket. Name the
bucket something meaningful, such as examplebucket . When you use virtual hosted-style
buckets with Secure Sockets Layer (SSL), the SSL wildcard certifi cate only matches buckets
that do not contain periods. To work around this, use HTTP or write your own certifi cate
verifi cation logic. AWS recommends that you do not use periods (.) in bucket names when
using virtual hosted-style buckets with SSL.

 After you create your Amazon S3 bucket, you must enable and confi gure it to use static
website hosting, index document, error document, and redirection rules (optional) in the
AWS Management Console ➢ Amazon S3 Service. Use this examplebucket bucket to host a
website.

 The Amazon S3 bucket includes the region based on latency, cost, and regulatory
requirements. Each object has a unique key. You grant permissions at the object or
bucket level.

 For the index document, enter the name of your home page’s HTML fi le (typically
 index.html). Additionally, you may load a custom error page such as error.html . As with

624 Chapter 13 ■ Serverless Applications

many of the Amazon services, you can make these changes with the AWS Command Line
Interface (AWS CLI) or in an AWS software development kit (AWS SDK). To enable this
option with the AWS CLI, run the following command:

 aws S3 website s3://examplebucket/ --index-document index.html --error-document
error.html

 After you enable the Amazon S3 static website hosting feature, enter an endpoint that
refl ects your AWS Region: examplebucket.s3-website.region.amazonaws.com .

 Configuring Web Traffic Logs
 Amazon S3 allows you to log and capture information such as the number of visitors
who access your website. To enable logs, create a new Amazon S3 bucket to store your
logs. This excludes your log fi les from the website-hosting bucket. You can create a
logs-examplebucket-com bucket, and inside of that bucket, you can create a folder you
call logs/ (or any name you choose). Use this folder to store all of your logs.

 The term folder is used to describe logs; however, the Amazon S3 data
model is a flat structure that allows you to create a bucket, and the bucket
stores objects. There is no hierarchy of sub-buckets or subfolders; nev-
ertheless, you can infer a logical hierarchy using key name prefixes and
delimiters as the Amazon S3 console does. In other words, you should
know that, as a developer, there is technically no such thing as an Amazon
S3 folder—it is simply a key.

 Now you use Amazon S3 to enable the static website–hosted bucket called examplebucket
to log fi les. You can confi gure the target bucket for the log fi les at logs-examplebucket-com ,
and you can create a target prefi x to send log fi les to a particular prefi x key only.

 To enable this feature with the AWS CLI, create an access control list that provides access
to the log fi les that you want to create and then apply the logging policy. Here’s an example:

 aws s3api put-bucket-acl --bucket examplebucket --grant-write
'URI=" http://acs.amazonaws.com.cn/groups/s3/LogDelivery"' --grant-read-acp
'URI=" http://acs.amazonaws.com.cn/groups/s3/LogDelivery"'

 aws s3api put-bucket- logging --bucket examplebucket --bucket-logging-status
file://logging.json

 Here’s the fi le logging.json :

 {
 "LoggingEnabled": {
 "TargetBucket": "examplebucket",

Web Server with Amazon Simple Storage Service (Presentation Tier) 625

 "TargetPrefix": "examplebucket/",
 "TargetGrants": [
 {
 "Grantee": {
 "Type": "AmazonCustomerByEmail",
 "EmailAddress": "user@example.com"
 },
 "Permission": "FULL_CONTROL"
 },
 {
 "Grantee": {
 "Type": "Group",
 "URI": " http://acs.amazonaws.com/groups/global/AllUsers"
 },
 "Permission": "READ"
 }
]
 }
 }

 Creating Custom Domain Name with Amazon Route 53
 Amazon Route 53 is a highly available and scalable cloud Domain Name System (DNS) web
service. It is designed to give developers and businesses an extremely reliable and cost-effective
way to route end users to internet applications by translating names like www.example.com
into the numeric IP addresses like 192.0.2.1 that computers use to connect to each other.
Amazon Route 53 is fully compliant with IPv6 as well.

 You may not want to use the Amazon S3 endpoint such as bucket-name.s3-
website-region.amazonaws.com . Instead, you may want a more user-friendly URL such
as myexamplewebsite.com . To accomplish this, purchase a domain name with Amazon
Route 53.

 You can purchase your domain from another provider and then update the
name servers to use Amazon Route 53.

 Amazon Route 53 effectively connects user requests to infrastructure running in AWS—
such as Amazon EC2 instances, Elastic Load Balancing (ELB) load balancers, or Amazon
S3 buckets—and can route users to infrastructure outside of AWS. You can use Amazon

626 Chapter 13 ■ Serverless Applications

Route 53 to configure DNS health checks to route traffic to healthy endpoints or to monitor
independently the health of your application and its endpoints. Amazon Route 53 Traffic
Flow makes it easy for you to manage traffic globally through a variety of routing types,
including latency-based routing, geolocation, geoproximity, and weighted round-robin,
all of which can be combined with DNS failover to enable a variety of low-latency, fault-
tolerant architectures.

Using Amazon Route 53 Traffic Flow’s simple visual editor, you can easily manage how
your end users are routed to your application’s endpoints—whether in a single AWS Region
or distributed around the globe. Amazon Route 53 also offers domain name registration.
You can purchase and manage domain names such as example.com, and Amazon Route 53
will automatically configure DNS settings for your domains.

Speeding Up Content Delivery with Amazon CloudFront
Latency is an increasingly important aspect when you deliver web applications to the end
user, as you always want your end user to have an efficient, low-latency experience on your
website. Increased latency can result in both decreased customer satisfaction and decreased
sales. One way to decrease latency is to use Amazon CloudFront to move your content
closer to your end users. Amazon CloudFront has two delivery methods to deliver content.
The first is a web distribution, and this is for storing of .html, .css, and graphic files.
Amazon CloudFront also provides the ability to have an RTMP distribution, which speeds
up distribution of your streaming media files using Adoble Flash Media Server’s RTMP
protocol. An RTMP distribution allows an end user to begin playing a media file before the
file has finished downloading from a CloudFront edge location.

To use Amazon CloudFront with your Amazon S3 static website, perform these tasks:

1. Choose a delivery method.

In the example, Amazon S3 is used to store a static web page; thus, you will be using the
Web delivery method. However, as mentioned previously, you could also use RTMP for
streaming media files.

2. Specify the cache behavior. A cache behavior lets you configure a variety of CloudFront
functionality for a given URL path pattern for files on your website.

3. Choose the distribution settings and network that you want to use. For example, you
can use all edge locations or only U.S., Canada, and Europe locations.

Amazon CloudFront enables you to cache your data to minimize redundant
data-retrieval operations. Amazon CloudFront reduces the number of requests to which
your origin server must respond directly. This reduces the load on your origin server and
reduces latency because more objects are served from Amazon CloudFront edge locations,
which are closer to your users.

The Amazon S3 bucket pushes the first request to Amazon CloudFront’s cache. The
second, third, and nth requests pull from the Amazon CloudFront’s cache at a lower latency
and cost, as shown in Figure 13.1.

Dynamic Data with Amazon API Gateway (Logic or App Tier) 627

f i gu r e 13 .1 Amazon CloudFront cache

Amazon S3
bucket with data

Caching with
Amazon CloudFront

The 2nd, 3rd, and nth requests
are at a lower latency and cost.

1st

1st

2nd

3rd

The more requests that Amazon CloudFront is able to serve from edge caches as a
proportion of all requests (that is, the greater the cache hit ratio), the fewer viewer requests
that Amazon CloudFront needs to forward to your origin to get the latest version or a
unique version of an object. You can view the percentage of viewer requests that are hits,
misses, and errors in the Amazon CloudFront console.

A number of factors affect the cache hit ratio. You can adjust your Amazon CloudFront
distribution configuration to improve the cache hit ratio.

Use Amazon CloudFront with Amazon S3 to improve your performance, decrease your
application’s latency and costs, and provide a better user experience. Amazon CloudFront
is also a serverless service, and it fits well with serverless stack services, especially when you
use it in conjunction with Amazon S3.

Dynamic Data with Amazon API
Gateway (Logic or App Tier)
This section details how to use dynamic data with the Amazon API Gateway service in a
logic tier or app tier.

Amazon API Gateway is a fully managed, serverless AWS service, with no server that
runs inside your environment to define, deploy, monitor, maintain, and secure APIs at any
scale. Clients integrate with the APIs that use standard HTTPS requests. Amazon API
Gateway can integrate with a service-oriented multitier architecture with Amazon services,

628 Chapter 13 ■ Serverless Applications

such as AWS Lambda and Amazon EC2. It also has specifi c features and qualities that
make it a powerful edge for your logic tier. You can use these features and qualities to
enhance and build your dynamic web application.

 The Amazon API Gateway integration strategy that provides access to your code
includes the following:

Control service Uses REST to provide access to Amazon services, such as AWS Lambda,
Amazon Kinesis, Amazon S3, and Amazon DynamoDB. The access methods include the
 following:

 ■ Consoles

 ■ CLI

 ■ SDKs

 ■ REST API requests and responses

Execution service Uses standard HTTP protocols or language-specifi c SDKs to deploy API
access to backend functionality.

 Do not directly expose resources or the API—always use AWS edge ser-
vices and the Amazon API Gateway service to safeguard your resources
and APIs.

 Endpoints
 There are three types of endpoints for Amazon API Gateway.

Regional endpoints Live inside the AWS Region, such as us-west-2 .

Edge optimized endpoints Use Amazon CloudFront, a content delivery web service with
the AWS global network of edge locations as connection points for clients, and integrate
with your API.

Private endpoints Can live only inside of a virtual private cloud (VPC).

 You use Amazon API Gateway to help drive down the total response time latency of
your API. You can improve the performance of specifi c API requests with Amazon API
Gateway to store responses in an optional in-memory cache. This not only provides perfor-
mance benefi ts for API requests that repeat, but it also reduces backend executions, which
helps to reduce overall costs.

 The API endpoint can be a default host name or a custom domain name. The default
host name is as follows:

 {api-id}.execute-api.{region}.amazonaws.com

Dynamic Data with Amazon API Gateway (Logic or App Tier) 629

Resources
Amazon API Gateway consists of resources and methods. A resource is an object that
provides operations you use to interact with HTTP commands such as GET, POST, or DELETE.
If you combine a resource path with a specific operation on a resource, you create a method.
Users can call API methods to obtain controlled access to resources and to receive a re-
sponse. You define mappings between the method and the backend to maintain control. If
the frontend payload does not match the corresponding backend payload, you can create
mapping templates to enable them to communicate and return a response.

Before you can interact with a resource, you use a model to describe the data format for
the request or response. You use the model with the AWS SDK for an API to validate data
and generate a mapping template. Models save time and money, as they reduce the likeli-
hood that your API will experience security and reliability issues.

In the Amazon API Gateway service, you expose addressable resources as a tree of API
Resources entities, with the root resource (/) at the top of the hierarchy. The root resource
is relative to the API’s base URL, which consists of the API endpoint and a stage name. In
the Amazon API Gateway console, this base URL is referred to as the Invoke URL, and it
displays in the API’s stage editor after the API deploys.

If you own a pizza restaurant and run a website to display your menu options, you can
create a root resource called menu (for production) that results in /menu with a GET method
and returns the JSON values for your entire menu. When individuals visit your website and
navigate to the menu, you can return all of this data.

For example, the following:

{api-id}.execute-api.region.amazonaws.com/menu

will return the dataset through the Amazon API Gateway service:

[
 {
 "id": 1,
 "menu-item": "cheese pizza",
 "price": "14.99"
 },
 {
 "id": 2,
 "menu-item": "pepperoni pizza",
 "price": "17.99"
 }
]

With resources, you create paths such as /menu, /specials, and /orders to pull different
datasets with HTTP methods.

630 Chapter 13 ■ Serverless Applications

 HTTP Methods
 The Internet Engineering Task Force (IETF) is responsible for developing and documenting
the HTTP protocol and how it operates. Amazon API Gateway uses the HTTP protocol to
process these HTTP methods. Amazon API Gateway supports the following methods:

 ■ GET

 ■ HEAD

 ■ POST

 ■ PUT

 ■ PATCH

 ■ OPTIONS

 ■ DELETE

 These methods send and receive data to and from the backend. Serverless data can be
sent to AWS Lambda to process.

 Stages
 A stage is a named reference to a deployment, which is a snapshot of the API. Use a stage to
manage and optimize a particular deployment. For example, stage settings enable caching,
customize request throttling, confi gure logging, defi ne stage variables, or attach a canary
release to test. A canary release is a software deployment strategy in which a new version
of an API is deployed at the same time that the original base version remains deployed as
a production release. This means that in a canary deployment, you will have the majority
of your traffi c route to the current production environment and will have a small portion of
your traffi c route to the canary environment for testing purposes.

 When you create a stage, your API is considered deployed and accessible to whomever
you grant access. An advisable API strategy is to create stages for each of your environ-
ments such as DEV, TEST, and PROD, so that you can continue to develop and update
your API and applications without affecting production.

 Authorizers
 Use Amazon API Gateway to set up authorizers with Amazon Cognito user pools on an AWS
Lambda function. This enables you to secure your APIs and only allow users to whom you
have granted specifi c access to your API.

 You have a customer relationship management application, and you only
want certain users to be able to modify customer data. With authorizers,
you create an API and restrict who can call that API with an authorizer in
conjunction with AWS Lambda or Amazon Cognito.

Dynamic Data with Amazon API Gateway (Logic or App Tier) 631

API Keys
With the Amazon API Gateway service, you can generate API keys to provide access to
your API for external users, use them to sell to your customer base, and use the API call
apikey:create to create an API key.

Cross-Origin Resource Sharing
Cross-origin resource sharing (CORS) remedies the inability of a client-side web applica-
tion that runs on one server to be retrieved from another service. This remedy is called a
same-origin policy, and primarily it prevents malicious actors from calling your APIs from
different servers and creates a denial of service for your endpoint. While you implement CORS,
you still need servers to exchange data for valid reasons, such as to deliver APIs to different
users, clients, or customers. You can read the specification at https://www.w3.org/TR/cors/.

CORS allows you to set certain HTTP headers to enable cross-origin access to call APIs
or services to which you need access. The HTTP headers include the following:

 ■ Access-Control-Allow-Origin

 ■ Access-Control-Allow-Credentials

 ■ Access-Control-Allow-Headers

 ■ Access-Control-Allow-Methods

 ■ Access-Control-Expose-Headers

 ■ Access-Control-Max-Age

 ■ Access-Control-Request-Headers

 ■ Access-Control-Request-Method

 ■ Origin

To use Amazon API Gateway, you must enable the CORS resource inside of the Amazon
API Gateway console so that your web application makes calls to the Amazon API Gateway
service successfully. Without CORS, any calls made to the Amazon API Gateway service
will fail.

Integrating with AWS Lambda
With Amazon API Gateway, you can build RESTful APIs without the need to manage a
server. Amazon API Gateway gives your application a simple way (HTTPS requests) to
leverage the innovation of AWS Lambda directly. Amazon API Gateway forms the bridge
that connects your presentation tier and the functions you write in AWS Lambda. After
defining the client/server relationship with your API, the contents of the client’s HTTPS
request can be passed to AWS Lambda for execution, where you can write a function to talk
to your database tier. For example, once someone accesses the API endpoint, contents of the
request—which includes the request metadata, request headers, and the request body—can
be passed to AWS Lambda. This then allows AWS Lambda to request dynamic data from
your database tier—for example, Amazon DynamoDB.

632 Chapter 13 ■ Serverless Applications

Monitoring Amazon API Gateway with Amazon
CloudWatch
Amazon API Gateway also integrates with Amazon CloudWatch. Amazon CloudWatch
provides preconfigured metrics to help you monitor your APIs and build both dashboards
and alarms. At the time of this writing, there are nine metrics available by default with
Amazon CloudWatch, as shown in Table 13.1.

TA b le 13 .1 Amazon CloudWatch Metrics

Metric Description

4XXError The number of client-side errors captured in a specified period. The
Sum statistic represents this metric, namely, the total count of
the 4XXError errors in the given period. The Average statistic
represents the 4XXError error rate, namely, the total count of the
4XXError errors divided by the total number of requests during the
period. The denominator corresponds to the Count metric.

Unit: Count

5XXError The number of server-side errors captured in a given period. The
Sum statistic represents this metric, namely, the total count of
the 5XXError errors in the given period. The Average statistic
represents the 5XXError error rate, namely, the total count of the
5XXError errors divided by the total number of requests during
the period. The denominator corresponds to the Count metric.

Unit: Count

CacheHitCount The number of requests served from the API cache in a given
period. The Sum statistic represents this metric, namely, the total
count of the cache hits in the specified period. The Average
statistic represents the cache hit rate, namely, the total count of
the cache hits divided by the total number of requests during the
period. The denominator corresponds to the Count metric.

Unit: Count

CacheMissCount The number of requests served from the backend in a given
period, when API caching is enabled. The Sum statistic represents
this metric, namely, the total count of the cache misses in the
specified period. The Average statistic represents the cache miss
rate, namely, the total count of the cache hits divided by the total
number of requests during the period. The denominator corre-
sponds to the Count metric.

Unit: Count

Dynamic Data with Amazon API Gateway (Logic or App Tier) 633

Metric Description

Count The total number API requests in a given period. The Sample-
Count statistic represents this metric.

Unit: Count

IntegrationLatency The time between when Amazon API Gateway relays a request to
the backend and when it receives a response from the backend.

Unit: Millisecond

Latency The time between when Amazon API Gateway receives a request
from a client and when it returns a response to the client. The
latency includes the integration latency and other Amazon API
Gateway overhead.

Unit: Millisecond

See Figure 13.2 for a sample dashboard.

f i gu r e 13 . 2 Sample dashboard for Amazon API Gateway using Amazon CloudWatch

If you use Amazon CloudWatch with Amazon API Gateway, you can monitor your
application from an API standpoint to see whether any issues occur as the application is
being used. Particularly, you can view metrics such as CacheMissCount and Latency.

Other Notable Features
Amazon API Gateway has several notable features.

Security Amazon API Gateway exposes HTTPS endpoints only. AWS recommends that
you use IAM roles and policies to secure access to the backend, but you can use Lambda
authorizers too. The adminstrator-managed policy is AmazonAPIGatewayAdministrator.

634 Chapter 13 ■ Serverless Applications

Definition support The OpenAPI Specification, formerly known as Swagger Specification,
is used to define a RESTful interface. If you create a document that conforms to the
OpenAPI Specification, you can upload it to Amazon API Gateway to have it create your
desired API endpoint. For more information on the OpenAPI Specification you can visit
https://swagger.io/specification.

Free tier Amazon API Gateway has a free tier, and it allows one million API receive calls
per month, for free, for the first 12 months.

User Authentication with Amazon
Cognito
A crucial aspect of building web applications is user authentication. Nearly every web ap-
plication today has a user authentication system. From banking websites to social media
websites, user authentication is a critical component to secure your web and mobile applica-
tions. Amazon Cognito allows for simple and secure user sign-up, sign-in, and access control
mechanisms designed to handle web application authentication.

Amazon Cognito includes the following features:

 ■ Amazon Cognito user pools, which are secure and scalable user directories

 ■ Amazon Cognito identity pools (federated identities), which offer social and enterprise
identity federation

 ■ Standards-based Web Identity Federation Authentication through Open Authorization
(OAuth) 2.0, Security Assertion Markup Language (SAML) 2.0, and OpenID Connect
(OIDC) support

 ■ Multi-factor authentication

 ■ Encryption for data at rest and data in transit

 ■ Access control with AWS Identity and Access Management (IAM) integration

 ■ Easy application integration (prebuilt user interface)

 ■ iOS Object C, Android, iOS Swift, and JavaScript

 ■ Adherence to compliance requirements such as Payment Card Industry Data Security
Standard (PCI DSS)

Amazon Cognito User Pools
A user pool is a user directory in Amazon Cognito. With a user pool, your users can sign
in to your web or mobile app through Amazon Cognito. Users can also sign in through
social identity providers, such as Facebook or Amazon, and through Security Assertion
Markup Language (SAML) identity providers. Whether your users sign in directly or

User Authentication with Amazon Cognito 635

through a third party, all members of the user pool have a directory profile that you can
access through an SDK.

User pools provide the following:

 ■ Sign-up and sign-in services

 ■ A built-in, customizable web user interface (UI) to sign in users

 ■ Social sign-in with Facebook, Google, and Amazon, and sign-in with Security Asser-
tion Markup Language (SAML) identity providers from your user pool

 ■ User directory management and user profiles

 ■ Security features, such as multi-factor authentication (MFA), check for compromised
credentials, account takeover protection, and phone and email verification

 ■ Customized workflows and user migration through AWS Lambda triggers

After successfully authenticating a user, Amazon Cognito issues JSON Web Tokens
(JWT) that you can use to secure and authorize access to your own APIs or exchange them
for AWS credentials.

With Amazon Cognito, you can choose how you want your users to sign in: with a
username, an email address, and/or a phone number. Additionally, user pools allow you to
select attributes. Attributes are properties that you want to store about your end users, with
standard attributes that are created for you, if you enable the option. You can also develop
custom attributes.

The standard attributes are as follows:

 ■ address

 ■ birthdate

 ■ email

 ■ family name

 ■ gender

 ■ given name

 ■ locale

 ■ middle name

 ■ name

 ■ nickname

 ■ phone number

 ■ picture

 ■ preferred username

 ■ profile

 ■ zoneinfo

 ■ updated at

 ■ website

636 Chapter 13 ■ Serverless Applications

Password Policies
In addition to attributes, you can configure password policies. You can set the minimum
password length and require specific character types, including uppercase letters and
lowercase letters. Furthermore, you can either allow users to sign up and enroll themselves
or allow only administrators to create users. If administrators create the account, you can
also set the account to expire if it remains unused for a specified period of time.

Multi-factor Authentication
Multi-factor authentication (MFA) prevents anyone from signing in to a system without
authenticating through two different sources, such as a password and a mobile-device gener-
ated token. With Amazon Cognito, you can enable multi-factor authentication to secure your
application further. To enable this option with Amazon Cognito, create a role that enables
Amazon Cognito to send Short Message Service (SMS) messages to users.

Besides MFA, you can customize your SMS verification messages, email verification
messages, and user invitation messages. For example, you could send your end users a wel-
come message when they verify their account.

Device Tracking and Remembering
If you enable multi-factor authentication, this increases the security of an application to
require a second authentication challenge from the user. However, this does require a new
two-factor sign-in after a prolonged absence of activity, even when the user device has not
been signed out or shut off.

With device tracking and remembering, you can save that user’s device and remember it
so that they do not have to provide a token again, as the application has already seen this
specific device. Figure 13.3 shows how to enable this feature.

f i gu r e 13 . 3 Device tracking

User Authentication with Amazon Cognito 637

The specifics of the configuration terminology include the following:

Tracked A tracked device is assigned a set of device credentials and consists of a key and
secret key pair. You can view all tracked devices for a specific user on the Users screen of
the Amazon Cognito console. In addition, you can view the devices metadata (whether it is
remembered, the time it began being tracked, the last authenticated time, and such) and the
devices usage.

Remembered A remembered device is also tracked. During user authentication, the key and
secret pair assigned to a remembered device authenticates the device to verify that it is the
same device that the user previously used to sign in to the application. You can view remem-
bered devices in the Amazon Cognito console.

Not remembered A not-remembered device, while still tracked, is treated as if it was never
used during the user authentication flow. The device credentials are not used to authenticate
the device. The new APIs in the AWS Mobile SDK do not expose these devices, but you can
see them in the Amazon Cognito console.

The first configuration setting reads “Do you want to remember devices?” and has the
following options:

No (the default) Devices are neither remembered nor tracked.

Always Every device used with your application is remembered.

User opt-in The user’s device is remembered only if that user opts to remember the
device. This enables your users to decide whether your application should remember the
devices they use to sign in, though all devices are tracked regardless of which setting they
choose. This is a useful option when you require a higher security level, but the user may
sign in from a shared device. For example, if a user signs in to a banking application from
a public computer at a library, the user requires the option to decide whether their device
is to be remembered.

The second configuration option is “Do you want to use a remembered device to
suppress the second factor during multi-factor authentication (MFA)?” It appears when
you select either Always or User Opt-In for the first configuration option. The second
factor suppression option enables your application to use a remembered device as a
second factor of authentication, and it suppresses the SMS-based challenge in the MFA
flow. This feature works together with MFA, and it requires MFA to be enabled for the
user pool. The device must first be remembered before it can be used to suppress the SMS-
based challenge. Upon the initial sign-in with a new device, the user must complete the
SMS challenge. Afterward, the user no longer has to complete the SMS challenge.

User Interface Customization
An Amazon Cognito user pool includes a prebuilt user interface (UI) that you can use inside
of your application to build a user authentication flow quickly, as shown in Figure 13.4.

638 Chapter 13 ■ Serverless Applications

f i gu r e 13 . 4 Amazon Cognito prebuilt UI

You can modify the UI with the AWS Management Console, the AWS CLI, or the API.
You can also upload your own custom logo with a maximum file size of 100 KB. The CSS
classes you can customize in the prebuilt UI are as follows:

 ■ background-customizable

 ■ banner-customizable

 ■ errorMessage-customizable

 ■ idpButton-customizable

 ■ idpButton-customizable:hover

 ■ inputField-customizable

 ■ inputField-customizable:focus

 ■ label-customizable

 ■ legalText-customizable

 ■ logo-customizable

 ■ submitButton-customizable

 ■ submitButton-customizable:hover

 ■ textDescription-customizable

User Authentication with Amazon Cognito 639

You can customize the UI and CLI with two commands: get-ui-customization to
retrieve the customization settings and set-ui-customization to set the UI customization,
as shown in the following example code:

aws cognito-idp get-ui-customization
aws cognito-idp set-ui-customization --user-pool-id <your-user-pool-id>
--client-id <your-app-client-id> --image-file <path-to-logo-image-file>
--css ".label-customizable{ color: <color>;}"

Amazon Cognito Identity Pools
Amazon Cognito identity pools allow you to create unique identities and assign permissions
for your users. Inside the identity pool, you can include the following:

 ■ Users in an Amazon Cognito user pool

 ■ Users who authenticate with external identity providers such as Facebook, Google, or a
SAML-based identity provider

 ■ Users authenticated via your own existing authentication process

An identity pool allows you to obtain temporary AWS credentials with permissions that
you define either to access other Amazon services directly or to access resources through
Amazon API Gateway. Amazon Cognito identity pools help you integrate several authenti-
cation providers, such as the following:

 ■ Amazon Cognito user pools

 ■ Amazon.com users

 ■ Facebook

 ■ Google

 ■ Twitter

 ■ OpenID

 ■ SAML

 ■ Custom—supports your own identities such as (login).(mycompany).(myapp)

Once you enable the third-party resources that you want to allow to sign in to your
apps, you can assign permissions to these users. With the combination of user pools and
identity pools, you can create a serverless user authentication system.

Use this command to create an Amazon Cognito user pool with the CLI:

aws cognito-idp create-user-pool --pool-name <value>

Amazon Cognito SDK
You can start developing for Amazon Cognito using the AWS Mobile SDK. Amazon Cognito
currently supports the following SDKs through the AWS Mobile SDK:

 ■ JavaScript SDK

 ■ iOS SDK

 ■ Android SDK

640 Chapter 13 ■ Serverless Applications

In addition to using the higher-level mobile and JavaScript SDKs, you can also use the
lower-level APIs available via the following AWS SDKs to integrate all Amazon Cognito
functionality in your applications:

 ■ Java SDK

 ■ .NET SDK

 ■ Node.js SDK

 ■ Python SDK

 ■ PHP SDK

 ■ Ruby SDK

Standard Three-Tier vs. the
Serverless Stack
This chapter has introduced serverless services and their benefits. Now that you know about
some of the serverless services that are available in AWS, let’s compare a traditional three-tier
application against a serverless application architecture. Figure 13.5 shows a typical three-
tier web application.

f i gu r e 13 .5 Standard three-tier web infrastructure architecture

Source: https://media.amazonwebservices.com/architecturecenter/AWS_ac_ra_web_01.pdf

Standard Three-Tier vs. the Serverless Stack 641

This architecture uses the following components and services:

Routing: Amazon Route 53

Content distribution network (CDN): Amazon CloudFront

Static data: Amazon S3

High availability/decoupling: Application load balancers

Web servers: Amazon EC2 with Auto Scaling

App servers: Amazon EC2 with Auto Scaling

Database: Amazon RDS in a multi-AZ configuration

Amazon Route 53 provides a DNS service that allows you to take domain names such as
examplecompany.com and translate them to an IP address that points to running servers.

The CDN shown in Figure 13.6 is the Amazon CloudFront service, which improves your
site performance with the use of its global content delivery network.

f i gu r e 13 .6 Serverless web application architecture

HTML, CSS, JavaScript, etc. 1

2

34

Authentication

AMAZON S3

AMAZON COGNITO
USER POOL

AMAZON DYNAMODBAMAZON API GATEWAY AWS LAMBDA

Web Browser

Dynamic API calls over HTTP

Source: https://aws.amazon.com/getting-started/projects/build-serverless-web-
app-lambda-apigateway-s3-dynamodb-cognito/

Amazon S3 stores your static files such as photos or movie files.
Application load balancers are responsible for distributing load across Availability

Zones to your Amazon EC2 servers, which run your web application with a service such as
Apache or NGINX.

Application servers are responsible for performing business logic prior to storing the
data in your database servers that are run by Amazon RDS.

Amazon RDS is the managed database server, and it can run an Amazon Aurora, Microsoft
SQL Server, Oracle SQL Server, MySQL, PostgreSQL, or MariaDB database server.

642 Chapter 13 ■ Serverless Applications

While this architecture is a robust and highly available service, there are several down-
sides, including the fact that you have to manage servers. You are responsible for patch-
ing those servers, preventing downtime associated with those patches, and proper server
scaling.

In a typical serverless web application architecture, you also run a web application, but
you have zero servers that run inside your AWS account, as shown in Figure 13.6.

Serverless web application architecture services include the following:

Routing: Amazon Route 53

Web servers/static data: Amazon S3

User authentication: Amazon Cognito user pools

App servers: Amazon API Gateway and AWS Lambda

Database: Amazon DynamoDB

Amazon Route 53 is your DNS, and you can use Amazon CloudFront for your CDN.
You can also use Amazon S3 for your web servers. In this architecture, you use

Amazon S3 to host your entire static website. You use JavaScript to make API calls to
the Amazon API Gateway service.

For your business or application servers, you use Amazon API Gateway in conjunction
with AWS Lambda. This allows you to retrieve and save data dynamically.

You use Amazon DynamoDB as a serverless database service, and you do not provi-
sion any Amazon EC2s inside of your Amazon VPC account. Amazon DynamoDB is also
a great database service for storing session state for stateful applications. You can use
Amazon RDS instead if you need a relational database. However, it would not then be a
fully serverless stack. There is a new service released called Amazon Aurora Serverless,
which is a full RDS MySQL 5.6–compatible service that is completely serverless. This
would allow you to run a traditional SQL database, but one that has the benefit of being
serverless. Amazon Aurora Serverless is discussed in the next section.

You use Amazon Cognito user pools for user authentication, which provides a secure
user directory that can scale to hundreds of millions of users. Amazon Cognito User Pools
is a fully managed service with no servers for you to manage. While user authentication
was not shown in Figure 13.6, you can use your web server tier to talk to a user directory,
such as Lightweight Directory Access Protocol (LDAP), for user authentication.

As you can see, while some of the components are the same, you may use them in
slightly different ways. By taking advantage of the AWS global network, you can develop
fully scalable, highly available web applications—all without having to worry about main-
taining or patching servers.

Amazon Aurora Serverless
Amazon Aurora Serverless is an on-demand, auto-scaling configuration for the Aurora
MySQL-compatible edition, where the database automatically starts, shuts down, and scales
up or down as needed by your application. This allows you to run a traditional SQL data-
base in the cloud without needing to manage any infrastructure or instances.

AWS Serverless Application Model 643

With Amazon Aurora Serverless, you also get the same high availability as traditional
Amazon Aurora, which means that you get six-way replication across three Availability
Zones inside of a region in order to prevent against data loss.

Amazon Aurora Serverless is great for infrequently used applications, new applications,
variable workloads, unpredictable workloads, development and test databases, and
multitenant applications. This is because you can scale automatically when you need to and
scale down when application demand is not high. This can help cut costs and save you the
heartache of managing your own database infrastructure.

Amazon Aurora Serverless is easy to set up, either through the console or directly with
the CLI. To create an Amazon Aurora Serverless cluster with the CLI, you can run the fol-
lowing command:

aws rds create-db-cluster --db-cluster-identifier sample-cluster --engine aurora
--engine-version 5.6.10a \
--engine-mode serverless --scaling-configuration
MinCapacity=4,MaxCapacity=32,SecondsUntilAutoPause=1000,AutoPause=true \
--master-username user-name --master-user-password password \
--db-subnet-group-name mysubnetgroup --vpc-security-group-ids sg-c7e5b0d2
–region us-east-1

Amazon Aurora Serverless gives you many of the similar benefits as other serverless
technologies, such as AWS Lambda, but from a database perspective. Managing databases
is hard work, and with Amazon Aurora Serverless, you can utilize a database that automat-
ically scales and you don’t have to manage any of the underlying infrastructure.

AWS Serverless Application Model
The AWS Serverless Application Model (AWS SAM) allows you to create and manage resourc-
es in your serverless application with AWS CloudFormation to define your serverless applica-
tion infrastructure as a SAM template. A SAM template is a JSON or YAML configuration file
that describes the AWS Lambda functions, API endpoints, tables, and other resources in your
application. With simple commands, you upload this template to AWS CloudFormation, which
creates the individual resources and groups them into an AWS CloudFormation stack for ease
of management. When you update your AWS SAM template, you re-deploy the changes to this
stack. AWS CloudFormation updates the individual resources for you.

AWS SAM is an extension of AWS CloudFormation. You can define resources by using
the AWS CloudFormation in your AWS SAM template. This is a powerful feature, as you
can use AWS SAM to create a template of your serverless infrastructure, which you can
then build into a DevOps pipeline. For example, examine the following:

AWSTemplateFormatVersion: '2010-09-09'
Transform: 'AWS::Serverless-2016-10-31'
Description: 'Example of Multiple-Origin CORS using API Gateway and Lambda'

644 Chapter 13 ■ Serverless Applications

Resources:
 ExampleRoot:
 Type: 'AWS::Serverless::Function'
 Properties:
 CodeUri: '.'
 Handler: 'routes/root.handler'
 Runtime: 'nodejs8.10'
 Events:
 Get:
 Type: 'Api'
 Properties:
 Path: '/'
 Method: 'get'
 ExampleTest:
 Type: 'AWS::Serverless::Function'
 Properties:
 CodeUri: '.'
 Handler: 'routes/test.handler'
 Runtime: 'nodejs8.10'
 Events:
 Delete:
 Type: 'Api'
 Properties:
 Path: '/test'
 Method: 'delete'
 Options:
 Type: 'Api'
 Properties:
 Path: '/test'
 Method: 'options'

Outputs:
 ExampleApi:
 Description: "API Gateway endpoint URL for Prod stage for API Gateway
Multi-Origin CORS Function"
 Value: !Sub "https://${ServerlessRestApi}.execute-api.${AWS::Region}
.amazonaws.com/Prod/"
 ExampleRoot:
 Description: "API Gateway Multi-Origin CORS Lambda Function (Root) ARN"
 Value: !GetAtt ExampleRoot.Arn
 ExampleRootIamRole:

AWS SAM CLI 645

 Description: "Implicit IAM Role created for API Gateway Multi-Origin CORS
Function (Root)"
 Value: !GetAtt ExampleRootRole.Arn
 ExampleTest:
 Description: "API Gateway Multi-Origin CORS Lambda Function (Test) ARN"
 Value: !GetAtt ExampleTest.Arn
 ExampleTestIamRole:
 Description: "Implicit IAM Role created for API Gateway Multi-Origin CORS
Function (Test)"
 Value: !GetAtt ExampleTestRole.Arn

In the previous code example, you create two AWS Lambda functions and then associate
three different Amazon API Gateway endpoints to trigger those functions. To deploy this AWS
SAM template, download the template and all of the necessary dependencies from here:

https://github.com/awslabs/serverless-application-model/tree/develop/
examples/apps/api-gateway-multiple-origin-cors

AWS SAM is similar to AWS CloudFormation, with a few key differences, as shown in
the second line:

Transform: 'AWS::Serverless-2016-10-31'

This important line of code transforms the AWS SAM template into an AWS
CloudFormation template. Without it, the AWS SAM template will not work.

Similar to the AWS CloudFormation, you also have a Resources property where you
define infrastructure to provision. The difference is that you provision serverless services with
a new Type called AWS::Serverless::Function. This provisions an AWS Lambda function to
define all properties from an AWS Lambda point of view. AWS Lambda includes Properties,
such as MemorySize, Timeout, Role, Runtime, Handler, and others.

While you can create an AWS Lambda function with AWS CloudFormation using
AWS::Lambda::Function, the benefit of AWS SAM lies in a property called Event,
where you can tie in a trigger to an AWS Lambda function, all from within the
AWS::Serverless::Function resource. This Event property makes it simple to provision an
AWS Lambda function and configure it with an Amazon API Gateway trigger. If you use
AWS CloudFormation, you would have to declare an Amazon API Gateway separately with
AWS::ApiGateway::Resource.

To summarize, AWS SAM allows you to provision serverless resources more rapidly with
less code by extending AWS CloudFormation.

AWS SAM CLI
Now that we’ve addressed AWS SAM, let’s take a closer look at the AWS SAM CLI. With
AWS SAM, you can define templates, in JSON or YAML, which are designed for provision-
ing serverless applications through AWS CloudFormation.

646 Chapter 13 ■ Serverless Applications

AWS SAM CLI is a command line interface tool that creates an environment in which
you can develop, test, and analyze your serverless-based application, all locally. This
allows you to test your AWS Lambda functions before uploading them to the AWS ser-
vice. AWS SAM CLI also allows you to develop and test your code quickly, and this
gives you the ability to test it locally, which allows you to develop it faster. Previously,
you would have had to upload your code each time you wanted to test an AWS Lambda
function. Now, with the AWS SAM CLI, you can develop faster and get your application
out the door more quickly.

To use AWS SAM CLI, you must meet a few prerequisites. You must install Docker,
have Python 2.7 or 3.6 installed, have pip installed, install the AWS CLI, and finally
install the AWS SAM CLI. You can read more about how to install AWS SAM CLI at
https://github.com/awslabs/aws-sam-cli.

With AWS SAM CLI, you must define three key things.

 ■ You must have a valid AWS SAM template, which defines a serverless application.

 ■ You must have the AWS Lambda function defined. This can be in any valid language
that Lambda currently supports, such as Node.js, Java 8, Python, and so on.

 ■ You must have an event source. An event source is simply an event.json file that con-
tains all the data that the Lambda function expects to receive. Valid event sources are
as follows:

 ■ Amazon Alexa

 ■ Amazon API Gateway

 ■ AWS Batch

 ■ AWS CloudFormation

 ■ Amazon CloudFront

 ■ AWS CodeCommit

 ■ AWS CodePipeline

 ■ Amazon Cognito

 ■ AWS Config

 ■ Amazon DynamoDB

 ■ Amazon Kinesis

 ■ Amazon Lex

 ■ Amazon Rekognition

 ■ Amazon Simple Storage Service (Amazon S3)

 ■ Amazon Simple Email Service (Amazon SES)

 ■ Amazon Simple Notification Service (Amazon SNS)

 ■ Amazon Simple Queue Service (Amazon SQS)

 ■ AWS Step Functions

Summary 647

To generate this JSON event source, you can simply run this command in the AWS SAM
CLI:

sam local generate-event <service> <event>

AWS SAM CLI is a great tool that allows developers to iterate quickly on their serverless
applications. You will learn how to create and test an AWS Lambda function locally in the
“Exercises” section of this chapter.

AWS Serverless Application Repository
The AWS Serverless Application Repository enables you to deploy code samples, compo-
nents, and complete applications quickly for common use cases, such as web and mobile
backends, event and data processing, logging, monitoring, Internet of Things (IoT), and
more. Each application is packaged with an AWS SAM template that defines the AWS
resources. Publicly shared applications also include a link to the application’s source code.
There is no additional charge to use the serverless application repository. You pay only for
the AWS resources you use in the applications you deploy.

You can also use the serverless application repository to publish your own applications
and share them within your team, across your organization, or with the community at
large. This allows you to see what other people and organizations are developing.

Serverless Application Use Cases
Case studies on running serverless applications are located at the following URLs:

The Coca-Cola Company:

https://aws.amazon.com/blogs/aws/things-go-better-with-step-functions/

FINRA:

https://aws.amazon.com/solutions/case-studies/finra-data-validation/

iRobot:

https://aws.amazon.com/solutions/case-studies/irobot/

Localytics:

https://aws.amazon.com/solutions/case-studies/localytics/

Summary
This chapter covered the AWS serverless core services, how to store your static files inside
of Amazon S3, how to use Amazon CloudFront in conjunction with Amazon S3, how to
integrate your application with user authentication flows using Amazon Cognito, and how
to deploy and scale your API quickly and automatically with Amazon API Gateway.

648 Chapter 13 ■ Serverless Applications

Serverless applications have three main benefits: no server management, flexible scal-
ing, and automated high availability. Without server management, you no longer have to
provision or maintain servers. With AWS Lambda, you upload your code, run it, and focus
on your application updates. With flexible scaling, you no longer have to disable Amazon
EC2 instances to scale them vertically, groups do not need to be auto-scaled, and you do
not need to create Amazon CloudWatch alarms to add them to load balancers. With AWS
Lambda, you adjust the units of consumption (memory and execution time), and AWS
adjusts the rest of the instance appropriately. Finally, serverless applications have built-in
availability and fault tolerance. When periods of low traffic occur, you do not spend money
on Amazon EC2 instances that do not run at their full capacity.

You can use an Amazon S3 web server to create your presentation tier. Within an
Amazon S3 bucket, you can store HTML, CSS, and JavaScript files. JavaScript can create
HTTP requests. These HTTP requests are sent to a REST endpoint service called Amazon
API Gateway, which allows the application to save and retrieve data dynamically by
triggering a Lambda function.

After you create your Amazon S3 bucket, you configure it to use static website hosting in
the AWS Management Console and enter an endpoint that reflects your AWS Region.

Amazon S3 allows you to configure web traffic logs to capture information, such as the
number of visitors who access your website in the Amazon S3 bucket.

One way to decrease latency and improve your performance is to use Amazon CloudFront
with Amazon S3 to move your content closer to your end users. Amazon CloudFront is a
serverless service.

The Amazon API Gateway is a fully managed service designed to define, deploy, and
maintain APIs. Clients integrate with the APIs using standard HTTPS requests. Amazon
API Gateway can integrate with a service-oriented multitier architecture. The Amazon API
Gateway provides dynamic data in the logic or app tier.

There are three types of endpoints for Amazon API Gateway: regional endpoints, edge-
optimized endpoints, and private endpoints.

In the Amazon API Gateway service, you expose addressable resources as a tree of API
Resources entities, with the root resource (/) at the top of the hierarchy. The root resource
is relative to the API’s base URL, which consists of the API endpoint and a stage name.

You use Amazon API Gateways to help drive down the total response-time latency of
your API. Amazon API Gateway uses the HTTP protocol to process these HTTP methods
and send/receive data to and from the backend. Serverless data is sent to AWS Lambda to
process.

You can use Amazon Route 53 to create a more user-friendly domain name instead of
using the default host name (Amazon S3 endpoint). To support two subdomains, you create
two Amazon S3 buckets that match your domain name and subdomain.

A stage is a named reference to a deployment, which is a snapshot of the API. Use a
stage to manage and optimize a particular deployment. You create stages for each of your
environments such as DEV, TEST, and PROD, so you can develop and update your API and
applications without affecting production. Use Amazon API Gateway to set up authorizers
with Amazon Cognito user pools on an AWS Lambda function. This enables you to secure
your APIs.

Exam Essentials 649

An Amazon Cognito user pool includes a prebuilt user interface (UI) that you can use
inside your application to build a user authentication flow quickly. A user pool is a user
directory in Amazon Cognito. With a user pool, your users can sign in to your web or
mobile app through Amazon Cognito. Users can also sign in through social identity pro-
viders such as Facebook or Amazon and through Security Assertion Markup Language
(SAML) identity providers.

Amazon Cognito identity pools allow you to create unique identities and assign permis-
sions for your users to help you integrate with authentication providers. With the combina-
tion of user pools and identity pools, you can create a serverless user authentication system.

You can choose how users sign in with a username, an email address, and/or a phone
number and to select attributes. Attributes are properties that you want to store about your
end users. You can also configure password policies. Multi-factor authentication (MFA)
prevents anyone from signing in to a system without authenticating through two different
sources, such as a password and a mobile device–generated token. You create an Amazon
Cognito role to send Short Message Service (SMS) messages to users.

The AWS Serverless Application Model (AWS SAM) allows you to create and manage
resources in your serverless application with AWS CloudFormation as a SAM template.
A SAM template is a JSON or YAML file that describes the AWS Lambda function, API
endpoints, and other resources. You upload the template to AWS CloudFormation to create
a stack. When you update your AWS SAM template, you redeploy the changes to this
stack, and AWS CloudFormation updates the resources. You can use AWS SAM to create a
template of your serverless infrastructure, which you can then build into a DevOps pipeline.

The Transform: 'AWS::Serverless-2016-10-31' code converts the AWS SAM template
into an AWS CloudFormation template.

The AWS Serverless Application Repository enables you to deploy code samples, compo-
nents, and complete applications for common use cases. Each application is packaged with
an AWS SAM template that defines the AWS resources.

Additionally, you learned the differences between the standard three-tier web applica-
tions and the AWS serverless stack. You learned how to build your infrastructure quickly
with AWS SAM and AWS SAM CLI for testing and development purposes.

Exam Essentials
Know serverless applications’ three main benefits. The benefits are as follows:

 ■ No server management

 ■ Flexible scaling

 ■ Automated high availability

Know what no server management means. Without server management, you no longer
have to provision or maintain servers. With AWS Lambda, you upload your code, run it, and
focus on your application updates.

650 Chapter 13 ■ Serverless Applications

Know what flexible scaling means. With flexible scaling, you no longer have to dis-
able Amazon Elastic Compute Cloud (Amazon EC2) instances to scale them vertically,
groups do not need to be auto-scaled, and you do not need to create Amazon Cloud-
Watch alarms to add them to load balancers. With AWS Lambda, you adjust the units
of consumption (memory and execution time), and AWS adjusts the rest of the instances
appropriately.

Know what serverless applications mean. Serverless applications have built-in availability
and fault tolerance. You do not need to architect for these capabilities, as the services that
run the application provide them by default. Additionally, when periods of low traffic occur
on the web application, you do not spend money on Amazon EC2 instances that do not run
at their full capacity.

Know what services are serverless. On the exam, it is important to understand which Ama-
zon services are serverless and which ones are not. The following services are serverless:

 ■ Amazon API Gateway

 ■ AWS Lambda

 ■ Amazon SQS

 ■ Amazon SNS

 ■ Amazon Kinesis

 ■ Amazon Cognito

 ■ Amazon Aurora Serverless

 ■ Amazon S3

Know how to host a serverless web application. Hosting a serverless application means
that you need Amazon S3 to host your static website, which comprises your HTML,
JavaScript, and CSS files. For your database infrastructure, you can use Amazon DynamoDB
or Amazon Aurora Serverless. For your business logic tier, you can use AWS Lambda. For
DNS services, you can utilize Amazon Route 53. If you need the ability to host an API, you
can use Amazon API Gateway. Finally, if you need to decrease latency to portions of your
application, you can utilize services like Amazon CloudFront, which allows you to host your
content at the edge.

Resources to Review
Serverless Computing and Applications:

https://aws.amazon.com/serverless/

Exercises 651

Amazon S3 Website Endpoints:

https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_website_
region_endpoints

Amazon Cognito FAQs:

https://aws.amazon.com/cognito/faqs/

Amazon API Gateway FAQ:

https://aws.amazon.com/api-gateway/faqs/

AWS Well-Architected Framework—Serverless Applications Lens:

https://d1.awsstatic.com/whitepapers/architecture/AWS-Serverless-
Applications-Lens.pdf

Serverless Architectures with AWS Lambda:

https://d1.awsstatic.com/whitepapers/serverless-architectures-with-aws-
lambda.pdf

AWS Serverless Multi-Tier Architectures (Amazon API Gateway and AWS Lambda):

https://d1.awsstatic.com/whitepapers/AWS_Serverless_Multi-Tier_
Architectures.pdf

Serverless Streaming Architectures and Best Practices:

https://d1.awsstatic.com/whitepapers/Serverless_Streaming_Architecture_
Best_Practices.pdf

Optimizing Enterprise Economics with Serverless Architectures:

https://d1.awsstatic.com/whitepapers/optimizing-enterprise-economics-
serverless-architectures.pdf

Common Serverless Architectures discussed at re:Invent 2017 (Video):

https://www.youtube.com/watch?v=xJcm9V2jagc

AWS Serverless Application Model (AWS SAM) FAQs:

https://aws.amazon.com/serverless/sam/faqs/

Exercises
For this “Exercises” section, expand the OpenPets API Template that comes with Amazon
API Gateway and build a frontend with HTML and JavaScript. You use AWS Lambda for
some compute processing to save data to an Amazon DynamoDB database.

652 Chapter 13 ■ Serverless Applications

e x e r C i S e 13 .1

Create an Amazon S3 bucket for the Swagger Template

In this exercise, you use an AWS SAM template and a Swagger template to deploy your
infrastructure. You will need to create an Amazon S3 bucket for the Swagger file.

1. Create an Amazon S3 bucket.

aws s3 mb s3://my-bucket-name --region us-east-1

If the command was successful, you should see output similar to the following, which
means the bucket has been created:

make_bucket: my-bucket-name

2. Upload the Swagger template.

aws s3 cp petstore-api-swagger.yaml s3://my-bucket-name/petstore-api-swagger
.yaml

If the file was successfully uploaded, you should be able to navigate to the Amazon S3
bucket and see it. This file is for the Swagger template, and it is used to create the REST
API inside the Amazon API Gateway. You have not yet deployed the API.

3. Use AWS SAM to deploy your serverless infrastructure. To package your SAM tem-
plate, run the following command:

aws cloudformation package \
 --template-file ./petStoreSAM.yaml \
 --s3-bucket my-bucket-name \
 --output-template-file petStoreSAM-output.yaml \
 --region us-east-1

If the command was successful, you should see that the file has been uploaded, and a
new file called petStoreSAM-output.yaml has been created locally. You have pack-
aged the AWS SAM template and converted it to a full AWS CloudFormation template.
You will use this template in the next step to deploy the package to the Amazon API
Gateway.

4. Deploy the package.

aws cloudformation deploy \
 --template-file ./petStoreSAM-output.yaml \
 --stack-name petStoreStack \
 --capabilities CAPABILITY_IAM \
 --parameter-overrides S3BucketName=s3://my-bucket-name/
petstore-api-swagger.yaml \
 --region us-east-1

Exercises 653

If the command was successful, you should see that the cloudformation stack has
been deployed. While it is in the process of deploying the resources, you will see
something similar to the following:

Waiting for stack create/update to complete

This make take a few minutes. When it is finished deploying, the console displays the
following message:

Successfully created/updated stack – petStoreStack

You have now successfully deployed the cloudformation stack and can view
the resources it created inside the AWS Management Console under the AWS
CloudFormation service.

5. After the stack is created, run the command and write the results down for subse-
quent steps:

aws cloudformation describe-stacks --stack-name petStoreStack --region
us-east-1 --query 'Stacks[0].Outputs[0].{PetStoreAPI:OutputValue}'

After running this command, the URL for the API is returned. Navigate to this URL to
view the default page returned by the PetStore API. You will be changing this in the
next exercise.

You have successfully completed the first exercise, created your AWS SAM template,
and deployed it using AWS CloudFormation. Now your Amazon API Gateway is active,
and you have the URL for accessing it.

e x e r C i S e 13 . 2

edit the hTml files

In steps 1 through 5, you are going to update the URL inside your .html files to point to
the Amazon API Gateway stage that you have created. You do this so that your web appli-
cation (.html files) knows the endpoint where to send your pet data.

1. Open index.html in the project folder and locate line 68 to find the variable named
api_gw_endpoint. Input the value you retrieved from the previous command in
Exercise 13.1.

var api_gw_endpoint = "https://cdvhqasdfnk444fe.execute-api.us-east-1
.amazonaws.com/PetStoreProd/"

2. Open pets.html.

(continued)

654 Chapter 13 ■ Serverless Applications

3. Input the value you received from the last command on line 96, and add /pets to the
end of the string:

var api_gw_endpoint = "https://cdvhqasdfnk444fe.execute-api.us-east-1.
amazonaws.com/PetStoreProd/pets"

4. Open add-pet.html.

5. Input the value you received from the last command on line 87, and add /pets to
the end.

var api_gw_endpoint = "https://cdvhqasdfnk444fe.execute-api.us-east-1
.amazonaws.com/PetStoreProd/pets"

6. Create a new Amazon S3 bucket for your website.

aws s3 mb s3://my-bucket-name --region us-east-1

7. Copy the project files to the website.

aws s3 cp . s3://my-bucket-name --recursive
aws s3 rm s3://my-bucket-name/sam –recursive

Here you are uploading all the files from your project folder to Amazon S3 and then
removing the SAM template from the bucket. You do not want others to have access to
your template files and AWS Lambda functions. You want others to have access only to
the end application.

8. Change the Amazon S3 bucket name inside of the policy.json to your bucket name.
This will be on line 12.

9. Enable public read access for the bucket:

aws s3api put-bucket-policy --bucket my-bucket-name --policy file://policy.json

If successful, this command will not return any information. You are enabling the Amazon
S3 bucket to be publicly accessible, meaning that everyone can access your website.

10. Enable the static website.

aws s3 website s3://my-bucket-name/ --index-document index.html --error-
document index.html

The Amazon S3 bucket now acts as a web server and is running your pet store
application.

11. Navigate to the website.

url: http://my-bucket-name.s3-website-us-east-1.amazonaws.com/index.html

e x e r C i S e 13 . 2 (c ont inue d)

Exercises 655

 12. Navigate Amazon API Gateway, AWS Lambda, Amazon DynamoDB, and the AWS
SAM template to view the confi guration.

 Now that the application has been deployed, you can view all the individual
components inside the AWS Management Console.

 Inside Amazon API Gateway, you should see the PetStoreAPIGW . If you review the
resources, you will see the various HTTP methods that you are allowing for your API.

 In AWS Lambda, two functions were created: savePet for saving pets to Amazon Dy-
namoDB and getPets for retrieving pets stored in Amazon DynamoDB.

 In Amazon DynamoDB, you should have a table called PetStore . You can view the
items in this table, though by default there should be none. After you create your fi rst
pet, however, you will be able to see some items in the table.

 You can view the AWS SAM template and the AWS CloudFormation stack to see exactly
how each of these resources were created.

 With YAML, tab indentations are extremely important. Make sure that you
have a valid YAML template. There are a variety of tools that you can use to
validate YAML syntax. You can use the following websites to validate the
YAML:

https://codebeautify.org/yaml-validator

http://www.yamllint.com/

 If you want to perform client-side validation and not use a website, a num-
ber of IDEs support YAML validation. Refer to your IDE documentation to
check for YAML support.

 e x e r C i S e 13 . 3

define an AWS SAm Template

 In this exercise, you will develop an AWS Lambda function locally and then test that
Lambda function using the AWS SAM CLI. To perform this exercise successfully, you
must have AWS SAM CLI installed. For information on how to install the AWS SAM CLI,
review the following documentation: https://github.com/awslabs/aws-sam-cli . The
following steps assume that you have a working AWS SAM CLI installation.

 1. Once you have installed AWS SAM CLI, open your favorite integrated development
environment (IDE) and defi ne an AWS SAM template.

(continued)

656 Chapter 13 ■ Serverless Applications

2. Enter the following in your template file:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31

Description: Welcome to the Pet Store Demo

Resources:
 PetStore:
 Type: AWS::Serverless::Function
 Properties:
 Runtime: nodejs8.10
 Handler: index.handler

3. Save the file as template.yaml.

You have created the SAM template and saved the file locally. In subsequent exercises, you
will use this information to execute an AWS Lambda function.

e x e r C i S e 13 . 4

define an AWS lambda function locally

Now that you have a valid SAM template, you can define your AWS Lambda function locally.
In this example, use Nodejs 8.10, but you can use any AWS Lambda supported language.

1. Open your favorite IDE, and type the following Nodejs code:

'use strict';

//A simple Lambda function
exports.handler = (event, context, callback) => {

 console.log('This is our local lambda function');
 console.log('Creating a PetStore service');
 callback(null, "Hello " + event.Records[0].dynamodb.NewImage.Message.S + "!
What kind of pet are you interested in?");
}

2. Save the file as index.js.

You have two files: an index.js and the SAM template. In the next exercise, you will gen-
erate an event source that will be used as the trigger for the AWS Lambda function.

e x e r C i S e 13 . 3 (c ont inue d)

Exercises 657

e x e r C i S e 13 . 5

generate an event Source

Now that you have a valid SAM template and a valid AWS Lambda Nodejs 8.10 function,
you can generate an event source.

1. Inside your terminal, type the following to generate an event source:

sam local generate-event dynamodb update > event.json

This will generate an Amazon DynamoDB update event. For a list of all of the event
sources, type the following:

sam local generate-event –help

2. Modify the event source JSON file (event.json). On line 17, change New Item! to
your first and last names.

"S": "John Smith"

You have now configured the three pieces that you need: the AWS SAM template, the
AWS Lambda function, and the event source. In the next exercise, you will be able to run
the AWS Lambda function locally.

e x e r C i S e 13 . 6

run the AWS lambda function

Trigger and execute the AWS Lambda function.

1. In your terminal, type the following to execute the AWS Lambda function:

sam local invoke "PetStore" -e event.json

You will see the following message:

Hello Casey Gerena! What kind of pet are you interested in?

The AWS Lambda Docker image is downloaded to your local environment, and
the event.json serves as all of the data that will be received as an event source to
the AWS Lambda function. Inside the AWS SAM template, you will have given this
function the name PetStore; however, you can define as many functions as you need
to in order to build your application.

658 Chapter 13 ■ Serverless Applications

e x e r C i S e 13 . 7

modify the AWS SAm template to include an Api locally

To make your pet store into an API, modify the template.yaml.

1. Open the template.yaml file, and modify it to look like the following:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31

Description: Welcome to the Pet Store Demo

Resources:
 PetStore:
 Type: AWS::Serverless::Function
 Properties:
 Runtime: nodejs8.10
 Handler: index.handler
 Events:
 PetStore:
 Type: Api
 Properties:
 Path: /
 Method: any

2. Save the template.yaml file.

You have modified the AWS SAM template to connect an Amazon API Gateway event for
any method (GET, POST, and so on) to the AWS Lambda function. In the next exercise, you
will modify the AWS Lambda function to work with the API.

e x e r C i S e 13 . 8

modify your AWS lambda function for the Api

After you have defined an API, modify your AWS Lambda function.

1. Open the index.js file, and make the following changes:

'use strict';

//A simple Lambda function
exports.handler = (event, context, callback) => {

 console.log('DEBUG: This is our local lambda function');

Exercises 659

 console.log('DEBUG: Creating a PetStore service');

 callback(null, {
 statusCode: 200,
 headers: { "x-petstore-custom-header": "custom header from petstore
service" },
 body: '{"message": "Hello! Welcome to the PetStore. What kind of Pet
are you interested in?"}'
 })

}

2. Save the index.js file.

You have modified the AWS Lambda function to respond to an API REST request. How-
ever, you have not actually executed anything—you will do that in the next exercise.

e x e r C i S e 13 . 9

run Amazon Api gateway locally

Now that you have everything defined, run Amazon API Gateway locally.

1. Open a terminal and type the following:

sam local start-api

You will see output that looks like the following. Take note of the URL.

2018-10-11 23:05:25 Mounting PetStore at http://127.0.0.1:3000/hello [GET]
2018-10-11 23:05:25 You can now browse to the above endpoints to invoke your
functions. You do not need to restart/reload SAM CLI while working on your
functions changes will be reflected instantly/automatically. You only need to
restart SAM CLI if you update your AWS SAM template
2018-10-11 23:05:25 * Running on http://127.0.0.1:3000/ (Press CTRL+C to quit)

2. Open a web browser, and navigate to the previous URL.

You will see the following message:

Message: "Hello! Welcome to the Pet Store. What kind of Pet are you interested in?"

When you navigate to the URL, the local API Gateway forwards the request to AWS
Lambda, which is also running locally, provided by index.js. You can now build server-
less applications locally. When you are ready to deploy to a development or production
environment, deploy the serverless applications to the AWS Cloud with AWS SAM. This
allows developers to iterate through their code quickly and make improvements locally.

660 Chapter 13 ■ Serverless Applications

Review Questions
1. Which templating engine can you use to deploy infrastructure inside of AWS that is built

for serverless technologies?

A. AWS CloudFormation

B. Ansible

C. AWS OpsWorks for Automate Operations

D. AWS Serverless Application Model (AWS SAM)

2. What option do you need to enable to call Amazon API Gateway from another server or
service?

A. You do not need to enable any options. Amazon API Gateway is ready to use as soon
as it’s deployed.

B. Enable cross-origin resource sharing (CORS).

C. Deploy a stage.

D. Deploy a resource.

3. A company is considering moving to the AWS serverless stack. What are two benefits of
serverless stacks? (Select TWO.)

A. No server management

B. It costs less than Amazon Elastic Compute Cloud (Amazon EC2).

C. Flexible scaling

D. There are no benefits to serverless stacks.

4. Can you create HTTP endpoints with Amazon API Gateway?

A. Yes. You can create HTTP endpoints with Amazon API Gateway.

B. No. API Gateway creates FTP endpoints.

C. No. API Gateway only supports SSH endpoints.

D. No. API Gateway is a secure service that only supports HTTPS.

5. A company is moving to a serverless application, using Amazon Simple Storage Service
(Amazon S3), AWS Lambda, and Amazon DynamoDB. They are currently using Amazon
CloudFront for their content delivery network (CDN) network. They are concerned that
they can no longer use Amazon CloudFront because they will have no Amazon Elastic
Compute Cloud (Amazon EC2) instances running. Is their concern valid?

A. Their concerns are valid: Amazon CloudFront only supports Amazon EC2.

B. Their concerns are valid because all serverless applications are fully dynamic and
contain no static information; thus, Amazon CloudFront does not support serverless
applications.

C. Their concerns are not valid. Amazon CloudFront supports serverless applications

D. Their concerns are valid. Amazon CloudFront does support serverless applications;
however, it does not support Amazon S3.

Review Questions 661

6. Amazon Cognito Mobile SDK does not support which language/platform?

A. iOS

B. Android

C. JavaScript

D. All of these languages/platform are supported.

7. Does Amazon Cognito support Short Message Service (SMS)–based multi-factor authenti-
cation (MFA)?

A. No. Amazon Cognito does not support SMS-based MFA.

B. No. Amazon Cognito does not support SMS-based MFA; however, it does support
MFA.

C. Yes. Amazon Cognito does support SMS-based MFA.

D. None of the above.

8. Does Amazon Cognito support device tracking and remembering?

A. Amazon Cognito does not support device tracking and remembering.

B. Amazon Cognito supports device tracking but not remembering.

C. Amazon Cognito supports device remembering but not tracking.

D. Amazon Cognito supports device remembering and tracking.

9. What is the property name that you use to connect an AWS Lambda function to the Amazon
API Gateway inside of an AWS Serverless Application Model (AWS SAM) template?

A. events

B. handler

C. context

D. runtime

10. A company wants to use a serverless application to run its dynamic website that is currently
running on Amazon Elastic Compute Cloud (Amazon EC2) and Elastic Load Balancing
(ELB). Currently, the application uses HTML, CSS, and React, and the database is a
NoSQL flavor. You are the advisor—is this possible?

A. No. This is not possible, because there is no way to run React in AWS. React is a
Facebook technology.

B. No. This is not possible, because you need an Amazon EC2 to run the web server.

C. No. This is not possible, because there is no way to load balance a serverless
application.

D. Yes. This is possible; however, some refactoring will be required.

Stateless Application
Patterns

The AWS CerTified develoPer –
ASSoCiATe exAm ToPiCS Covered in
ThiS ChAPTer inClude, buT Are noT
limiTed To, The folloWing:

Domain 1: Deployment

 ✓ 1.4 Deploy serverless applications.

Domain 2: Security

 ✓ 2.1 Make authenticated calls to AWS services.

 ✓ 2.2 Implement encryption using AWS services.

 ✓ 2.3 Implement application authentication and
authorization.

Domain 3: Development with AWS Services

 ✓ 3.2 Translate functional requirements into application
design.

 ✓ 3.3 Implement application design into application code.

 ✓ 3.4 Write code that interacts with AWS services by using
APIs, SDKs, and AWS CLI.

Chapter

14

AWS® Certified Developer Official Study Guide
By Nick Alteen, Jennifer Fisher, Casey Gerena, Wes Gruver, Asim Jalis,
Heiwad Osman, Marife Pagan, Santosh Patlolla and Michael Roth

 Amazon Web Services, Inc.

Introduction to the Stateless
Application Pattern
In previous chapters, you were introduced to compute, networking, databases, and storage
on the AWS Cloud. This chapter covers the fully managed services that you use to build
stateless applications on AWS. Scalability is an important consideration when you create
and deploy applications that are highly available, and stateless applications are easier to
scale.

When users or services interact with an application, they often perform a sequence of
interactions that form a session. A stateless application is one that requires no knowledge
of previous interactions and stores no session information. Given the same input, an appli-
cation can provide the same response to any user.

A stateless application can scale horizontally because requests can be serviced by any of
the available compute resources, such as Amazon Elastic Compute Cloud (Amazon EC2)
instances or AWS Lambda functions. With no session data sharing, you can add more
compute resources as necessary. When that compute capacity is no longer needed, you can
safely terminate any individual resource. Those resources do not need to be aware of the
presence of their peers, and they only need a way to share the workload among them.

This chapter discusses the AWS services that provide a mechanism for persisting state
outside of the application: Amazon DynamoDB, Amazon Simple Storage Service (Amazon
S3), Amazon ElastiCache, and Amazon Elastic File System (Amazon EFS).

Amazon DynamoDB
Amazon DynamoDB is a fast and flexible NoSQL database service that applications use
that require consistent, single-digit millisecond latency at any scale. A fully managed
NoSQL database supports both document and key-value store models. DynamoDB is ideal
for mobile, web, gaming, ad tech, and Internet of Things (IoT) applications. DynamoDB
provides an effective solution for sharing session states across web servers, Amazon EC2
instances, or computing nodes.

Amazon DynamoDB 665

Using Amazon DynamoDB to Store State
DynamoDB provides fast and predictable performance with seamless scalability. It enables
you to offload the administrative burdens of operating and scaling a distributed database,
including hardware provisioning, setup and configuration, replication, software patching,
or cluster scaling. Also, DynamoDB offers encryption at rest, which reduces the operational
tasks and complexity involved in protecting sensitive data.

With DynamoDB, you can create database tables that can store and retrieve any amount
of data (collection) and serve any level of request traffic. You can scale up or scale down
the throughput capacity of your tables without downtime or performance degradation
and use the AWS Management Console to monitor resource utilization and performance
metrics. DynamoDB provides on-demand backup capability to create full backups of tables
for long-term retention and archives for regulatory compliance. Use DynamoDB to delete
expired items from tables automatically to reduce both storage usage and the cost to store
irrelevant data.

DynamoDB automatically spreads data and traffic for tables over a sufficient number
of servers to handle throughput and storage requirements while maintaining consistent
and fast performance. All of your data is stored on solid-state drive (SSDs) and automati-
cally replicates across multiple Availability Zones in an AWS Region, providing built-in
high availability and data durability. You can use global tables to keep DynamoDB tables
synchronized across AWS Regions, and you can access this service using the DynamoDB
console, the AWS Command Line Interface (AWS CLI), a generic web services Application
Programming Interface (API), or any programming language that the AWS software devel-
opment kit (AWS SDK) supports.

Tables, items, and attributes are core components of DynamoDB. A table is a collection
of items, and each item is a collection of attributes. For example, you could have a table
called Cars, which stores information about vehicles. DynamoDB uses primary keys to
identify each item in a table (e.g., Ford) uniquely and secondary indexes to provide more
querying flexibility (e.g., Mustang). You can use Amazon DynamoDB Streams to capture
data modification events in DynamoDB tables.

Primary Key, Partition Key, and Sort Key
When you create a table, you must configure both the table name and the primary key of
the table. The primary key uniquely identifies each item in the table so that no two items
have the same key. DynamoDB supports two different kinds of primary keys: a partition
key and sort key.

A partition key is a simple primary key, composed of only a partition key attribute. The
partition key of an item is also known as its hash attribute. The term hash attribute derives
from the use of an internal hash function in DynamoDB that evenly distributes data items
across partitions based on their partition key values. DynamoDB uses the partition key’s
value as input to an internal hash function. The output from the hash function determines
the partition (physical storage internal to DynamoDB) in which the item will be stored.

666 Chapter 14 ■ Stateless Application Patterns

 In a table that has only a partition key, no two items can have the same
partition key value.

 You can also create a primary key as a composite primary key , consisting of a partition
key (fi rst attribute) and a sort key (second attribute).

 The sort key of an item is also known as its range attribute . The term range attribute
derives from the way that DynamoDB stores items with the same partition key physically
close together, in sorted order, by the sort key value.

 Each primary key attribute must be a scalar , meaning that it can hold only a single
value. The only data types allowed for primary key attributes are string, number, or binary.
There are no such restrictions for other, nonkey attributes.

 Best Practices for Designing and Using Partition Keys
 When DynamoDB stores data, it divides table items into multiple physical partitions pri-
marily based on the partition key values, and it distributes the table data accordingly. The
primary key that uniquely identifi es each item in a DynamoDB table can be either simple
(partition key only) or composite (partition key combined with a sort key). Partition key
values determine the logical partitions in which a table’s data is stored, which affects the
table’s underlying physical partitions. Effi cient partition key design keeps your workload
spread evenly across these partitions.

 A single physical DynamoDB partition supports a maximum of 3,000 read-capacity
units (RCUs) or 1,000 write-capacity units (WCUs). Provisioned I/O capacity for the table
is divided evenly among all physical partitions. Therefore, design your partition keys to
spread I/O requests as evenly as possible across the table’s partitions to prevent “hot spots”
that use provisioned I/O capacity ineffi ciently.

 example 1: hotspot

 If a table has a small number of heavily accessed partition key values (possibly even one
heavily used partition key value), request traffi c is concentrated on a small number of
partitions, or only one partition. If the workload is heavily unbalanced, meaning that it is
disproportionately focused on one or a few partitions, the requests do not achieve the
overall provisioned throughput level.

 To achieve the maximum DynamoDB throughput, create tables where
the partition key has a large number of distinct values, and values are
requested fairly uniformly, as randomly as possible.

Amazon DynamoDB 667

Designing Partition Keys to Distribute Even Workloads
The partition key portion of a table’s primary key determines the logical partitions
in which a table’s data is stored, and it affects the underlying physical partitions.
Provisioned I/O capacity for the table is divided evenly among these physical partitions,
but a partition key design that does not distribute I/O requests evenly can create “hot”
partitions that use your provisioned I/O capacity inefficiently and result in throttling.

The optimal usage of a table’s provisioned throughput depends on both the workload
patterns of individual items and the partition key design. This does not mean that you must
access all partition key values to achieve an efficient throughput level or even that the per-
centage of accessed partition key values must be high. It does mean that the more distinct
partition key values that your workload accesses, the more those requests are spread across
the partitioned space. You will use your provisioned throughput more efficiently as the ratio
of partition key values accessed to the total number of partition key values increases.

Table 14.1 provides a comparison of the provisioned throughput efficiency of some com-
mon partition key schemas.

TA b le 14 .1 Partition Key Schemas

Partition Key Value Uniformity

User Identification (ID) where the application has many users Good

Status Code where there are only a few possible status codes Bad

Item Creation Date rounded to the nearest period (day, hour, or minute) Bad

Device ID where each device accesses data at relatively similar intervals Good

Device ID where even if there are many devices being tracked, one is by far
more popular than all the others

Bad

If a single table has only a small number of partition key values, consider distributing
your write operations across more distinct partition key values, and structure the primary
key elements to avoid one “hot” (heavily requested) partition key value that slows overall
performance.

Consider a table with a composite primary key. The partition key represents the item’s
creation date, rounded to the nearest day. The sort key is an item identifier. On a given
day, all new items are written to that single partition key value and corresponding physical
partition.

If the table fits entirely into a single partition (considering the growth of your data over
time), and if your application’s read and write throughput requirements do not exceed the
read and write capabilities of a single partition, your application does not encounter any
unexpected throttling because of partitioning.

668 Chapter 14 ■ Stateless Application Patterns

However, if you anticipate your table scaling beyond a single partition, architect your
application so that it can use more of the table’s full provisioned throughput.

Using Write Shards to Distribute Workloads Evenly
A shard is a uniquely identified group of stream records within a stream. To distribute
writes better across a partition key space in DynamoDB, expand the space. You can add a
random number to the partition key values to distribute the items among partitions, or you
can use a number that is calculated based on what you want to query.

Random Suffixes in Shards
To distribute loads more evenly across a partition key space, add a random number to
the end of the partition key values and then randomize the writes across the larger space.
For example, if a partition key represents today’s date, choose a random number from 1
through 200, and add it as a suffix to the date. This yields partition key values such as
2018-07-09.1, 2014-07-09.2, and so on, through 2018-07-09.200. Because you are ran-
domizing the partition key, the writes to the table on each day are spread evenly across
multiple partitions. This results in better parallelism and higher overall throughput.

To read all of the items for a given day, you would have to query the items for all of the
suffixes and then merge the results. For example, first issue a Query request for the partition
key value 2018-07-09.1, then another Query for 2018-07-09.2, and so on, through
2018-07-09.200. When complete, your application then merges the results from all Query
requests.

Calculated Suffixes in Shards
A random strategy can improve write throughput, but it is difficult to read a specific item
because you do not know which suffix value was written to the item. To make it easier to
read individual items, instead of using a random number to distribute the items among par-
titions, use a number that you can calculate based on what you want to query.

Consider the previous example, where a table uses today’s date in the partition key.
Now suppose that each item has an accessible OrderId attribute and that you most often
need to find items by OrderId in addition to date. Before your application writes the item
to the table, it can calculate a hash suffix based on the OrderId, append it to the partition
key date, and generate numbers from 1 through 200 that evenly distribute, similar to what
the random strategy produces. You can use a simple calculation, such as the product of the
UTF-8 code point values, for the characters in the OrderId, modulo 200, + 1. The partition
key value would then be the date concatenated with the calculation result.

With this strategy, the writes are spread evenly across the partition key values and across
the physical partitions. You can easily perform a GetItem operation for a particular item
and date because you can calculate the partition key value for a specific OrderId value.

To read all of the items for a given day, you must query each of the 2018-07-09.N keys
(where N is 1 through 200), and your application then merges the results. With this strategy,
you avoid a single “hot” partition key value taking the entire workload.

Amazon DynamoDB 669

Items
Each table contains zero or more items. An item is a group of attributes that is uniquely
identifiable among all other entities in the table. For example, in a People table, each
item represents a person, and in a Cars table, each item represents one vehicle. Items in
DynamoDB are similar to rows, records, or tables in other database systems. However,
in DynamoDB, there is no limit to the number of items that you can store in a table.

Attributes
Each item in a table is composed of one or more attributes. An attribute is a fundamental
data element, something that does not need to be broken down any further. For example,
an item in a People table contains attributes called PersonID, LastName, FirstName, and
so on. For a Department table, an item may have attributes such as DepartmentID, Name,
Manager, and so on. Attributes in DynamoDB are similar in many ways to fields or columns
in other database systems.

The naming rules for DynamoDB tables are as follows:

 ■ All names must be encoded using UTF-8 and be case-sensitive.

 ■ Table names must be between 3 and 255 characters long and can contain only the fol-
lowing characters:

 ■ a–z

 ■ A–Z

 ■ 0–9

 ■ _ (underscore)

 ■ – (dash)

 ■ . (period)

 ■ Attribute names must be between 1 and 255 characters long.

 ■ Each item in the table has a unique identifier, or primary key, which distinguishes the
item from all others in the table. In a People table, the primary key consists of one
attribute, PersonID.

 ■ Other than the primary key, the People table is schema-less, meaning that you are not
required to define the attributes or their data types beforehand. Each item can have its
own distinct attributes.

 ■ Most of the attributes are scalar, meaning that they can have only one value. Strings
and numbers are common scalars.

 ■ Some of the items have a nested attribute. For example, in a People table, the
Address attribute may have nested attributes such as Street, City, and PostalCode.
DynamoDB supports nested attributes up to 32 levels deep.

Data Types
DynamoDB supports several data types for attributes within a table.

670 Chapter 14 ■ Stateless Application Patterns

Scalar

A scalar type can represent exactly one value. The scalar types are number, string, binary,
Boolean, and null.

Number Numbers can be positive, negative, or zero and can have up to 38 digits of preci-
sion. Exceeding this limit results in an exception. Numbers are presented as variable length.
Leading and trailing zeros are trimmed. All numbers are sent as strings to maximize
compatibility across languages and libraries. DynamoDB treats them as number-type attri-
butes for mathematical operations. You can use the number data type to represent a date
or a timestamp. One way to do this is with the epoch time, the number of seconds since
00:00:00 Coordinated Universal Time (UTC) on January 1, 1970.

String Strings are Unicode with UTF-8 binary encoding. The length of a string must be
greater than zero, and it is constrained by the maximum DynamoDB item size limit of 400
KB. If a primary key attribute is a string type, the following additional constraints apply:

 ■ For a simple primary key, the maximum length of the first attribute value (parti-
tion key) is 2,048 bytes.

 ■ For a composite primary key, the maximum length of the second attribute value
(sort key) is 1,024 bytes.

 ■ DynamoDB collates and compares strings using the bytes of the underlying UTF-8
string encoding. For instance, “a” (0x61) is greater than “A” (0x41).

You can use the string data type to represent a date or a timestamp. One way to do
this is to use ISO 8601 strings as follows:

 ■ 2018-04-19T12:34:56Z

 ■ 2018-02-31T10:22:18Z

 ■ 2017-05-08T12:22:46Z

Binary Binary type attributes can store any binary data, such as compressed text,
encrypted data, or images. Whenever DynamoDB compares binary values, it treats each
byte of the binary data as unsigned. The length of a binary attribute must be greater than
zero, and it is constrained by the maximum DynamoDB item size limit of 400 KB. If a pri-
mary key attribute is a binary type, the following additional constraints apply:

 ■ For a simple primary key, the maximum length of the first attribute value (parti-
tion key) is 2,048 bytes.

 ■ For a composite primary key, the maximum length of the second attribute value
(sort key) is 1,024 bytes.

Applications must encode binary values in base64-encoded format before sending them to
DynamoDB. Upon receipt, DynamoDB decodes the data into an unsigned byte array and
uses it as the length of the binary attribute.

Boolean A Boolean type attribute can store one of two values: true or false.

Null A null attribute is one with an unknown or undefined state.

Amazon DynamoDB 671

 Document

 There are two document types, list and map, which you can nest within each other to rep-
resent complex data structures up to 32 levels deep. There is no limit on the number of val-
ues in a list or a map, as long as the item containing the values fi ts within the DynamoDB
item size limit of 400 KB.

 An attribute value cannot be an empty string or an empty set; however,
empty lists and maps are allowed.

List A list type attribute can store an ordered collection of values. Lists are enclosed in
square brackets […] and are similar to a JavaScript Object Notation (JSON) array. There
are no restrictions on the data types that can be stored in a list element, and the elements in a
list element can be of different types. Here is an example of a list with strings and numbers:

 MyFavoriteThings: ["Thriller", "Purple Rain", 1983, 2]

 Map A map type attribute can store an unordered collection of name/value pairs. Maps
are enclosed in curly braces { … } and are similar to a JSON object. There are no restric-
tions on the data types that you can store in a map element, and elements in a map do not
have to be the same type. Maps are ideal for storing JSON documents in DynamoDB. The
following example shows a map that contains a string, a number, and a nested list that con-
tains another map:

 {
 Location: "Labrynth",
 MagicStaff: 1,
 MagicRings: [
 "The One Ring",
 {
 "ElevenKings: { Quantity : 3},
 "DwarfLords: { Quantity : 7},
 "MortalMen: { Quantity : 9}
 }
]
 }

 DynamoDB enables you to work with individual elements within maps—
even if those elements are deeply nested.

Set DynamoDB supports types that represent sets of number, string, or binary values. There
is no limit on the number of values in a set, as long as the item containing the value fi ts within
the DynamoDB 400 KB item size limit. Each value within a set must be unique. The order of
the values within a set is not preserved. Applications must not rely on the order of elements
within the set. DynamoDB does not support empty sets.

672 Chapter 14 ■ Stateless Application Patterns

 All of the elements within a set must be of the same type.

 Amazon DynamoDB Tables
 DynamoDB global tables provide a fully managed solution for deploying a multiregion,
multi-master database, without having to build and maintain your own replication solu-
tion. When you create a global table, you confi gure the AWS Regions where you want the
table to be available. DynamoDB performs all of the necessary tasks to create identical
tables in these regions and propagate ongoing data changes to all of the regions.

 DynamoDB global tables are ideal for massively scaled applications, with globally dis-
persed users. In such an environment, you can expect fast application performance. Global
tables provide automatic multi-master replication to AWS Regions worldwide, so you can
deliver low-latency data access to your users no matter where they are located.

 There is no practical limit on a table’s size. Tables are unconstrained in terms of the
number of items or the number of bytes. For any AWS account, there is an initial limit of
256 tables per region.

 Provisioned Throughput
 With DynamoDB, you can create database tables that store and retrieve any amount of
data and serve any level of request traffi c. You can scale your table’s throughput capac-
ity up or down without downtime or performance degradation, and you can use the AWS
Management Console to monitor resource utilization and performance metrics.

 For any table or global secondary index, the minimum settings for provi-
sioned throughput are one read capacity unit and one write capacity unit.

 AWS places some default limits on the throughput that you can provision. These are the
limits unless you request a higher amount.

 You can apply all of the available throughput of an account to a single table
or across multiple tables.

 Throughput Capacity for Reads and Writes in Tables and Indexes
 When you create a table or index in DynamoDB, you must confi gure your capacity
requirements for read and write activity. If you defi ne the throughput capacity in advance,

Amazon DynamoDB 673

DynamoDB can reserve the necessary resources to meet the read and write activity that
your application requires, while it ensures consistent, low-latency performance.

Throughput capacity is specified in terms of read capacity units or write capacity
units:

 ■ One read capacity unit represents one strongly consistent read per second, or two
eventually consistent reads per second, for an item up to 4 KB in size. If you need to
read an item larger than 4 KB, DynamoDB must consume additional read capacity
units. The total number of read capacity units required depends on both the item
size and whether you want an eventually consistent read or strongly consistent read.

 ■ One write capacity unit represents one write per second for an item up to 1 KB in size.
If you need to write an item larger than 1 KB, DynamoDB must consume additional
write capacity units. The total number of write capacity units required depends on the
item size.

For example, if you create a table with five read capacity units and five write
capacity units, your application could do the following:

 ■ Perform strongly consistent reads of up to 20 KB per second (4 KB × 5 read capac-
ity units)

 ■ Perform eventually consistent reads of up to 40 KB per second (twice as much read
throughput)

 ■ Write up to 5 KB per second (1 KB × 5 write capacity units)

If your application reads or writes larger items (up to the DynamoDB maximum item
size of 400 KB), it will consume more capacity units.

If your read or write requests exceed the throughput settings for a table, DynamoDB
can throttle that request. DynamoDB can also throttle read requests exceeds for
an index. Throttling prevents your application from consuming too many capacity
units. When a request is throttled, it fails with HTTP 400 code (Bad Request) and a
ProvisionedThroughputExceededException. The AWS SDKs have built-in support for
retrying throttled requests, so you do not need to write this logic yourself.

You can use the AWS Management Console to monitor your provisioned and actual
throughput and modify your throughput settings if necessary.

DynamoDB provides the following mechanisms for managing throughput:

 ■ DynamoDB automatic scaling

 ■ Provisioned throughput

 ■ Reserved capacity

 ■ AWS Lambda triggers in DynamoDB streams

674 Chapter 14 ■ Stateless Application Patterns

 Setting Initial Throughput Settings
 Every application has different requirements for reading and writing from a database.
When you determine the initial throughput settings for a DynamoDB table, take the fol-
lowing attributes into consideration:

Item sizes Some items are small enough that they can be read or written by using a single
capacity unit. Larger items require multiple capacity units. By estimating the sizes of the
items that will be in your table, you can confi gure accurate settings for your table’s provi-
sioned throughput.

Expected read and write request rates In addition to item size, estimate the number of
reads and writes to perform per second.

Read consistency requirements Read capacity units are based on strongly consistent read
operations, which consume twice as many database resources as eventually consistent
reads. Determine whether your application requires strongly consistent reads, or whether it
can relax this requirement and perform eventually consistent reads instead.

 Read operations in DynamoDB are by default eventually consistent,
but you can request strongly consistent reads for these operations if
necessary.

 Item Sizes and Capacity Unit Consumption
 Before you choose read and write capacity settings for your table, understand your data
and how your application will access it. These inputs help you determine your table’s over-
all storage and throughput needs and how much throughput capacity your application will
require. Except for the primary key, DynamoDB tables are schemaless , so the items in a
table can all have different attributes, sizes, and data types. The total size of an item is the
sum of the lengths of its attribute names and values . You can use the following guidelines
to estimate attribute sizes:

 ■ Strings are Unicode with UTF-8 binary encoding. The size of a string is as follows:

 (length of attribute name) + (number of UTF-8-encoded bytes)

 ■ Numbers are variable length, with up to 38 significant digits. Leading and trailing
zeroes are trimmed.

 ■ The size of a number is approximately as follows:

 (length of attribute name) + (1 byte per two signifi cant digits) + (1 byte)

 ■ A binary value must be encoded in base64 format before it can be sent to DynamoDB,
but the value’s raw byte length is used for calculating size. The size of a binary attri-
bute is as follows:

 (length of attribute name) + (number of raw bytes)

Amazon DynamoDB 675

 ■ The size of a null attribute or a Boolean attribute is as follows:

 (length of attribute name) + (1 byte)

 ■ An attribute of type List or Map requires 3 bytes of overhead, regardless of its contents.
The size of a List or Map is as follows:

 (length of attribute name) + sum (size of nested elements) + (3 bytes).

 ■ The size of an empty List or Map is as follows:

 (length of attribute name) + (3 bytes)

 Choose short attribute names rather than long ones. This helps to optimize
capacity unit consumption and reduce the amount of storage required for
your data.

 Capacity Unit Consumption for Reads
 The following describes how read operations for DynamoDB consume read capacity units:

 GetItem Reads a single item from a table. To determine the number of capacity units
 GetItem will consume, take the item size and round it up to the next 4 KB boundary. If you
specifi ed a strongly consistent read, this is the number of capacity units required. For an
eventually consistent read (the default), take this number and divide it by 2.

 For example, if you read an item that is 3.5 KB, DynamoDB rounds the item size to
4 KB. If you read an item of 10 KB, DynamoDB rounds the item size to 12 KB.

 BatchGetItem Reads up to 100 items, from one or more tables. DynamoDB processes
each item in the batch as an individual GetItem request, so DynamoDB fi rst rounds up the
size of each item to the next 4-KB boundary and then calculates the total size. The result is
not necessarily the same as the total size of all the items.

 For example, if BatchGetItem reads a 1.5-KB item and a 6.5-KB item, DynamoDB
calculates the size as 12 KB (4 KB + 8 KB), not 8 KB (1.5 KB + 6.5 KB).

 Query Reads multiple items that have the same partition key value. All of the items
returned are treated as a single read operation, whereby DynamoDB computes the total size
of all items and then rounds up to the next 4-KB boundary.

 For example, suppose that your query returns 10 items whose combined size is 40.8
KB. Amazon DynamoDB rounds the item size for the operation to 44 KB. If a query
returns 1,500 items of 64 bytes each, the cumulative size is 96 KB.

Scan Reads all items in a table. DynamoDB considers the size of the items that are evalu-
ated, not the size of the items returned by the scan.

676 Chapter 14 ■ Stateless Application Patterns

 If you perform a read operation on an item that does not exist, DynamoDB will still
consume provisioned read throughput. A request for a strongly consistent read consumes
one read capacity unit, whereas a request for an eventually consistent read consumes 0.5 of
a read capacity unit.

 For any operation that returns items, request a subset of attributes to retrieve. However,
doing so has no impact on the item size calculations. In addition, Query and Scan can
return item counts instead of attribute values. Getting the count of items uses the same
quantity of read capacity units and is subject to the same item size calculations, because
DynamoDB has to read each item to increment the count:

Read operations and read consistency The preceding calculations assumed requests for
strongly consistent reads. For a request for eventually consistent reads, the operation con-
sumes only half of the capacity units. For example, of an eventually consistent read, if the
total item size is 80 KB, the operation consumes only 10 capacity units.

 Read consistency for Scan A Scan operation performs eventually consistent reads, by
default. This means that the Scan results might not refl ect changes as the result of recently
completed PutItem or UpdateItem operations. If you require strongly consistent reads,
when the Scan begins, set the ConsistentRead parameter to true in the Scan request. This
ensures that all of the write operations that completed before the Scan began are included
in the Scan response. Setting ConsistentRead to true can be useful in table backup or
replication scenarios. With DynamoDB streams, to obtain a consistent copy of the data in
the table, fi rst use Scan with ConsistentRead set to true . During the Scan , DynamoDB
streams record any additional write activity that occurs on the table. After the Scan com-
pletes, apply the write activity from the stream to the table.

 A Scan operation with ConsistentRead set to true consumes twice as
many read capacity units as compared to keeping ConsistentRead at the
default value (false).

 Capacity Unit Consumption for Writes
 The following describes how DynamoDB write operations consume write capacity units:

 PutItem Writes a single item to a table. If an item with the same primary key exists in
the table, the operation replaces the item. For calculating provisioned throughput consump-
tion, the item size that matters is the larger of the two.

 UpdateItem Modifi es a single item in the table. DynamoDB considers the size of the item
as it appears before and after the update. The provisioned throughput consumed refl ects
the larger of these item sizes. Even if you update only a subset of the item’s attributes,
 UpdateItem will consume the full amount of provisioned throughput (the larger of the
“before” and “after” item sizes).

Amazon DynamoDB 677

DeleteItem Removes a single item from a table. The provisioned throughput consump-
tion is based on the size of the deleted item.

BatchWriteItem Writes up to 25 items to one or more tables. DynamoDB
processes each item in the batch as an individual PutItem or DeleteItem request (updates
are not supported). DynamoDB fi rst rounds up the size of each item to the
next 1-KB boundary and then calculates the total size. The result is not necessarily the
same as the total size of all the items. For example, if BatchWriteItem writes a 500-byte
item and a 3.5-KB item, DynamoDB calculates the size as 5 KB (1 KB + 4 KB),
not 4 KB (500 bytes + 3.5 KB).

 For PutItem , UpdateItem , and DeleteItem operations, DynamoDB rounds the item size
up to the next 1 KB. If you put or delete an item of 1.6 KB, DynamoDB rounds the item
size up to 2 KB.

PutItem , UpdateItem , and DeleteItem allow conditional writes , whereby you confi gure
an expression that must evaluate to true for the operation to succeed. If the expression
evaluates to false , DynamoDB consumes write capacity units from the table.

 For an existing item, the number of write capacity units consumed depends on the size
of the new item. For example, a failed conditional write of a 1-KB item would consume one
write capacity unit. If the new item were twice that size, the failed conditional write would
consume two write capacity units.

 For a new item, DynamoDB consumes one write capacity unit.

 If a ConditionExpression evaluates to false during a conditional write, DynamoDB
will consume write capacity from the table based on the following conditions:

 ■ If the item does not currently exist in the table, DynamoDB consumes one write capac-
ity unit.

 ■ If the item does exist, then the number of write capacity units consumed depends on
the size of the item. For example, a failed conditional write of a 1-KB item would con-
sume one write capacity unit. If the item were twice that size, the failed conditional
write would consume two write capacity units.

 Write operations consume write capacity units only. Write operations do
not consume read capacity units.

 A failed conditional write returns a ConditionalCheckFailedException . When this
occurs, you do not receive any information in the response about the write capacity that
was consumed. However, you can view the ConsumedWriteCapacityUnits metric for the
table in Amazon CloudWatch.

678 Chapter 14 ■ Stateless Application Patterns

 To return the number of write capacity units consumed during a conditional write, use
the ReturnConsumedCapacity parameter with any of the following attributes:

Total Returns the total number of write capacity units consumed.

Indexes Returns the total number of write capacity units consumed with subtotals for
the table and any secondary indexes that were affected by the operation.

None No write capacity details are returned (default).

 Unlike a global secondary index, a local secondary index shares its pro-
visioned throughput capacity with its table. Read and write activity on a
local secondary index consumes provisioned throughput capacity from
the table.

 Capacity unit Sizes

 One read capacity unit = one strongly consistent read per second, or two eventually con-
sistent reads per second, for items up to 4 KB in size.

 One write capacity unit = one write per second, for items up to 1 KB in size.

 Creating Tables to Store the State
 Before you store state in DynamoDB, you must create a table. To work with DynamoDB,
your application must use several API operations and be organized by category.

 Control Plane
Control plane operations let you create and manage DynamoDB tables and work with
indexes, streams, and other objects that are dependent on tables.

CreateTable Creates a new table. You can create one or more secondary indexes and
enable DynamoDB Streams for the table.

DescribeTable Returns information about a table, such as its primary key schema,
throughput settings, and index information.

ListTables Returns the names of all of the tables in a list.

UpdateTable Modifi es the settings of a table or its indexes, creates or remove new
indexes on a table, or modifi es settings for a table in DynamoDB Streams.

DeleteTable Removes a table and its dependent objects from DynamoDB.

Amazon DynamoDB 679

 Data Plane
Data plane operations let you perform create/read/update/delete (CRUD) actions on data
in a table. Some data plane operations also enable you to read data from a secondary index.

 Creating Data
 The following data plane operations enable you to perform create actions on data in a table:

PutItem Writes a single item to a table. You must confi gure the primary key attributes,
but you do not have to confi gure other attributes.

BatchWriteItem Writes up to 25 items to a table. This is more effi cient than multiple
PutItem commands because your application needs only a single network round trip to
write the items. You can also use BatchWriteItem to delete multiple items from one or more
tables.

 Performing Batch Operations
 DynamoDB provides the BatchGetItem and BatchWriteItem operations for applications
that need to read or write multiple items. Use these operations to reduce the number of net-
work round trips from your application to DynamoDB. In addition, DynamoDB performs
the individual read or write operations in parallel . Your applications benefi t from this par-
allelism without having to manage concurrency or threading.

 The batch operations are wrappers around multiple read or write requests. If a
 BatchGetItem request contains fi ve items, DynamoDB performs fi ve GetItem operations
on your behalf. Similarly, if a BatchWriteItem request contains two put requests and four
delete requests, DynamoDB performs two PutItem and four DeleteItem requests.

 In general, a batch operation does not fail unless all requests in that batch fail. If you
perform a BatchGetItem operation, but one of the individual GetItem requests in the batch
fails, the BatchGetItem returns the keys and data from the GetItem request that failed. The
other GetItem requests in the batch are not affected.

BatchGetItem A single BatchGetItem operation can contain up to 100 individual
GetItem requests and can retrieve up to 16 MB of data. In addition, a BatchGetItem opera-
tion can retrieve items from multiple tables.

BatchWriteItem The BatchWriteItem operation can contain up to 25 individual
 PutItem and DeleteItem requests and can write up to 16 MB of data. The maximum size
of an individual item is 400 KB. In addition, a BatchWriteItem operation can put or delete
items in multiple tables.

BatchWriteItem does not support UpdateItem requests.

680 Chapter 14 ■ Stateless Application Patterns

 Reading Data
 The following data plane operations enable you to perform read actions on data in a table:

GetItem Retrieves a single item from a table. You must confi gure the primary key for the
item that you want. You can retrieve the entire item or only a subset of its attributes.

BatchGetItem Retrieves up to 100 items from one or more tables. This is more effi cient
than calling GetItem multiple times because your application needs only a single network
round trip to read the items.

Query Retrieves all items that have a specifi c partition key. You must confi gure the parti-
tion key value. You can retrieve entire items or only a subset of their attributes. You can
apply a condition to the sort key values so that you retrieve only a subset of the data that
has the same partition key.

 You can use the Query operation on a table or index if the table or index
has both a partition key and a sort key.

 Scan Retrieves all the items in the table or index. You can retrieve entire items or only a
subset of their attributes. You can use a fi lter condition to return only the values that you
want and discard the rest.

 Updating Data
 UpdateItem modifi es one or more attributes in an item. You must confi gure the primary key
for the item that you want to modify. You can add new attributes and modify or remove
existing attributes. You can also perform conditional updates so that the update is success-
ful only when a user-defi ned condition is met. You can also implement an atomic counter,
which increments or decrements a numeric attribute without interfering with other write
requests.

 Deleting Data
 The following data plane operations enable you to perform delete actions on data in a table:

 DeleteItem Deletes a single item from a table. You must confi gure the primary key for
the item that you want to delete.

 BatchDeleteItem Deletes up to 25 items from one or more tables. This is more effi -
cient than multiple DeleteItem calls, because your application needs only a single network
round trip. You can also use BatchWriteItem to add multiple items to one or more tables.

 Return Values
 In some cases, you may want DynamoDB to return certain attribute values as they
appeared before or after you modifi ed them. The PutItem , UpdateItem , and DeleteItem
operations have a ReturnValues parameter that you can use to return the attribute values

Amazon DynamoDB 681

before or after they are modified. The default value for ReturnValues is None, meaning that
DynamoDB will not return any information about attributes that were modified.

The following are additional settings for ReturnValues, organized by DynamoDB API
operation:

PutItem The PutItem action creates a new item or replaces an old item with a new item.
You can return the item’s attribute values in the same operation by using the ReturnValues
parameter.

ReturnValues: ALL_OLD
 ■ If you overwrite an existing item, ALL_OLD returns the entire item as it appeared

before the overwrite.

 ■ If you write a nonexistent item, ALL_OLD has no effect.

UpdateItem The most common use for UpdateItem is to update an existing item.
However, UpdateItem actually performs an upsert, meaning that it will automatically cre-
ate the item if it does not already exist.

ReturnValues: ALL_OLD
 ■ If you update an existing item, ALL_OLD returns the entire item as it appeared

before the update.

 ■ If you update a nonexistent item (upsert), ALL_OLD has no effect.

ReturnValues: ALL_NEW
 ■ If you update an existing item, ALL_NEW returns the entire item as it appeared after

the update.

 ■ If you update a nonexistent item (upsert), ALL_NEW returns the entire item.

ReturnValues: UPDATED_OLD
 ■ If you update an existing item, UPDATED_OLD returns only the updated attributes as

they appeared before the update.

 ■ If you update a nonexistent item (upsert), UPDATED_OLD has no effect.

ReturnValues: UPDATED_NEW
 ■ If you update an existing item, UPDATED_NEW returns only the affected attributes as

they appeared after the update.

 ■ If you update a nonexistent item (upsert), UPDATED_NEW returns only the updated
attributes as they appear after the update.

DeleteItem The DeleteItem deletes a single item in a table by primary key. You can
perform a conditional delete operation that deletes the item if it exists, or if it has an
expected attribute value.

ReturnValues: ALL_OLD
 ■ If you delete an existing item, ALL_OLD returns the entire item as it appeared before

you deleted it.

 ■ If you delete a nonexistent item, ALL_OLD does not return any data.

682 Chapter 14 ■ Stateless Application Patterns

 Requesting Throttle and Burst Capacity
 If your application performs reads or writes at a higher rate than your table can support,
DynamoDB begins to throttle those requests. When DynamoDB throttles a read or write,
it returns a ProvisionedThroughputExceededException to the caller. The application
can then take appropriate action, such as waiting for a short interval before retrying the
request.

 The AWS SDKs provide built-in support for retrying throttled requests; you do not need
to write this logic yourself. The DynamoDB console displays CloudWatch metrics for your
tables so that you can monitor throttled read requests and write requests. If you encounter
excessive throttling, consider increasing your table’s provisioned throughput settings.

 In some cases, DynamoDB uses burst capacity to accommodate reads or writes in excess
of your table’s throughput settings. With burst capacity, unexpected read or write requests
can succeed where they otherwise would be throttled. Burst capacity is available on a best-
effort basis, and DynamoDB does not verify that this capacity is always available.

 Amazon DynamoDB Secondary Indexes:
Global and Local
 A secondary index is a data structure that contains a subset of attributes from a table.
The index uses an alternate key to support Query operations in addition to making queries
against the primary key. You can retrieve data from the index using a Query . A table can
have multiple secondary indexes, which give your applications access to many different
 Query patterns.

 You can create one or more secondary indexes on a table. DynamoDB does not require
indexes, but indexes give your applications more fl exibility when you query your data.
After you create a secondary index on a table, you can read or scan data from the index in
much the same way as you do from the table.

 DynamoDB supports the following kinds of indexes:

 Global secondary index A global secondary index is one with a partition key and sort
key that can be different from those on the table.

 Local secondary index A local secondary index is one that has the same partition key as
the table but a different sort key.

 You can define up to five global secondary indexes and five local second-
ary indexes per table. You can also scan an index as you would a table.

 Figure 14.1 shows a local secondary index for a DynamoDB table of forum posts. The
local secondary index allows you to query based on the date and time of the last post to a
subject, as opposed to the subject itself.

Amazon DynamoDB 683

f i gu r e 14 .1 Amazon DynamoDB indexes

ForumName

ForumName:
“S3”

Subject LastPostDateTime

Thread

Thread

“S3” “aaa” “2015-03-15:17:24:31” 12 ...

...

...

...

...

...

...

...

...

...

“S3” “bbb” “2015-01-22:23:18:01” 3

“S3” “ccc” “2015-02-31:13:14:21” 4

“S3” “ddd” “2015-01-03:09:21:11” 9

“EC2” “yyy” “2015-02-12:11:07:56” 18

“EC2” “zzz” “2015-01-18:07:33:42” 0

“RDS” “rrr” “2015-01-19:01:13:24” 3

“RDS” “sss” “2015-03-11:06:53:00” 11

“RDS” “ttt”

“ddd”

...

“bbb”

“ccc”

“aaa”

“zzz”

“yyy”

“rrr”

“ttt”

“sss”

“2015-10-22:12:19:44” 5

ForumName LastPostDateTime Subject

LastPostIndex

Replies

“S3” “2015-01-03:09:21:11” 9

“S3” “2015-01-22:23:18:01” 3

“S3” “2015-02-31:13:14:21” 4

“S3” “2015-03-15:17:24:31” 12

“EC2” “2015-01-18:07:33:42” 0

“EC2” “2015-02-12:11:07:56” 18

“RDS” “2015-01-19:01:13:24” 3

“RDS” “2015-02-22:12:19:44” 5

“RDS” “2015-03-11:06:53:00” 11

Every secondary index is associated with exactly one table from which it obtains its data;
it is the base table for the index. DynamoDB maintains indexes automatically. When you
add, update, or delete an item in the base table, DynamoDB makes the change to the item in
any indexes that belong to that table. When you create an index, you configure which attri-
butes copy (project) from the base table to the index. At a minimum, DynamoDB projects
the key attributes from the base table into the index.

684 Chapter 14 ■ Stateless Application Patterns

When you create an index, you define an alternate key (partition key and sort key)
for the index. You also define the attributes that you want to project from the base table
into the index. DynamoDB copies these attributes into the index along with the primary
key attributes from the base table. You can Query or Scan the index like a table.

Consider your application’s requirements when you determine which type of index to
use. Table 14.2 shows the main differences between a global secondary index and a local
secondary index.

TA b le 14 . 2 Global vs. Secondary Indexes

Characteristic Global Secondary Index Local Secondary Index

Key Schema The primary key can be simple
(partition key) or composite
(partition key and sort key).

The primary key must be composite
(partition key and sort key).

Key Attributes The index partition key and sort
key (if present) can be any base
table attributes of type string,
number, or binary.

The partition key of the index is the
same attribute as the partition key
of the base table. The sort key can
be any base table attribute of type
string, number, or binary.

Size Restrictions
Per Partition Key
Value

No size restrictions. No size restrictions.

Online Index
Operations

Create at the same time that you
create a table. You can also add
a new global secondary index
to an existing table or delete an
existing global secondary index.

Create at the same time that you cre-
ate a table. You cannot add a local
secondary index to an existing table,
nor can you delete any local second-
ary indexes that currently exist.

Queries and
Partitions

Query over the entire table,
across all partitions.

Query over a single partition, as
specified by the partition key value
in the query.

Read Consistency Query on eventual consistency
only.

Query eventual consistency or
strong consistency.

Provisioned
Throughput
Consumption

Every global secondary index has
its own provisioned throughput
settings for read and write activity.
Queries, scans, and updates
consume capacity units from the
index, not from the base table.

Query or scan consumes read
capacity units from the base table.
Writes and write updates consume
write capacity units from the base
table.

Projected Attri-
butes

Queries or scans can only request
the attributes that project into the
index. DynamoDB will not fetch
any attributes from the table.

Queries or scans can request attri-
butes that do not project into the
index. DynamoDB will automati-
cally fetch those attributes from the
table.

Amazon DynamoDB 685

If you write an item to a table, you do not have to configure the attributes for any global
secondary index sort key. A table with many global secondary indexes incurs higher costs
for write activity than tables with fewer indexes. For maximum query flexibility, you can
create up to five global secondary indexes and up to five local secondary indexes per table.

To create more than one table with secondary indexes, you must do so sequentially.
Create the first table and wait for it to become active, then create the next table and wait
for it to become active, and so on. If you attempt to create more than one table with a
secondary index at a time, DynamoDB responds with a LimitExceededException error.

For each secondary index, you must configure the following:

Type of index The type of index to be created can be either a global secondary index or a
local secondary index.

Name of index The naming rules for indexes are the same as those for table. The name
must be unique for the base table, but you can use the same name for indexes that you
associate with different base tables.

Index key schema Every attribute in the index key schema must be a top-level attribute
of type string, number, or binary. Other data types, including documents and sets, are not
allowed. Other requirements for the key schema depend on the type of index:

Global secondary index For a global secondary index, the partition key can be any
scalar attribute of the base table. A sort key is optional, and it can be any scalar attri-
bute of the base table.

Local secondary index For a local secondary index, the partition key must be the same
as the base table’s partition key, and the sort key must be a non-key base table attribute.

Additional attributes These attributes are in addition to the table’s key attributes,
which automatically project into every index. You can project attributes of any data type,
including scalars, documents, and sets.

Global secondary index For a global secondary index, you must configure read and
write capacity unit settings. These provisioned throughput settings are independent of
the base table’s settings.

Local secondary index For a local secondary index, you do not need to configure read
and write capacity unit settings. Any read and write operations on a local secondary
index draw from the provisioned throughput settings of its base table.

To generate a detailed list of secondary indexes on a table, use the DescribeTable opera-
tion. DescribeTable returns the name, storage size, and item counts for every secondary
index on the table. These values refresh approximately every six hours.

Use the Query or Scan operation to access the data in a secondary index. You configure
the base table name, index, attributes to return in the results, and any condition expres-
sions or filters that you want to apply. DynamoDB returns the results in ascending or
descending order.

686 Chapter 14 ■ Stateless Application Patterns

 When you delete a table, all indexes associated with that table are deleted.

 Global Secondary Indexes
 Some applications may need to perform many kinds of queries, using a variety of differ-
ent attributes as query criteria. To support these requirements, you can create one or more
global secondary indexes and then issue query requests against these indexes.

 To illustrate, Figure 14.2 displays the GameScores table, which tracks users and scores
for a mobile gaming application. Each item in GameScores has a partition key (UserId) and
a sort key (GameTitle). Figure 14.2 shows the organization of the items.

 f i gu r e 14 . 2 Game scores

UserId

“101”

“101”

“101”

“102”

“102”

“103”

“103”

“103”

“103”

GameTitle

“Galaxy Invaders”

“Galaxy Invaders”

“Attack Ships”

“Galaxy Invaders”

“Meteor Blasters”

“Meteor Blasters”

“Starship X”

“Starship X”

“Alien Adventure”

TopScore TopScoreDateTime

GameScores

Wins Losses

“2015-09-15:17:24:31”5842 ...

...

...

...

...

...

...

...

...

...

“2015-10-22:23:18:01”1000

“2015-08-31:13:14:21”24

192 “2015-07-12:11:07:56”

0 “2015-09-18:07:33:42”

3

“2015-10-19:01:13:24”

“2015-10-19:01:13:24”

2317 “2015-09-11:06:53:00”

723

“2015-07-11:06:53:00”42

21

...

12

4

32

0

1

40

22

4

72

...

3

9

192

5

8

3

12

19

 To write a leaderboard application to display top scores for each game, you could gener-
ate a query that specifi es the key attributes (UserId and GameTitle). While this would be
effi cient for the application to retrieve data from GameScores based on GameTitle only, it
would need to use a Scan operation. As you add more items to the table, Scan operations of
all the data becomes slow and ineffi cient, making it diffi cult to answer questions based on
Figure 14.2 , such as the following:

 ■ What is the top score ever recorded for the game Meteor Blasters?

 ■ Which user had the highest score for Galaxy Invaders?

 ■ What was the highest ratio of wins versus losses?

Amazon DynamoDB 687

 To better implement queries on non-key attributes, create a global secondary index. A
global secondary index contains a selection of attributes from the base table, but you organize
them by a primary key that is different from that of the table. The index key does not require
any of the key attributes from the table, nor does it require the same key schema as a table.

 Every global secondary index must have a partition key and can have an optional sort
key. The index key schema can be different from the base table schema. You could have a
table with a simple primary key (partition key) and create a global secondary index with a
composite primary key (partition key and sort key) or vice versa. The index key attributes
can consist of any top-level string, number, or binary attributes from the base table but not
other scalar types, document types, and set types.

 You can project other base table attributes into the index. When you query
the index, DynamoDB can retrieve these projected attributes efficiently;
however, global secondary index queries cannot fetch attributes from the
base table. In a DynamoDB table, each key value must be unique. However,
the key values in a global secondary index do not need to be unique. A
global secondary index tracks data items only where the key attribute or
attributes actually exist.

 Attribute Projections
 A projection is the set of attributes the secondary index copies from a table. While the
partition key and sort key of the table project into the index, you can also project other
attributes to support your application’s Query requirements. When you query an index,
DynamoDB accesses any attribute in the projection as if those attributes were in a table of
their own.

 When you create a secondary index, confi gure the attributes that project into the index.
DynamoDB provides the following options:

KEYS_ONLY Each item in the index consists only of the table partition key and sort key
values, plus the index key values, and this results in the smallest possible secondary index.

INCLUDE Each item in the index consists only of the table partition key and sort key val-
ues plus the index key values, and it includes other non-key attributes that you confi gure.

ALL Includes all attributes from the source table, including other non-key attributes that
you confi gure. Because the table data is duplicated in the index, an ALL projection results in
the largest possible secondary index.

 When you choose the attributes to project into a global secondary index, consider the
provisioned throughput costs and the storage costs:

 ■ Before accessing a few attributes with the lowest possible latency, consider projecting
only those attributes into a global secondary index. The smaller the index, the less it
costs to store it and the lower your write costs will be.

688 Chapter 14 ■ Stateless Application Patterns

 ■ If your application will frequently access non-key attributes, consider projecting those
attributes into a global secondary index. The additional storage costs for the global
secondary index offset the cost of performing frequent table scans.

 ■ When you’re accessing most of the non-key attributes frequently, project these attri-
butes, or even the entire base table, into a global secondary index. This provides maxi-
mum flexibility; however, your storage cost would increase or even double.

 ■ If your application needs to query a table infrequently but must perform many writes
or updates against the data in the table, consider projecting KEYS_ONLY. The global sec-
ondary index would be of minimal size but would still be available for query activity.

Querying a Global Secondary Index
Use the Query operation to access one or more items in a global secondary index. The query
must specify the name of the base table, the name of the index, the attributes the query
results return, and any query conditions that you want to apply. DynamoDB can return the
results in ascending or descending order.

Consider the following example in which a query requests game data for a leaderboard
application:

{
 "TableName": "GameScores",
 "IndexName": "GameTitleIndex",
 "KeyConditionExpression": "GameTitle = :v_title",
 "ExpressionAttributeValues": {
 ":v_title": {"S": "Meteor Blasters"}
 },
 "ProjectionExpression": "UserId, TopScore",
 "ScanIndexForward": false
}

In this query, the following actions occur:

 ■ DynamoDB accesses GameTitleIndex, using the GameTitle partition key to locate the
index items for Meteor Blasters. All index items with this partition key are next to
each other for rapid retrieval.

 ■ Within this game, DynamoDB uses the index to access the UserID and
TopScore for this game.

 ■ The query results return in descending order, as the ScanIndexForward parameter is
set to false.

Scanning a Global Secondary Index
You can use the Scan operation to retrieve the data from a global secondary index. Provide
the base table name and the index name in the request. With a Scan operation, DynamoDB

Amazon DynamoDB 689

reads the data in the index and returns it to the application. You can also request only some
of the data and to discard the residual data. To do this, use the FilterExpression param-
eter of the Scan operation.

 Synchronizing Data between Tables and Global Secondary
Indexes
 DynamoDB automatically synchronizes each global secondary index with its base table.
When an application writes or deletes items in a table, any global secondary indexes on
that table update asynchronously by using an eventually consistent model. Though applica-
tions seldom write directly to an index, understand the following the implications of how
DynamoDB maintains these indexes:

 ■ When you create a global secondary index, you configure one or more index key attri-
butes and their data types.

 ■ When you write an item to the base table, the data types for those attributes must
match the index key schema’s data types.

 ■ When you put or delete items in a table, the global secondary indexes on that table
update in an eventually consistent fashion.

Long Global Index Propagations

 Under normal conditions, changes to the table data propagate to the global
secondary indexes within a fraction of a second. However, if an unlikely
failure scenario occurs, longer propagation delays may occur. Because of
this, your applications need to anticipate and handle situations where a
query on a global secondary index returns results that are not current.

 Considerations for Provisioned Throughput of Global
Secondary Indexes
 When you create a global secondary index, you must confi gure read and write capacity
units for the workload that you expect on that index. The provisioned throughput settings
of a global secondary index are separate from those of its base table. A Query operation on
a global secondary index consumes read capacity units from the index, not the base table.

 When you put, update, or delete items in a table, the global secondary indexes on that
table are updated. These index updates consume write capacity units from the index, not
from the base table.

 To view the provisioned throughput settings for a global secondary index, use the
DescribeTable operation, and detailed information about the table’s global secondary
indexes return.

690 Chapter 14 ■ Stateless Application Patterns

 If you query a global secondary index and exceed its provisioned read
capacity, your request throttles. If you perform heavy write activity on
the table but a global secondary index on that table has insufficient write
capacity, then the write activity on the table throttles.

 To avoid potential throttling, the provisioned write capacity for a global
secondary index should be equal to or greater than the write capacity
of the base table because new updates write to both the base table and
global secondary index.

 Read Capacity Units
 Global secondary indexes support eventually consistent reads, each of which consume
one-half of a read capacity unit . For example, a single global secondary index query can
retrieve up to 8 KB (2 × 4 KB) per read capacity unit. For global secondary index queries,
DynamoDB calculates the provisioned read activity in the same way that it does for queries
against tables, except that the calculation is based on the sizes of the index entries instead
of the size of the item in the base table. The number of read capacity units is the sum of all
projected attribute sizes across all returned items; the result is then rounded up to the next
4-KB boundary.

 The maximum size of the results returned by a Query operation is 1 MB; this includes
the sizes of all of the attribute names and values across all returned items.

 For example, if a global secondary index contains items with 2,000 bytes of data and
a query returns 8 items, then the total size of the matching items is 2,000 bytes × 8 items =
16,000 bytes; this is then rounded up to the nearest 4-KB boundary. Because global
secondary index queries are eventually consistent, the total cost is 0.5 × (16 KB/4 KB), or
two read capacity units.

 Write Capacity Units
 When you add, update, or delete an item in a table and a global secondary index is affected
by this, then the global secondary index consumes provisioned write capacity units for the
operation. The total provisioned throughput cost for a write consists of the sum of the write
capacity units consumed by writing to the base table and those consumed by updating the
global secondary indexes. If a write to a table does not require a global secondary index
update, then no write capacity is consumed from the index.

 For a table write to succeed, the provisioned throughput settings for the table and all of
its global secondary indexes must have enough write capacity to accommodate the write;
otherwise, the write to the table will throttle.

 Factors Affecting Cost of Writes
 The cost of writing an item to a global secondary index depends on the following factors:

 ■ If you write a new item to the table that defines an indexed attribute or you update an
existing item to define a previously undefined indexed attribute, one write operation is
required to put the item into the index.

Amazon DynamoDB 691

 ■ If an update to the table changes the value of an indexed key attribute (from A to B),
two writes are required—one to delete the previous item from the index and another
write to put the new item into the index.

 ■ If an item was present in the index, but a write to the table caused the indexed attribute
to be deleted, one write is required to delete the old item projection from the index.

 ■ If an item is not present in the index before or after the item is updated, there is no
additional write cost for the index.

 ■ If an update to the table changes the value of only projected attributes in the index key
schema but does not change the value of any indexed key attribute, then one write is
required to update the values of the projected attributes into the index.

All of these factors assume that the size of each item in the index is less than or equal to
the 1-KB item size for calculating write capacity units. Larger index entries require addi-
tional write capacity units. Minimize your write costs by considering which attributes your
queries must return and projecting only those attributes into the index.

Considerations for Storing Global Secondary Indexes
When an application writes an item to a table, DynamoDB automatically copies the cor-
rect subset of attributes to any global secondary indexes in which those attributes should
appear. Your account is charged for storing the item in the base table and also for storing
attributes in any global secondary indexes on that table.

The amount of space used by an index item is the sum of the following:

 ■ Size in bytes of the base table primary key (partition key and sort key)

 ■ Size in bytes of the index key attribute

 ■ Size in bytes of the projected attributes (if any)

 ■ 100 bytes of overhead per index item

To estimate the storage requirements for a global secondary index, estimate the average
size of an item in the index and then multiply by the number of items in the base table that
have the global secondary index key attributes.

If a table contains an item for which a particular attribute is not defined but that attri-
bute is defined as an index partition key or sort key, DynamoDB does not write any data
for that item to the index.

Managing Global Secondary Indexes
Global secondary indexes require you to create, describe, modify, delete, and detect index
key violations.

Creating a Table with Global Secondary Indexes
To create a table with one or more global secondary indexes, use the CreateTable opera-
tion with the GlobalSecondaryIndexes parameter. For maximum query flexibility, create
up to five global secondary indexes per table. Specify one attribute to act as the index

692 Chapter 14 ■ Stateless Application Patterns

partition key. You can specify another attribute for the index sort key. It is not necessary
for either of these key attributes to be the same as a key attribute in the table.

Each index key attribute must be a scalar of type string, number, or binary, and can-
not be a document or a set. You can project attributes of any data type into a global
secondary index, including scalars, documents, and sets. You must also provide
ProvisionedThroughput settings for the index, consisting of ReadCapacityUnits and
WriteCapacityUnits. These provisioned throughput settings are separate from those of the
table but behave in similar ways.

Viewing the Status of Global Secondary Indexes on a Table
To view the status of all the global secondary indexes on a table, use the DescribeTable
operation. The GlobalSecondaryIndexes portion of the response shows all indexes on the
table, along with the current status of each (IndexStatus).

The IndexStatus for a global secondary index is as follows:

Creating Index is currently being created, and it is not yet available for use.

Active Index is ready for use, and the application can perform Query operations on the
index.

Updating Provisioned throughput settings of the index are being changed.

Deleting Index is currently being deleted, and it can no longer be used.

When DynamoDB has finished building a global secondary index, the index status
changes from Creating to Active.

Adding a Global Secondary Index to an Existing Table
To add a global secondary index to an existing table, use the UpdateTable operation with
the GlobalSecondaryIndexUpdates parameter, and provide the following information:

 ■ An index name, which must be unique among all of the indexes on the table.

 ■ The key schema of the index. Configure one attribute for the index partition key. You
can configure another attribute for the index sort key. It is not necessary for either of
these key attributes to be the same as a key attribute in the table. The data types for
each schema attribute must be scalar: string, number, or binary.

 ■ The attributes to project from the table into the index include the following:

KEYS_ONLY Each item in the index consists of only the table partition key and sort
key values, plus the index key values.

INCLUDE In addition to the attributes described in KEYS_ONLY, the secondary index
includes other non-key attributes that you configure.

ALL The index includes all attributes from the source table.

 ■ The provisioned throughput settings for the index, consisting of ReadCapacityUnits
and WriteCapacityUnits. These provisioned throughput settings are separate from
those of the table.

Amazon DynamoDB 693

 You can create only one global secondary index per UpdateTable opera-
tion, and you cannot cancel a global secondary index creation process.

 Resource Allocation
 DynamoDB allocates the compute and storage resources to build the index. During the
resource allocation phase, the IndexStatus attribute is CREATING and the Backfilling
attribute is false . Use the DescribeTable operation to retrieve the status of a table and all
of its secondary indexes.

 While the index is in the resource allocation phase, you cannot delete its parent table,
nor can you modify the provisioned throughput of the index or the table. You cannot add
or delete other indexes on the table; however, you can modify the provisioned throughput
of these other indexes.

 Backfilling
 For each item in the table, DynamoDB determines which set of attributes to write to the
index based on its projection (KEYS_ONLY , INCLUDE , or ALL). It then writes these attributes
to the index. During the backfi ll phase, DynamoDB tracks items that you add, delete, or
update in the table and the attributes in the index.

 During the backfi lling phase, the IndexStatus attribute is CREATING and the
 Backfilling attribute is true . Use the DescribeTable operation to retrieve the status of a
table and all of its secondary indexes.

 While the index is backfilling , you cannot delete its parent table. However, you can still
modify the provisioned throughput of the table and any of its global secondary indexes.

 When the index build is complete, its status changes to Active . You are not able to
query or scan the index until it is Active .

 restrictions and limitations of backfi lling

 During the backfi lling phase, some writes of violating index items may succeed while oth-
ers are rejected. This can occur if the data type of an attribute value does not match the
data type of an index key schema data type or if the size of an attribute exceeds the maxi-
mum length for an index key attribute.

 Index key violations do not interfere with global secondary index creation; however,
when the index becomes Active , the violating keys will not be present in the index. After
 backfilling , all writes to items that violate the new index’s key schema will be rejected.
To detect and resolve any key violations that may have occurred, run the Violation Detec-
tor tool after the backfi ll phase completes.

 While the resource allocation and backfi lling phases are in progress, the index is in the
 CREATING state. During this time, DynamoDB performs read operations on the table; you
are not charged for this read activity.

 You cannot cancel an in-fl ight global secondary index creation.

694 Chapter 14 ■ Stateless Application Patterns

 Detecting and Correcting Index Key Violations
 Throughout the backfi ll phase of the global secondary index creation, DynamoDB exam-
ines each item in the table to determine whether it is eligible for inclusion in the index,
because noneligible items cause index key violations. In these cases, the items remain in the
table, but the index will not have a corresponding entry for that item.

 An index key violation occurs if:

 ■ There is a data type mismatch between an attribute value and the index key schema
data type. For example, in Figure 14.1 , if one of the items in the GameScores table
had a TopScore value of type “string,” and you add a global secondary index with
a number-type partition key of TopScore , the item from the table would violate the
index key.

 ■ An attribute value from the table exceeds the maximum length for an index key attri-
bute. The maximum length of a partition key is 2,048 bytes , and the maximum length
of a sort key is 1,024 bytes . If any of the corresponding attribute values in the table
exceed these limits, the item from the table violates the index key.

 If an index key violation occurs, the backfill phase continues without interruption;
however, any violating items are not included in the index . After the backfill phase com-
pletes, all writes to items that violate the new index’s key schema will be rejected.

 Deleting a Global Secondary Index from a Table
 You use the UpdateTable operation to delete a global secondary index. While the global
secondary index is being deleted, there is no effect on any read or write activity in the par-
ent table, and you can still modify the provisioned throughput on other indexes. You can
delete only one global secondary index per UpdateTable operation.

 When you delete a table (DeleteTable), all of the global secondary indexes
on that table are deleted.

 Local Secondary Indexes
 Some applications query data by using only the base table’s primary key; however, there
may be situations where an alternate sort key would be helpful. To give your application a
choice of sort keys, create one or more local secondary indexes on a table and issue Query
or Scan requests against these indexes.

 For example, Figure 14.3 is useful for an application such as discussion forums. The fi g-
ure shows how the items in the table would be organized.

Amazon DynamoDB 695

f i gu r e 14 . 3 Forum thread table

ForumName Subject LastPostDateTime

Thread

Replies

“S3” “aaa” “2015-03-15:17:24:31” 12 ...

...

...

...

...

...

...

...

...

...

“S3” “bbb” “2015-01-22:23:18:01” 3

“S3” “ccc” “2015-02-31:13:14:21” 4

“S3” “ddd” “2015-01-03:09:21:11” 9

“EC2” “yyy” “2015-02-12:11:07:56” 18

“EC2” “zzz” “2015-01-18:07:33:42” 0

“RDS” “rrr” “2015-01-19:01:13:24” 3

“RDS” “sss” “2015-03-11:06:53:00” 11

“RDS” “ttt” “2015-10-22:12:19:44” 5

DynamoDB stores all items with the same partition key value contiguously. In this
example, given a particular ForumName, a Query operation could immediately locate the
threads for that forum. Within a group of items with the same partition key value, the
items are sorted by sort key value. If the sort key (Subject) is also provided in the Query
operation, DynamoDB can narrow the results that are returned, such as returning the
threads in the S3 forum that have a Subject beginning with the letter a.

Requests may require more complex data-access patterns, such as the following:

 ■ Which forum threads receive the most views and replies?

 ■ Which thread in a particular forum contains the largest number of messages?

 ■ How many threads were posted in a particular forum, within a particular time period?

To answer these questions, the Query action would not be sufficient. Instead, you must
scan the entire table. For a table with millions of items, this would consume a large amount
of provisioned read throughput and time. However, you can configure one or more local
secondary indexes on non-key attributes, such as Replies or LastPostDateTime.

A local secondary index maintains an alternate sort key for a given partition key value.
A local secondary index also contains a copy of some, or all, of the attributes from its base
table. You configure which attributes project into the local secondary index when you cre-
ate the table. The data in a local secondary index is organized by the same partition key as
the base table but with a different sort key. This enables you to access data items efficiently
across this different dimension. For greater Query or Scan flexibility, create up to five local
secondary indexes per table.

696 Chapter 14 ■ Stateless Application Patterns

If an application locates the threads that have been posted within the last three months
but lacks a local secondary index, the application must scan the entire thread table and
discard any posts that were not listed within the specified time frame. With a local second-
ary index, a Query operation could use LastPostDateTime as a sort key and find the data
quickly.

Figure 14.4 shows a local secondary index named LastPostIndex. The parti-
tion key is the same as that of the Thread table (see Figure 14.3), but the sort key is
LastPostDateTime.

f i gu r e 14 . 4 Last post index

“ddd”

.........

“bbb”

“ccc”

“aaa”

“zzz”

“yyy”

“rrr”

“ttt”

“sss”

ForumName LastPostDateTime Subject

LastPostIndex

“S3” “2015-01-03:09:21:11”

“S3” “2015-01-22:23:18:01”

“S3” “2015-02-31:13:14:21”

“S3” “2015-03-15:17:24:31”

“EC2” “2015-01-18:07:33:42”

“EC2” “2015-02-12:11:07:56”

“RDS” “2015-01-19:01:13:24”

“RDS” “2015-02-22:12:19:44”

“RDS” “2015-03-11:06:53:00”

Every local secondary index must meet the following conditions:

 ■ The partition key is the same as that of its base table.

 ■ The sort key consists of exactly one scalar attribute.

 ■ The sort key of the base table projects into the index, where it acts as a non-key
attribute.

In Figure 14.4, the partition key is ForumName, and the sort key of the local secondary
index is LastPostDateTime. In addition, the sort key value from the base table (Subject)
projects into the index, but it is not a part of the index key. If an application needs a list
that is based on ForumName and LastPostDateTime, it can issue a Query request against
LastPostIndex. The query results sort by LastPostDateTime and can return in ascending
or descending order. The query can also apply key conditions, such as returning only items
that have a LastPostDateTime within a particular time span.

Amazon DynamoDB 697

 Every local secondary index automatically contains the partition and sort keys from its
base table, so you can project non-key attributes into the index. When you query the index,
DynamoDB can retrieve these projected attributes effi ciently. When you query a local
secondary index, the Query operation can also retrieve attributes that do not project into
the index. DynamoDB automatically collects these attributes from the base table but at a
greater latency and with higher provisioned throughput costs.

 For any local secondary index, you can store up to 10 GB of data per dis-
tinct partition key value.

 Creating a Local Secondary Index
 To create one or more local secondary indexes on a table, use the LocalSecondaryIndexes
parameter of the CreateTable operation. You create local secondary indexes when you cre-
ate the table. When you delete a table, any local secondary indexes on that table are also
deleted. Confi gure one non-key attribute to act as the sort key of the local secondary index.
The local secondary indexes attribute is scalar and includes string, number, binary, document
types, and set types. You can project attributes of any data type into a local secondary index.

 For tables with local secondary indexes, there is a 10-GB size limit per par-
tition key value. A table with local secondary indexes can store any number
of items, as long as the total size for any one partition key value does not
exceed 10 GB.

 Querying a Local Secondary Index
 In a DynamoDB table, the combined partition key value and sort key value for each item
must be unique. However, in a local secondary index, the sort key value does not need to
be unique for a given partition key value. If there are multiple items in the local secondary
index that have the same sort key value, a Query operation returns all items with the same
partition key value. In the response, the items that the query locates do not return in any
particular order.

 You can query a local secondary index using eventually consistent or strongly consistent
reads. To confi gure which type of consistency you want, use the ConsistentRead parameter
of the Query operation. A strongly consistent read from a local secondary index returns
the latest updated values. If the Query operation must collect additional attributes from the
base table, those attributes will be consistent with respect to the index.

 Scanning a Local Secondary Index
 You can use the Scan function to retrieve all data from a local secondary index. Provide
the base table name and the index name in the request. With a Scan function, DynamoDB
reads the data in the index and returns it to the application. You can also scan for specifi c
data to return and discard the other data using the FilterExpression parameter of the
Scan API.

698 Chapter 14 ■ Stateless Application Patterns

Item Writes and Local Secondary Indexes
DynamoDB automatically keeps all local secondary indexes synchronized with their
respective base tables. Applications seldom write directly to an index. However, understand
the implications of how DynamoDB maintains these indexes.

When you create a local secondary index, configure an attribute to serve as the sort key
for the index and configure a data type for that attribute. Whenever you write an item to
the base table, if the item defines an index key attribute, its type must match the index key
schema’s data type.

There is no requirement for a one-to-one relationship between the items in a base table
and the items in a local secondary index. This behavior can be advantageous for many
applications, because a table with many local secondary indexes incurs higher costs for
write activity than tables with fewer indexes.

Provisioned Throughput for Local Secondary Indexes
When you create a table in DynamoDB, you provision read and write capacity units for the
table’s expected workload, which includes read and write activity on the table’s local sec-
ondary indexes.

Read Capacity Units

When you query a local secondary index, the number of read capacity units con-
sumed depends on how you access the data. As with table queries, an index query can
use eventually consistent reads or strongly consistent reads, depending on the value of
ConsistentRead. One strongly consistent read consumes one read capacity unit, but an
eventually consistent read consumes only half of that. By choosing eventually consistent
reads, you can reduce your read capacity unit charges.

For index queries that request only index keys and projected attributes, DynamoDB
calculates the provisioned read activity in the same way that it does for queries against
tables. However, the calculation is based on the sizes of the index entries instead of the size
of the item in the base table. The number of read capacity units is the sum of all projected
attribute sizes across all items returned. The result is then rounded up to the next 4-KB
boundary.

For index queries that read, attributes do not project into the local secondary index,
and DynamoDB must collect those attributes from the base table in addition to reading the
projected attributes from the index. These collections occur when you include any non-pro-
jected [per DynamoDB documentation] attributes in the Select or ProjectionExpression
parameters of the Query operation. Fetching causes additional latency in query responses,
and it incurs a higher provisioned throughput cost. In addition to the reads from the local
secondary index, you are charged for read capacity units for every base table item fetched.
This charge is for reading each entire item from the table, not only the requested attributes.

The maximum size of the results returned by a Query operation is 1 MB. This includes
the sizes of all of the attribute names and values across all items returned. However, if a
query against a local secondary index causes DynamoDB to fetch item attributes from the

Amazon DynamoDB 699

base table, the maximum size of the data in the results may be lower. In this case, the result
size is the sum of the following factors:

 ■ The size of the matching items in the index, rounded up to the next 4 KB

 ■ The size of each matching item in the base table, with each item individually rounded
up to the next 4 KB

Using this formula, the maximum size of the results returned by a Query operation is
still 1 MB.

example 2: Query read Capacity units for local Secondary index

A table has items the size of 300 bytes. There is a local secondary index on that table,
but only 200 bytes of each item projects into the index. If you query this index, the query
requires table fetches for each item, and the query returns four items. DynamoDB sums
up the following:

 ■ Size of the matching items in the index: 200 bytes × 4 items = 800 bytes; this rounds
up to 4 KB.

 ■ Size of each matching item in the base table: (300 bytes, rounds up to 4 KB) × 4 items
= 16 KB.

The total size of the data in the result is therefore 20 KB.

Write Capacity Units

When you add, update, or delete items in a table, the local secondary indexes consume pro-
visioned write capacity units for the table. The total provisioned throughput cost for a write
is the sum of write capacity units consumed by the write to the table and those consumed
by the update of the local secondary indexes.

The cost of writing an item to a local secondary index depends on the following factors:

 ■ If you write a new item to the table that defines an indexed attribute or you update an
existing item to define a previously undefined indexed attribute, one write operation is
required to put the item into the index.

 ■ If an update to the table changes the value of an indexed key attribute (from A to B),
two writes are required, one to delete the previous item from the index and another
write to put the new item into the index.

 ■ If an item was present in the index but a write to the table caused the indexed attribute
to be deleted, one write is required to delete the old item projection from the index.

 ■ If an item is not present in the index before or after the item update, there is no addi-
tional write cost for the index.

700 Chapter 14 ■ Stateless Application Patterns

 All of these factors assume that the size of each item in the index is less than or equal to
the 1-KB item size for calculating write capacity units. Larger index entries require addi-
tional write capacity units. You can minimize your write costs by considering which attri-
butes your queries must return and project only those attributes into the index.

 Storage for Local Secondary Indexes
 When an application writes an item to a table, DynamoDB automatically copies the correct
subset of attributes to any local secondary indexes in which those attributes should appear.
Your account is charged for storing the item in the base table and also for storing attributes
in any local secondary indexes on that table.

 The amount of space used by an index item is the sum of the following elements:

 ■ Size in bytes of the base table primary key (partition and sort key)

 ■ Size in bytes of the index key attribute

 ■ Size in bytes of the projected attributes (if any)

 ■ 100 bytes of overhead per index item

 To estimate the storage requirements for a local secondary index, estimate the average
size of an item in the index and then multiply by the number of items in the base table.

 If a table contains an item where a particular attribute is not defi ned but that attribute is
defi ned as an index sort key, then DynamoDB does not write any data for that item to the
index.

 Amazon DynamoDB Streams
Amazon DynamoDB Streams captures data modifi cation events in DynamoDB tables. The
data about these events appear in the stream in near real time and in the order that the
events occurred.

 Each event represents a stream record. When you enable a stream on a table, DynamoDB
captures information about every modifi cation to data items in the table. The stream cap-
tures an image of the entire item, including all of its attributes. A stream record contains
information about a data modifi cation to a single item in a DynamoDB table including the
primary key attributes of the items. You can confi gure the stream so that the stream records
capture additional information, such as the “before” and “after” images of modifi ed items.
Finally, a stream record is written when an item is deleted from the table, and each stream
record also contains the name of the table, the event timestamp, and other metadata.

 Stream records have a lifetime of 24 hours, after which they are deleted
automatically from the stream.

 A DynamoDB stream is a time-ordered fl ow of information of item-level modifi cations
(create, update, or delete) to items in a DynamoDB table.

Amazon DynamoDB 701

 DynamoDB Streams does the following:

 ■ Each stream record appears exactly once in the stream.

 ■ For each item that is modified in a DynamoDB table, the stream records appear in the
same sequence as the actual modifications to the item.

 Many applications benefi t from the ability to capture changes to items stored in a
DynamoDB table when such changes occur. The following are common scenarios:

 ■ An application in one AWS Region modifies the data in a Amazon DynamoDB table.
A second application in another AWS Region reads these data modifications and writes
the data to another table, creating a replica that stays in sync with the original table.

 ■ A popular mobile app modifies data in a DynamoDB table at the rate of thousands of
updates per second. Another application captures and stores data about these updates,
providing near-real-time usage metrics for the mobile app.

 ■ A global multiplayer game has a multi-master topology, storing data in multiple AWS
Regions. Each master stays in sync by consuming and replaying the changes that occur
in the remote regions.

 ■ An application automatically sends notifications to the mobile devices of all friends in
a group as soon as one friend uploads a new picture.

 ■ A new customer adds data to a DynamoDB table. This event invokes another applica-
tion that sends a welcome email to the new customer.

 Whenever an application creates, updates, or deletes items in the table, Amazon
DynamoDB Stream writes a stream record with the primary key attribute, or attributes, of
the items that were modifi ed. A stream record contains information about a data modifi ca-
tion to a single item in a DynamoDB table. Applications can access this log and view the
data items as they appeared before and after they were modifi ed, in near real time.

 DynamoDB Streams writes stream records in near-real time, so you can
build applications that consume these streams and act based on the
contents.

 DynamoDB Cross-Region Replication
 You can create tables that automatically replicate across two or more AWS Regions with
full support for multi-master writes. Using cross-region replication, you can build fast,
massively scaled applications for a global user base without having to manage the replica-
tion process.

 DynamoDB Stream Endpoints
 AWS maintains separate endpoints for DynamoDB and DynamoDB Streams. To work
with database tables and indexes, your application must access a DynamoDB endpoint. To

702 Chapter 14 ■ Stateless Application Patterns

read and process DynamoDB Streams records, your application must access a DynamoDB
Streams endpoint in the same AWS Region.

Figure 14.5 shows the DynamoDB endpoint flow.

f i gu r e 14 .5 DynamoDB Streams endpoints

Your Application

DynamoDB
Web API

DynamoDB

DynamoDB Streams
Web API

DynamoDB
Streams

AWS SDK

The naming convention for DynamoDB Streams endpoints is
streams.dynamodb.<region>.amazonaws.com. For example, if you use the endpoint
dynamodb.us-west-2.amazonaws.com to access DynamoDB, use the endpoint streams
.dynamodb.us-west-2.amazonaws.com to access DynamoDB Streams.

The AWS SDKs provide separate clients for DynamoDB and DynamoDB Streams.
Depending on your requirements, your application can access a DynamoDB endpoint, a
DynamoDB Streams endpoint, or both at the same time. To connect to both endpoints,
your application must instantiate two clients: one for DynamoDB and one for DynamoDB
Streams.

Enabling a Stream
You can enable a stream on a new table when you create it, enable or disable a stream on
an existing table, or change the settings of a stream. DynamoDB Streams operates asyn-
chronously, so there is no performance impact on a table if you enable a stream.

You can also use the CreateTable or UpdateTable APIs to enable or modify a stream.
The StreamSpecification parameter determines how the stream is configured:

StreamEnabled Specifies whether a stream for the table is enabled (true) or disabled
(false)

Amazon DynamoDB 703

StreamViewType Specifies the information that will be written to the stream whenever
data in the table is modified:

KEYS_ONLY Only the key attributes of the modified item

NEW_IMAGE The entire item as it appears after it was modified

OLD_IMAGE The entire item as it appeared before it was modified

NEW_AND_OLD_IMAGES Both the new and the old images of the item

You can enable or disable a stream at any time. However, if you attempt to enable a
stream on a table that already has a stream, you will receive a ResourceInUseException.
If you attempt to disable a stream on a table that does not have a stream, you will receive a
ValidationException.

When you set StreamEnabled to true, DynamoDB creates a new stream with a unique
stream descriptor. If you disable and then re-enable a stream on the table, a new stream is
created with a different stream descriptor.

The Amazon Resource Name (ARN) uniquely identifies every stream. The following is
an example of defining an ARN for a stream on a DynamoDB table named TestTable:

arn:aws:dynamodb:us-west-2:111122223333:table/TestTable/stream/
2015-05-11T21:21:33.291

To determine the latest stream descriptor for a table, issue a DynamoDB DescribeTable
request and look for the LatestStreamArn element in the response.

Reading and Processing a Stream
To read and process a stream, your application must connect to a DynamoDB Streams
endpoint and issue API requests. A stream consists of stream records. Each stream record
represents a single data modification in the DynamoDB table to which the stream belongs.
Each stream record is assigned a sequence number, reflecting the order in which the record
was published to the stream.

Stream records are organized into groups called shards. Each shard acts as a container
for multiple stream records and contains information required for accessing and iterating
through these records. The stream records within a shard are removed automatically after
24 hours. If you disable a stream, any shards that are open are closed.

Shards are ephemeral, meaning that they can be both created and deleted automatically
as necessary. Any shard can automatically split into multiple new shards, and a shard may
split in response to high levels of write activity on its parent table to enable applications to
process records from multiple shards in parallel.

It is equally possible for a parent shard to have only one child shard. Because shards
have a parent-and-children lineage, an application must always process a parent shard
before it processes a child shard. This ensures that the stream records process in the correct
order.

If you use the DynamoDB Streams Kinesis Adapter, this processing is handled for
you. Your application processes the shards and stream records in the correct order, and it

704 Chapter 14 ■ Stateless Application Patterns

automatically handles new or expired shards and shards that split while the application is
running.

 Figure 14.6 shows the relationship between a stream, shards in the stream, and stream
records in the shards.

 f i gu r e 14 .6 Stream and shard relationship

Shard

Stream Records

DynamoDB
Stream da

ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

da
ta

 To access a stream and process the stream records, do the following:

 1. Identify the unique ARN of the stream that you want to access.

 2. Determine which shard or shards in the stream contain the stream records of interest.

 3. Access the shard or shards and retrieve the stream records that you want.

 If you perform a PutItem or UpdateItem operation that does not change
any data in an item, then DynamoDB Streams will not write a stream
record for that operation.

 No more than two processes should be reading from the same stream’s
shard at the same time. Having more than two readers per shard may
result in throttling.

 Read Capacity for DynamoDB Streams
 DynamoDB is available in multiple AWS Regions around the world. Each region is indepen-
dent and isolated from other AWS Regions. For example, a table called People in the us-
east-2 Region and a table named People in the us-west-2 Region are two entirely separate
tables.

Amazon DynamoDB 705

Every AWS Region consists of multiple, distinct locations called Availability Zones. Each
Availability Zone is isolated from failures in other Availability Zones and provides inexpen-
sive, low-latency network connectivity to other Availability Zones in the same region. This
allows rapid replication of your data among multiple Availability Zones in a region.

When an application writes data to a DynamoDB table and receives an HTTP 200
response (OK), all copies of the data are updated. The data is eventually consistent across all
storage locations, usually within one second or less.

Eventually consistent reads DynamoDB supports eventually consistent reads and strongly
consistent reads. When you read data from a DynamoDB table, the response may not
reflect the results of a recently completed write operation and may include some stale data.
If you repeat your read request after a short period, the response returns the latest data.

Strongly consistent reads DynamoDB uses eventually consistent reads unless you specify
otherwise. Read operations, such as GetItem, query, and Scan, provide a ConsistentRead
parameter. If you set this parameter to true, DynamoDB uses strongly consistent reads
during the operation. When you request a strongly consistent read, DynamoDB returns a
response with the most up-to-date data, reflecting the updates from all prior write opera-
tions that were successful. A strongly consistent read may not be available if there is a net-
work delay or outage.

DynamoDB Streams API
The DynamoDB Streams API provides the following operations:

ListStreams Returns a list of stream descriptors for the current account and endpoint,
or you can request only the stream descriptors for a particular table name.

DescribeStream Returns information about a stream, such as its ARN, and where your
application can begin to read the first few stream records. The output includes a list of
shards associated with the stream, including the shard IDs.

GetShardIterator Returns a shard iterator, which describes a location within a shard,
to retrieve the records from the stream. You can request that the iterator provide access to
the oldest point, the newest point, or a particular point in the stream.

GetRecords Retrieves one or more stream records by using a given shard iterator.
Provides the shard iterator returned from a GetShardIterator request.

Data Retention Limit for DynamoDB Streams
All data in DynamoDB Streams is subject to a 24-hour lifetime. You can retrieve and ana-
lyze the last 24 hours of activity for any given table; however, data older than
24 hours is susceptible to trimming (removal) at any moment.

If you disable a stream on a table, the data in the stream continues to be readable for
24 hours. After this time, the data expires, and the stream records are deleted automati-
cally. There is no mechanism for manually deleting an existing stream; you must wait until
the retention limit expires (24 hours) and all of the stream records are deleted.

706 Chapter 14 ■ Stateless Application Patterns

AWS Lambda Triggers in DynamoDB Streams
DynamoDB integrates with AWS Lambda, so you can create triggers (code that executes
automatically) that automatically respond to events in DynamoDB Streams. With triggers,
you can build applications that react to data modifications in DynamoDB tables.

example 3: dynamodb Table update using AWS lambda and Amazon
resource name

In Figure 14.2, you have a mobile gaming app that writes to a GameScores table. When-
ever the TopScore attribute of the GameScores table updates, a corresponding stream
record writes to the table’s stream. This event triggers a Lambda function that posts a
congratulatory message on a social media network.

If you enable DynamoDB Streams on a table, you can associate the stream Amazon
ARN with a Lambda function that you write. Immediately after an item in the table is
modified, a new record appears in the table’s stream. Lambda polls the stream and invokes
your Lambda function synchronously when it detects new stream records.

The Lambda function can perform any actions that you configure, such as sending a
notification or initiating a workflow. For instance, you can write a Lambda function to
copy each stream record to persistent storage, such as Amazon Simple Storage Service
(Amazon S3), to create a permanent audit trail of write activity in your table.

Query so you can create triggers that automatically respond to events in DynamoDB
Streams. With triggers, you can build applications that react to data modifications in
DynamoDB tables.

If you enable DynamoDB Streams on a table, you can associate the stream ARN with a
Lambda function that you write. Immediately after an item in the table is modified, a new
record appears in the table’s stream. Lambda polls the stream and invokes your Lambda
function synchronously when it detects new stream records.

example 4: lambda email Trigger

A Customers table, such as the one shown in Figure 14.7, contains customer information
for a company. If you want to send a “welcome” email to each new customer, enable a
stream on that table and then associate the stream with a Lambda function. The Lambda
function executes whenever a new stream record appears, but it processes only new
items added to the Customers table. For any item that has an EmailAddress attribute, the
Lambda function invokes Amazon Simple Email Service (Amazon SES) to send an email
to that address. In Figure 14.7, the last customer, Craig Roe, will not receive an email
because he does not have an EmailAddress.

Amazon DynamoDB 707

f i gu r e 14 .7 AWS Lambda Customers table

Customers

New item

Stream
record DynamoDB Streams

Stream
record

Stream
record

AWS
Lambda

Amazon
SES

Welcome!

New item

New item

Amazon DynamoDB Auto Scaling
Amazon DynamoDB automatic scaling actively manages throughput capacity for tables
and global secondary indexes. With automatic scaling, you can define a range (upper and
lower limits) for read and write capacity units and define a target utilization percentage
within that range. DynamoDB automatic scaling seeks to maintain your target utilization,
even as your application workload increases or decreases.

With DynamoDB automatic scaling, a table or a global secondary index can increase
its provisioned read and write capacity to handle sudden increases in traffic without
throttling. When the workload decreases, DynamoDB automatic scaling can decrease
the throughput so that you do not pay for unused provisioned capacity.

If you use the AWS Management Console to create a table or a global secondary
index, DynamoDB automatic scaling is enabled by default. You can manage automatic
scaling settings at any time by using the console, the AWS CLI, or one of the AWS
SDKs.

708 Chapter 14 ■ Stateless Application Patterns

Managing Throughput Capacity Automatically
with AWS Auto Scaling
Many database workloads are cyclical in nature or are difficult to predict in advance.
In a social networking application, where most of the users are active during daytime
hours, the database must be able to handle the daytime activity. But there is no need
for the same levels of throughput at night. If a new mobile gaming app is experiencing
rapid adoption and becomes too popular, the app could exceed the available database
resources, resulting in slow performance and unhappy customers. These situations often
require manual intervention to scale database resources up or down in response to vary-
ing usage levels.

DynamoDB uses the AWS Application Auto Scaling service to adjust provisioned
throughput capacity dynamically in response to actual traffic patterns. This enables a table
or a global secondary index to increase its provisioned read and write capacity to handle
sudden increases in traffic, without throttling. When the workload decreases, Application
Auto Scaling decreases the throughput so that you do not pay for unused provisioned
capacity.

Application Auto Scaling does not scale down your provisioned capacity if the consumed
capacity of your table becomes zero. To scale down capacity manually, perform one of the
following actions:

 ■ Send requests to the table until automatic scaling scales down to the minimum
capacity.

 ■ Change the policy and reduce the maximum provisioned capacity to the same size as
the minimum provisioned capacity.

With Application Auto Scaling, you can create a scaling policy for a table or a global
secondary index. The scaling policy specifies whether you want to scale read capacity
or write capacity (or both), and the minimum and maximum provisioned capacity unit
settings for the table or index.

The scaling policy also contains a target utilization that is the percentage of consumed
provisioned throughput at a point in time. Application Auto Scaling uses a target tracking
algorithm to adjust the provisioned throughput of the table (or index) upward or downward
in response to actual workloads so that the actual capacity utilization remains at or near
your target utilization.

DynamoDB automatic scaling also supports global secondary indexes. Every global
secondary index has its own provisioned throughput capacity, separate from that of its
base table. When you create a scaling policy for a global secondary index, Application
Auto Scaling adjusts the provisioned throughput settings for the index to ensure that its
actual utilization stays at or near your desired utilization ratio, as shown in Figure 14.8.

Amazon DynamoDB 709

f i gu r e 14 . 8 DynamoDB Auto Scaling

Amazon
SNS

Amazon
CloudWatch

Application
Auto

Scaling

DynamoDB
Table

UpdateTable

3

1 2

4

5

6

How DynamoDB Auto Scaling Works
The steps in Figure 14.8 summarize the automatic scaling process:

1. Create an Application Auto Scaling policy for your DynamoDB table.

2. DynamoDB publishes consumed capacity metrics to Amazon CloudWatch.

3. If the table’s consumed capacity exceeds your target utilization (or falls below the
target) for a specific length of time, CloudWatch triggers an alarm. You can view the
alarm on the AWS Management Console and receive notifications using Amazon Sim-
ple Notification Service (Amazon SNS).

4. The CloudWatch alarm invokes Application Auto Scaling to evaluate your scaling
policy.

5. Application Auto Scaling issues an UpdateTable request to adjust your table’s provi-
sioned throughput.

6. DynamoDB processes the UpdateTable request, increasing or decreasing the table’s
provisioned throughput capacity dynamically so that it approaches your target utiliza-
tion.

DynamoDB automatic scaling modifies provisioned throughput settings only when the
actual workload stays elevated or depressed for a sustained period of several minutes. The

710 Chapter 14 ■ Stateless Application Patterns

Application Auto Scaling target tracking algorithm seeks to keep the target utilization at
or near your chosen value over the long term. Sudden, short-duration spikes of activity are
accommodated by the table’s built-in burst capacity.

Burst Capacity
DynamoDB provides some flexibility in your per-partition throughput provisioning by pro-
viding burst capacity. Whenever you are not fully using a partition’s throughput, Amazon
DynamoDB reserves a portion of that unused capacity for later bursts of throughput to
handle usage spikes.

DynamoDB currently retains up to 5 minutes (300 seconds) of unused read and write
capacity. During an occasional burst of read or write activity, these extra capacity units can
be consumed quickly—even faster than the per-second provisioned throughput capacity
that you have defined for your table. However, do not rely on burst capacity being available
at all times, as DynamoDB can also consume burst capacity for background maintenance
and other tasks without prior notice.

To enable DynamoDB automatic scaling, you create a scaling policy. This scaling policy
specifies the table or global secondary index that you want to manage, which capacity type
to manage (read or write capacity), the upper and lower boundaries for the provisioned
throughput settings, and your target utilization.

When you create a scaling policy, Application Auto Scaling creates a pair of
CloudWatch alarms on your behalf. Each pair represents your upper and lower bound-
aries for provisioned throughput settings. These CloudWatch alarms are triggered when
the table’s actual utilization deviates from your target utilization for a sustained period
of time.

When one of the CloudWatch alarms is triggered, Amazon SNS sends you a notification
(if you have enabled it). The CloudWatch alarm then invokes Application Auto Scaling,
which notifies DynamoDB to adjust the table’s provisioned capacity upward or downward,
as appropriate.

Considerations for DynamoDB Auto Scaling
Before you begin using DynamoDB automatic scaling, be aware of the following:

 ■ DynamoDB automatic scaling can increase read capacity or write capacity as often
as necessary in accordance with your automatic scaling policy. All DynamoDB limits
remain in effect.

 ■ DynamoDB automatic scaling does not prevent you from manually modifying pro-
visioned throughput settings. These manual adjustments do not affect any existing
CloudWatch alarms that are related to DynamoDB automatic scaling.

 ■ If you enable DynamoDB automatic scaling for a table that has one or more global
secondary indexes, AWS highly recommends that you also apply automatic scaling
uniformly to those indexes. You can apply this by choosing Apply same settings to
global secondary indexes in the AWS Management Console.

Amazon DynamoDB 711

Provisioned Throughput for DynamoDB Auto Scaling
If you are not using DynamoDB automatic scaling, you must manually define your
throughput requirements. Provisioned throughput is the maximum amount of capacity that
an application can consume from a table or index. If your application exceeds your provi-
sioned throughput settings, it is subject to request throttling.

example 5: determining the Provisioned Throughput Setting

Suppose that you want to read 80 items per second from a table, where the items are
3 KB in size, and you want strongly consistent reads with each read requiring one provi-
sioned read capacity unit. To determine this, divide the item size of the operation by 4 KB
and then round up to the nearest whole number:

3 KB/4 KB = 0.75, or 1 read capacity unit

Knowing this, you must set the table’s provisioned read throughput to 80 read
capacity units:

1 read capacity unit per item × 80 reads per second = 80 read capacity units

If you want to write 100 items per second to your table, and the items are 512 bytes in
size, each write requires one provisioned write capacity unit. To determine this, divide
the item size of the operation by 1 KB and then round up to the nearest whole number:

512 bytes/1 KB = 0.5, or 1

To accomplish this, set the table’s provisioned write throughput to 100 write
capacity units:

1 write capacity unit per item × 100 writes per second = 100 write capacity units

Partitions and Data Distribution
DynamoDB stores data in partitions. A partition is an allocation of storage for a table, backed
by solid-state drives (SSDs) and automatically replicated across multiple Availability Zones
within an AWS Region. Partition management is handled entirely by DynamoDB, so you do
not have to manage partitions yourself. When you create a table, the initial status of the table
is CREATING. During this phase, DynamoDB allocates sufficient partitions to the table so that it
can handle your provisioned throughput requirements. You can begin writing and reading table
data after the table status changes to ACTIVE.

DynamoDB allocates additional partitions to a table in the following situations:

 ■ If you increase the table’s provisioned throughput settings beyond what the existing
partitions can support

 ■ If an existing partition fills to capacity and more storage space is required

712 Chapter 14 ■ Stateless Application Patterns

Partition management occurs automatically in the background, and it is transparent to
your applications. Your table remains available throughout and fully supports your provi-
sioned throughput requirements. Global secondary indexes in DynamoDB are also com-
posed of partitions. The data in a global secondary index is stored separately from the data
in its base table, but index partitions behave similarly to table partitions.

Data Distribution: Partition Key
If your table has a simple primary key (partition key only), DynamoDB stores and retrieves
each item based on its partition key value. To write an item to the table, DynamoDB uses
the value of the partition key as input to an internal hash function. The output value from
the hash function determines the partition in which the item will be stored. To read an
item from the table, you must configure the partition key value for the item. DynamoDB
uses this value as input to its hash function, yielding the partition in which the item can be
found.

Figure 14.9 shows a table named Pets, which spans multiple partitions. The table’s pri-
mary key is AnimalType (only this key attribute is shown). DynamoDB uses its hash func-
tion to determine where to store a new item, in this case based on the hash value of the
string Dog. The items are not stored in sorted order. Each item’s location is determined by
the hash value of its partition key.

f i gu r e 14 . 9 Data distribution and partition

Partition Partition Partition

Hash
Functionf(x)

Amazon DynamoDB 713

 DynamoDB is optimized for uniform distribution of items across a table’s
partitions, regardless of the number of partitions. Choose a partition key
with a large number of distinct values relative to the number of items in the
table.

 Data Distribution: Partition Key and Sort Key
 If the table has a composite primary key (partition key and sort key), DynamoDB calculates
the hash value of the partition key in the same way, but it stores the items with the same
partition key value physically close together, ordered by sort key value.

 To write an item to the table, DynamoDB calculates the hash value of the partition key
to determine which partition should contain the item. In that partition, there could be sev-
eral items with the same partition key value, so DynamoDB stores the item among the oth-
ers with the same partition key in ascending order by sort key.

 To read an item from the table, confi gure both the partition key value and sort key
value. DynamoDB calculates the partition key’s hash value, yielding the partition in which
the item can be found.

 You can read multiple items from the table in a single Query operation, if the desired
items have the same partition key value. DynamoDB returns all items with that partition
key value. You can apply a condition to the sort key that only returns items within a certain
range of values.

 Optimistic Locking with Version Number
Optimistic locking is a strategy to ensure that the client-side item that you are updating or
deleting is the same as the item in DynamoDB. If you use this strategy, then all writes on
your database are protected from being accidentally overwritten.

 DynamoDB global tables use a “last writer wins” reconciliation between
concurrent updates. If you use Global Tables, last writer policy wins. In this
case, the locking strategy does not work as expected.

 With optimistic locking, each item has an attribute that acts as a version number. If you
retrieve an item from a table, the application records the version number of that item. You
can update the item, but only if the version number on the server side has not changed. If
there is a version mismatch, then someone else has modifi ed the item before you did, and
the update attempt fails because you have an outdated version of the item. If this happens,
you retrieve the current item and then attempt to update it again.

 To support optimistic locking, the AWS SDK for Java provides the @Amazon
DynamoDBVersionAttribute annotation. In the mapping class for your table, designate one
property to store the version number and mark it using the annotation. When you save an
object, the corresponding item in the DynamoDB table has an attribute that stores the ver-
sion number. The Amazon DynamoDBMapper assigns a version number when you fi rst save
the object, and it automatically increments the version number each time you update the

714 Chapter 14 ■ Stateless Application Patterns

item. Your update or delete requests succeed only if the client-side object version matches
the corresponding version number of the item in the Amazon DynamoDB table.

ConditionalCheckFailedException occurs if the following conditions are true:

 ■ You use optimistic locking with @Amazon DynamoDBVersionAttribute, and the version
value on the server is different from the value on the client side.

 ■ You configure your own conditional constraints while saving data by using Amazon
DynamoDBMapper with Amazon DynamoDBSaveExpression, and these constraints failed.

Disabling Optimistic Locking
To disable optimistic locking, change the Amazon DynamoDBMapperConfig.SaveBehavior
enumeration value from UPDATE to CLOBBER. Do this by creating an Amazon
DynamoDBMapperConfig instance that skips version checking and then use this instance for
your requests. You can also set locking behavior for a specific operation only. For example,
the following Java snippet uses the DynamoDBMapper to save a catalog item. It specifies
DynamoDBMapperConfig.SaveBehavior by adding the optional DynamoDBMapperConfig
parameter to the save method.

DynamoDBMapper mapper = new DynamoDBMapper(client);

// Load a catalog item.
CatalogItem item = mapper.load(CatalogItem.class, 101);
item.setTitle("This is a new title for the item");
...
// Save the item.
mapper.save(item,
 new DynamoDBMapperConfig(
 DynamoDBMapperConfig.SaveBehavior.CLOBBER));

DynamoDB Tags
You can label DynamoDB resources with tags. Tags allow you to categorize your resources
in different ways: by purpose, owner, environment, or other criteria. Tags help you to iden-
tify a resource quickly based on the tags that you have assigned to it, and they help you to
see your AWS bills broken down by tags.

Tables that have tags automatically tag local secondary indexes and global secondary
indexes. Currently, you cannot tag DynamoDB Streams. AWS offerings and services,
such as Amazon EC2, Amazon S3, DynamoDB, and more, support tags. Efficient tag-
ging can provide cost insights by enabling you to create reports across services that carry
a specific tag.

Tag Restrictions
Each tag consists of a key and a value, both of which you define. Each DynamoDB table
can have only one tag with the same key, so if you attempt to add an existing tag (the same
key), the existing tag value updates to the new value.

Amazon DynamoDB 715

 The following restrictions apply:

 ■ Tag keys and values are case-sensitive.

 ■ The maximum key length is 128 Unicode characters, and the maximum value length is
256 Unicode characters. The allowed character types are letters, white space, and num-
bers, plus the following special characters: + - = . _ : / .

 ■ The maximum number of tags per resource is 50.

 ■ The AWS-assigned tag names and values are automatically assigned the aws : prefix,
which you cannot manually assign.

 ■ AWS-assigned tag names do not count toward the tag limit of 50.

 ■ User-assigned tag names have the prefix user: in the cost allocation report.

 ■ You cannot tag a resource at the same time that you create it.

 Tagging is a separate action that you can perform only after you create the
resource. You cannot backdate the application of a tag.

 DynamoDB Items
 A DynamoDB item is a collection of attributes that is uniquely identifi able among all other
entities in the table, and each item has a name and a value . An attribute value can be a
scalar, a set, or a document type. Each table contains zero or more items. For example, in
a People table, each item represents a person, and in a “cars” table, each item represents
one vehicle. Items in DynamoDB are similar to rows, records, or tables in other database
systems, but in DynamoDB, there is no limit to the number of items that you can store in a
table.

 Atomic Counters
 You can use the UpdateItem operation to implement an atomic counter , which is a numeric
attribute that increments, unconditionally, without interfering with other write requests.
With an atomic counter, the updates are not independent, and the numeric value increments
each time that you call UpdateItem .

 You can use an atomic counter to track the number of visitors to a website. In this case, your
application would increment a numeric value, regardless of its current value. If an UpdateItem
operation fails, the application may retry the operation. This would risk updating the counter
twice, but most can tolerate a slight overcounting or undercounting of website visitors.

 An atomic counter would not be appropriate where overcounting or undercounting can-
not be tolerated, as in a banking application. In this case, it is safer to use a conditional
update instead of an atomic counter.

 All write requests are applied in the order in which they were received.

716 Chapter 14 ■ Stateless Application Patterns

Conditional Writes
By default, the DynamoDB write operations (PutItem, UpdateItem, DeleteItem) are uncon-
ditional. Each of these operations overwrites an existing item that has the specified primary
key. DynamoDB supports conditional writes for these operations. A conditional write suc-
ceeds only if the item attributes meet one or more expected conditions; otherwise, it returns
an error.

Conditional writes are helpful in many situations, including cases in which multiple
users attempt to modify the same item. You may want a PutItem operation to succeed only
if there is not already an item with the same primary key. Alternatively, you could prevent
an UpdateItem operation from modifying an item if one of its attributes has a certain value.
Consider Figure 14.10 in which two users (Alice and Bob) are working with the same item
from a DynamoDB table.

f i gu r e 14 .10 Conditional write success

Id = 1,
Price = 10

GetItem
Update price to 8

Update price to 12

Alice

Bob

Time

GetItem

DynamoDB
Id = 1,

Price = 10

Id = 1,
Price = 10

Id = 1,
Price = 12

Id = 1,
Price = 8

Id = 1,
Price = 8

Id = 1,
Price = 12

Amazon DynamoDB 717

Suppose that Alice updates the Price attribute to 8.

aws dynamodb update-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"1"}}' \
 --update-expression "SET Price = :newval" \
 --expression-attribute-values file://expression-attribute-values.json

The arguments for --expression-attribute-values write to the file
expression-attribute-values.json.

{
 ":newval":{"N":"8"}
}

Now suppose that Bob issues a similar UpdateItem request later but changes the Price
to 12. For Bob, the --expression-attribute-values parameter looks like this:
{
 ":newval":{"N":"12"}
}

Bob’s request succeeds, but Alice’s earlier update is lost.
To request a conditional PutItem, DeleteItem, or UpdateItem, you configure a condition

expression. A condition expression is a string containing attribute names, conditional oper-
ators, and built-in functions where the entire expression must evaluate to true; otherwise,
the operation fails.

Now consider Figure 14.11, showing how conditional writes would prevent Alice’s
update from being overwritten.

Alice first attempts to update Price to 8 but only if the current Price is 10.

aws dynamodb update-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"1"}}' \
 --update-expression "SET Price = :newval" \
 --condition-expression "Price = :currval" \
 --expression-attribute-values file://expression-attribute-values.json

The arguments for --expression-attribute-values write to the file
expression-attribute-values.json.

{
 ":newval":{"N":"8"},
 ":currval":{"N":"10"}
}

718 Chapter 14 ■ Stateless Application Patterns

f i gu r e 14 .11 Conditional write success

Id = 1,
Price = 10

GetItem
Update price to 8

if price = 10

Update price to 12
if price = 10

Alice

Bob

Time

GetItem

DynamoDB
Id = 1,

Price = 10

Id = 1,
Price = 10

Id = 1,
Price = 12

Id = 1,
Price = 8

Id = 1,
Price = 8

Alice’s update succeeds because the condition evaluates to true.
Next, Bob attempts to update the Price to 12 but only if the current Price is 10. For Bob,

the --expression-attribute-values parameter looks like the following:

{
 ":newval":{"N":"12"},
 ":currval":{"N":"10"}
}

Because Alice has previously changed the Price to 8, the condition expression evaluates
to false and Bob’s update fails.

Amazon DynamoDB 719

 Time to Live
Time to Live (TTL) for DynamoDB enables you to defi ne when items in a table expire so
that they can be automatically deleted from the database.

 AWS provides TTL at no extra cost to you as a way to reduce both storage usage and the
cost of storing irrelevant data without using provisioned throughput. With TTL enabled on
a table, you can set a timestamp for deletion on a per-item basis and limit storage usage to
only those records that are relevant.

 TTL is useful if you have continuously accumulating data that loses relevance after a
specifi c time, such as session data, event logs, usage patterns, and other temporary data. If
you have sensitive data that must be retained only for a certain amount of time according
to contractual or regulatory obligations, TTL helps you to make sure that data is removed
promptly and on schedule.

 Enabling Time to Live
 When you enable TTL on a table, a background job checks the TTL attribute of items to
determine whether they are expired. TTL compares the current time in epoch time format
to the time stored in the Time to Live attribute of an item. If the epoch time value stored
in the attribute is less than the current time, the item is marked as expired and later deleted.

 The epoch time format is the number of seconds elapsed since
12:00:00 a.m. on January 1, 1970, UTC.

 DynamoDB deletes expired items on a best-effort basis to ensure availability of through-
put for other data operations. DynamoDB typically deletes expired items within 48 hours
of expiration. The exact duration within which an item is deleted after expiration is specifi c
to the nature of the workload and the size of the table.

 Items that have expired but not deleted still show up in reads, queries, and scans. These
items can be updated, and successful updates to change or remove the expiration attribute
will be honored. As items are deleted, they are immediately removed from local secondary
and global secondary indexes in the same eventually consistent way as a standard delete
operation.

 Before Using Time to Live
 Before you enable TTL on a table, consider the following:

 ■ Make sure that any existing timestamp values in the specified Time to Live attribute
are correct and in the right format.

 ■ Items with an expiration time greater than five years in the past are not deleted.

 ■ If data recovery is a concern, back up your table.

 ■ For a 24-hour recovery window, use DynamoDB Streams.

 ■ For a full backup, use AWS Data Pipeline.

720 Chapter 14 ■ Stateless Application Patterns

 ■ Use the AWS CloudFormation to set TTL when you create a DynamoDB table.

 ■ Use Identity and Access Management (IAM) policies to prevent unauthorized updates
to the TTL attribute or configuration of the TTL feature. If you allow access to only
specified actions in your existing IAM policies, ensure that your policies update to
allow DynamoDB:UpdateTimeToLive for roles that need to enable or disable TTL on
tables.

 ■ Consider whether you must complete any post-processing of deleted items. The
stream’s records of TTL deletes are marked, and you use AWS Lambda function to
monitor the records.

When your program sends a request, DynamoDB attempts to process it. If the request
is successful, DynamoDB returns an HTTP success status code (200 OK), along with the
results from the requested operation.

If the request is unsuccessful, DynamoDB returns an error. Each error has three
components:

 ■ An HTTP status code (such as 400)

 ■ An exception name (such as ResourceNameNotFound)

 ■ An error message (such as Requested resource not found: Table: tablename not
found)

The AWS SDKs resolve propagating errors in your application so that you can take
appropriate action. For example, in a Java program, write try-catch logic to handle a
ResourceNotFoundException.

Error Handling in Your Application
For your application to run smoothly, you must add logic to catch and respond to errors.
Typical approaches include using try-catch blocks or if-then statements. The AWS SDKs
perform their own retries and error checking. If you encounter an error while using one of
the AWS SDKs, the error code and description help you troubleshoot it. You may also see
a Request ID in the response, which can be helpful when working with AWS Support to
diagnose an issue.

Error Retries and Exponential Backoff
Numerous components on a network, such as DNS servers, switches, load balancers, and
others, can return error responses anywhere in the life of a given request. The usual tech-
nique for dealing with these error responses in a networked environment is to implement
retries in the client application. This technique increases the reliability of the application
and reduces operational costs for the developer.

As each AWS SDK automatically implements retry logic, you can modify the retry
parameters to suit your needs. For example, consider a Java application that requires a fail-
fast strategy with no retries allowed in case of an error. With the AWS SDK for Java, you

Amazon DynamoDB 721

could use the ClientConfiguration class and provide a maxErrorRetry value of 0 to turn
off the retries.

 If you are not using an AWS SDK, attempt to retry original requests that receive
server errors (5 xx). However, client errors (4 xx), other than a ThrottlingException or a
ProvisionedThroughputExceededException , indicate the need to revise the request itself or
to correct the problem before trying again.

 In addition to simple retries, each AWS SDK implements the exponential backoff algo-
rithm for better fl ow control. The concept behind exponential backoff is to use progres-
sively longer waits between retries for consecutive error responses. For example, you can
set the wait to up to 50 milliseconds before the fi rst retry, up to 100 milliseconds before the
second retry, up to 200 milliseconds before third retry, and so on.

 However, if the request has not succeeded after a minute, the request size may exceed
your provisioned throughput and not the request rate. Set the maximum number of retries
to stop at around one minute. If the request is not successful, investigate your provisioned
throughput options.

 Capacity Units Consumed by Conditional Writes
 If a ConditionExpression generates an evaluation of false during a conditional write,
DynamoDB consumes write capacity from the table. If the item does not currently exist
in the table, DynamoDB consumes one write capacity unit. If the item does exist, then the
number of write capacity units consumed depends on the size of the item. A failed condi-
tional write of a 1-KB item would consume one write capacity unit. If the item were twice
that size, the failed conditional write would consume two write capacity units.

 A failed conditional write returns a ConditionalCheckFailedException . When this
occurs, you will not receive information in the response about the write capacity that was
consumed. However, you can view the ConsumedWriteCapacityUnits metric for the table
in Amazon CloudWatch.

 To return the number of write capacity units consumed during a conditional write, you
use the ReturnConsumedCapacity parameter with the following attributes:

Total Returns the total number of write capacity units consumed.

Indexes Returns the total number of write capacity units consumed with subtotals for
the table and any secondary indexes that were affected by the operation.

None No write capacity details are returned (default).

 Write operations consume only write capacity units; they do not consume
read capacity units.

 Unlike a global secondary index, a local secondary index shares its provisioned through-
put capacity with its table. Read and write activity on a local secondary index consumes
provisioned throughput capacity from the table.

722 Chapter 14 ■ Stateless Application Patterns

Configuring Item Attributes
This section describes how to refer to item attributes in an expression and projection
expression. You can work with any attribute, even if it is deeply nested within multiple lists
and maps.

Item Attributes
You can work with any attribute in an expression, even if it is deeply nested within multiple
lists and maps.

Top-Level Attributes
If an attribute is not embedded within another attribute, the attribute is top level. Top-level
attributes include the following:

 ■ Id

 ■ Title

 ■ Description

 ■ BicycleType

 ■ Brand

 ■ Price

 ■ Color

 ■ ProductCategory

 ■ InStock

 ■ QuantityOnHand

 ■ RelatedItems

 ■ Pictures

 ■ ProductReviews

 ■ Comment

 ■ Safety.Warning

All of the top-level attributes are scalars, except for Color (list), RelatedItems (list),
Pictures (map), and ProductReviews (map).

Nested Attributes
A nested attribute is embedded within another attribute. To access a nested attribute, you
use dereference operators:

 ■ [n] for list elements

 ■ .(dot) for map elements

Amazon DynamoDB 723

 Accessing List Elements

 The dereference operator for a list element is [n] , where n is the element number. List
elements are zero-based, so [0] represents the fi rst element in the list, [1] represents the
second, and so on. For example:

 ■ MyList[0]

 ■ AnotherList[12]

 ■ ThisList[5][11]

 The element ThisList[5] is itself a nested list. Therefore, ThisList[5][11] refers to the
twelfth element in that list.

 The number within the square brackets must be a non-negative integer. Therefore, the
following expressions are invalid:

 ■ MyList[-1]

 ■ MyList[0.4]

 Accessing Map Elements

 The dereference operator for a map element is a dot (.). Use a dot as a separator between
elements in a map. For example:

 ■ MyMap.nestedField

 ■ MyMap.nestedField.deeplyNestedField

 Document Paths

 In an expression, you use a document path to tell DynamoDB where to fi nd an attribute.
For a top-level attribute, the document path is the attribute name. For a nested attribute,
you construct the document path by using dereference operators.

 The following are examples of document paths:

 ■ Top-level scalar attribute: ProductDescription .

 ■ Top-level list attribute returns the entire list, not only some of the elements:
RelatedItems .

 ■ Third element from the RelatedItems list (remember that list elements are zero-based):
RelatedItems[2] .

 ■ Front-view picture of the product: Pictures.FrontView .

 ■ All of the five-star reviews: ProductReviews.FiveStar .

 ■ First of the five-star reviews: ProductReviews.FiveStar[0] .

 You can use any attribute name in a document path if the fi rst character is a–z or A–Z
and the second character (if present) is a–z, A–Z, or 0–9. If an attribute name does not
meet this requirement, defi ne an expression attribute name as a placeholder.

 The maximum depth for a document path is 32. Therefore, the number of
dereference operators in a path cannot exceed this limit.

724 Chapter 14 ■ Stateless Application Patterns

 Expressions
 In DynamoDB, you can use expressions to denote the attributes that you want to read
from an item. To indicate any conditions that must be met (conditional update) and to
indicate how the attributes are to be updated, you can also use expressions when writing
an item.

 For backward-compatibility, DynamoDB also supports conditional parame-
ters that do not use expressions. New applications should use expressions
instead of the legacy parameters.

 Item Projection Expressions
 To read data from a table, use operations such as GetItem , Query , or Scan . DynamoDB
returns all of the item attributes by default. To acquire select attributes, use a projection
expression.

 A projection expression is a string that identifi es the attributes that you want to collect.
To retrieve a single attribute, specify its name. For multiple attributes, the names must be
comma-separated.

 The following are examples of projection expressions:

 ■ Single top-level attribute:
Title

 ■ Three top-level attributes; DynamoDB retrieves the entire Color set:
Title, Price, Color

 ■ Four top-level attributes’ DynamoDB returns the entire contents of
RelatedItems and ProductReviews :
Title , Description , RelatedItems , ProductReviews

 Attribute names in a Projection expression

 You can use any attribute name in a projection expression, where the fi rst character is a–z
or A–Z and the second character (if present) is a–z, A–Z, or 0–9. If an attribute name does
not meet this requirement, you must defi ne an expression attribute name as a placeholder.

 Expression Attribute Names
 An expression attribute name is a placeholder that you use in an expression as an alterna-
tive to an actual attribute name. An expression attribute name must begin with a # and be
followed by one or more alphanumeric characters. There are several situations in which you
use expression attribute names.

Amazon DynamoDB 725

Reserved words On certain occasions, you might need to write an expression contain-
ing an attribute name that confl icts with a DynamoDB reserved word. Refer to https://
docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html .

 example 6: reserved Words

 aws dynamodb get-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"123"}}' \
 --projection-expression "Comment"

 If an attribute name begins with a number or contains a space, a special
character, or a reserved word, then you must use an expression attribute
name to replace that attribute’s name in the expression.

Attribute names containing dots In an expression, a dot (.) is interpreted as a sepa-
rator character in a document path. However, DynamoDB also enables you to use a
dot character as part of an attribute name, which can be ambiguous. To illustrate, suppose
that you want to retrieve the Safety.Warning attribute from a table.

 To work around this, replace Comment with an expression attribute name, such as #c . The
(pound sign) is required, and it indicates that this is a placeholder for an attribute name.
Suppose that you want to access Safety.Warning by using a projection-expression :

 aws dynamodb get-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"123"}}' \
 --projection-expression " Safety.Warning "

 DynamoDB returns an empty result, rather than the expected string (“Always wear a hel-
met”) when DynamoDB interprets a dot in an expression as a document path separator. In
this case, you must defi ne an expression attribute names (such as #sw) as a substitute for
Safety.Warning . Use the following projection-expression :

 aws dynamodb get-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"123"}}' \
 --projection-expression "#sw" \
 --expression-attribute-names '{"#sw":"Safety.Warning"}'

 DynamoDB would then return the correct result.

726 Chapter 14 ■ Stateless Application Patterns

Nested attributes Suppose that you want to access the nested attribute ProductReviews.
OneStar, using the following projection-expression:

aws dynamodb get-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"123"}}' \
 --projection-expression "ProductReviews.OneStar"

The result contains all of the one-star product reviews, which is expected.

But what if you want to use a projection-expression attribute instead? For example, you
want to define #pr1star as a substitute for ProductReviews.OneStar:

aws dynamodb get-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"123"}}' \
 --projection-expression "#pr1star" \
 --expression-attribute-names '{"#pr1star":"ProductReviews.OneStar"}'

DynamoDB returns an empty result instead of the expected map of one-star reviews
when DynamoDB interprets a dot in an expression attribute value as a character within an
attribute’s name. When DynamoDB evaluates the expression attribute name #pr1star, it
determines that ProductReviews.OneStar refers to a scalar attribute, which is not what
was intended.

The correct approach is to define an expression-attribute-names attribute for each ele-
ment in the document path:

#pr: ProductReviews

#1star: OneStar

You then use #pr.#1star for the projection expression:

aws dynamodb get-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"123"}}' \
 --projection-expression "#pr.#1star" \
 --expression-attribute-names '{"#pr":"ProductReviews", "#1star":"OneStar"}'

DynamoDB returns the correct result.

Repeat attribute names Expression attribute names are helpful when you must refer to the
same attribute name repeatedly. For example, consider the following expression for retriev-
ing reviews from a ProductCatalog item:

aws dynamodb get-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"123"}}' \
 --projection-expression "ProductReviews.FiveStar, ProductReviews.ThreeStar,
ProductReviews.OneStar"

Amazon DynamoDB 727

 To make this more concise, replace ProductReviews with an expression attribute name,
such as #pr . The revised expression looks like the following:

 aws dynamodb get-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"123"}}' \
 --projection-expression "#pr.FiveStar, #pr.ThreeStar, #pr.OneStar" \
 --expression-attribute-names '{"#pr":"ProductReviews"}'

 If you defi ne an expression attribute name, you must use it consistently throughout the
entire expression. Also, you cannot omit the # symbol.

 Expression Attribute Values
 If you must compare an attribute with a value, defi ne an expression attribute value as
a placeholder. Expression attribute values are substitutes for the actual values that you
want to compare. These are values that you might not know until runtime. Use expression
attribute values with condition expressions, update expressions, and fi lter expressions. An
expression attribute value must begin with a colon (:) followed by one or more alphanu-
meric characters.

 For example, you want to return all of the ProductCatalog items that are available in
black and cost $500 or less. You could use a Scan operation with a filter-expression , as
in this AWS CLI example:

 aws dynamodb scan \
--table-name ProductCatalog \
--filter-expression "contains(Color, :c) and Price <= :p" \
--expression-attribute-values file://values.json

 The arguments for --expression-attribute-values are stored in the fi le values.json :

 {
 ":c": { "S": "Black" },
 ":p": { "N": "500" }
 }

 Because a Scan operation reads every item in a table, avoid using Scan
with large tables. The filter expression is applied to the Scan results, and
items that do not match the filter expression are discarded.

 If you defi ne an expression-attribute-values attribute, you must use it consistently
throughout the entire expression. Also, you cannot omit the colon (:) symbol.

 Condition Expressions
 To manipulate data in a DynamoDB table, use the PutItem , UpdateItem , and DeleteItem
operations. You can also use BatchWriteItem to perform multiple PutItem or
DeleteItem operations in a single call.

728 Chapter 14 ■ Stateless Application Patterns

For these data manipulation operations, configure a condition expression to determine
which items to modify. If the condition expression evaluates to true, the operation suc-
ceeds; otherwise, the operation fails.

The following AWS CLI examples include condition expressions that use the
ProductCatalog table. The partition key for this table is Id; there is no sort key. The
PutItem operation
creates a sample ProductCatalog item in the examples:

aws dynamodb put-item \
 --table-name ProductCatalog \
 --item file://item.json

The arguments for --item are stored in the file item.json.

{
 "Id": {"N": "456" },
 "ProductCategory": {"S": "Sporting Goods" },
 "Price": {"N": "650" }
}

Update Expressions
To update an existing item in a table, use the UpdateItem operation, provide the key of the
item that you want to update, and use an update expression, indicating the attributes that
you want to modify and the values that you want to assign to them.

An update expression specifies how UpdateItem modifies the attributes of an item, such
as setting a scalar value or removing elements from a list or a map. An update expression
consists of one or more clauses. Each clause begins with a SET, REMOVE, ADD, or DELETE
keyword. You can include any of these clauses in an update expression, in any order.
However, each action keyword can appear only once. Each clause contains one or more
actions, separated by commas.

Each of the following actions represents a data modification:

SET Updates the expression to add one or more attributes to an item. If any of these attri-
butes already exists, it is overwritten by the new value.

REMOVE Updates the expression to remove one or more attributes from an item. To per-
form multiple Remove actions, separate the attributes by commas and use Remove to delete
individual elements from a list.

ADD Updates the expression to add a new attribute and its values or values to an item. If
the attribute already exists, then the behavior of ADD depends on the attribute’s data type:

 ■ If the attribute is a number and the value you are adding is also a number, then the
value is mathematically added to the existing attribute. If the value is a negative
number, then it is subtracted from the existing attribute.

 ■ If the attribute is a set, and the value you are adding is also a set, then the value is
appended to the existing set.

DELETE Deletes the expression.

Amazon DynamoDB 729

example 7: update expression

update-expression ::=
 [SET action [, action] ...]
 [REMOVE action [, action] ...]
 [ADD action [, action] ...]
 [DELETE action [, action] ...]

Working with Queries
The Query operation finds items based on primary key values. You can query any table or
secondary index that has a composite primary key (a partition key and a sort key).

You must provide the name of the partition key attribute and a single value for that
attribute. Query returns all the items with that partition key value. You can provide a sort
key attribute and use a comparison operator to refine the search results.

Key Condition Expression
To specify the search criteria, use a key condition expression. A key condition expression
is a string that determines the items to be read from the table or index. You must configure
the partition key name and value as an equality condition.

You can use any attribute name in a key condition expression as long as the first charac-
ter is a–z or A–Z and the second character (if present) is a–z, A–Z, or 0–9.

In addition, the attribute name must not be a DynamoDB reserved word. If an attribute
name does not meet these requirements, then define an expression attribute name as a
placeholder.

For items with a given partition key value, DynamoDB stores these items close together,
sorted by the sort key value. In an aws dynamodb Query operation, DynamoDB retrieves
the items in sorted order and then processes the items using KeyConditionExpression
and any FilterExpression that might be present. At that point, the aws dynamodb query
results are sent to the client.

An aws dynamodb query operation generally returns a result set. If no matching items
are found, the result set is empty. Query results sort by the sort key value. If the data type
of the sort key is Number, the results return in numeric order; otherwise, the results are
returned in the order of UTF-8 bytes. The sort order is ascending by default. If you want to
reverse the order, set the ScanIndexForward parameter to false. A single Query operation
can retrieve a maximum of 1 MB of data. This limit applies before any FilterExpression
is applied to the results. If LastEvaluatedKey is present in the response and it is non-null,
then paginate the result set.

730 Chapter 14 ■ Stateless Application Patterns

example 8: Query Thread Table for ForumName (Partition Key)

aws dynamodb query \
 --table-name Thread \
 --key-condition-expression "ForumName = :name" \
 --expression-attribute-values '{":name":{"S":"Amazon DynamoDB"}}'

Filter Expressions for Query
You can use a filter expression to refine the Query results further. A filter expression deter-
mines which items within the aws dynamodb query results return. All other results are
discarded. A filter expression is applied after an aws dynamodb query finishes, but before
the results are returned. Therefore, a query consumes the same amount of read capacity,
regardless of whether a filter expression is used. An aws dynamodb query operation can
retrieve a maximum of 1 MB of data. This limit applies before the filter expression is evalu-
ated. A filter expression cannot contain partition key or sort key attributes. Configure those
attributes in the key condition expression, not the filter expression.

example 9: Query the Thread Table for Partition Key and Sort Key

aws dynamodb query \
 --table-name Thread \
 --key-condition-expression "ForumName = :fn" \
 --filter-expression "#v >= :num" \
 --expression-attribute-names '{"#v": "Views"}' \
 --expression-attribute-values file://values.json

Read Consistency for Query
A Query operation performs eventually consistent reads by default. This means that the
Query results might not reflect changes as the result of recently completed PutItem or
UpdateItem operations. If you require strongly consistent reads, set the ConsistentRead
parameter to true in the Query request.

DynamoDB Encryption at Rest
DynamoDB offers fully managed encryption at rest. DynamoDB encryption at rest pro-
vides enhanced security by encrypting your data at rest. The service uses an AWS Key
Management Service (AWS KMS) managed encryption key for DynamoDB. This function-
ality reduces the operational burden and complexity involved in protecting sensitive data.

Amazon DynamoDB 731

Enable encryption for any tables that contain sensitive data. You can enable encryption at
rest using the AWS Management Console, AWS CLI, or the DynamoDB API.

 You can enable encryption at rest only when you create a new DynamoDB
table. You cannot enable encryption at rest on an existing table. After
encryption at rest is enabled, you cannot disable it.

 How Encryption Works
 DynamoDB encryption at rest provides an additional layer of data protection by securing
your data from unauthorized access to the underlying storage. Organizational and industry
policies, or government regulations and compliance requirements, might require the use of
encryption at rest to protect your data. You can use encryption to increase the data security
of the applications that you deploy to the cloud.

 With encryption at rest, you can enable encryption for all of your DynamoDB data at
rest, including the data that is persisted in your DynamoDB tables, local secondary indexes,
and global secondary indexes. Encryption at rest encrypts your data by using 256-bit AES
encryption, also known as AES-256 encryption. It works at the table level and encrypts
both the base table and its indexes.

 Encryption at rest automatically integrates with AWS KMS for managing the service
default key to encrypt your tables. If a service default key does not exist when you create
your encrypted DynamoDB table, AWS KMS automatically creates a new key. Encrypted
tables that you create in the future use this key. AWS KMS combines secure, highly avail-
able hardware and software to provide a key management system scaled for the cloud.

 Using the same AWS KMS service default key that encrypts the table, the following ele-
ments are also encrypted:

 ■ DynamoDB base tables

 ■ Local secondary indexes

 ■ Global secondary indexes

 After you encrypt your data, DynamoDB handles decryption of your data transparently
with minimal impact on performance. You do not need to modify your applications to use
encryption.

 DynamoDB cannot read your table data unless it has access to the service
default key stored in your AWS KMS account. DynamoDB uses envelope
encryption and key hierarchy to encrypt data. Your AWS KMS encryption
key is used to encrypt the root key of this key hierarchy.

732 Chapter 14 ■ Stateless Application Patterns

 DynamoDB does not call AWS KMS for every DynamoDB operation. The
key refreshes once every 5 minutes per client connection with active
traffic.

 Considerations for Encryption at Rest
 Before you enable encryption at rest on a DynamoDB table, consider the following:

 ■ When you enable encryption for a table, all the data stored in that table is encrypted.
You cannot encrypt only a subset of items in a table.

 ■ DynamoDB uses a service default key for encrypting all of your tables. If this key does
not exist, it is created for you. Remember, you cannot disable service default keys.

 ■ Encryption at rest encrypts data only while it is static (at rest) on a persistent storage
media. If data security is a concern for data in transit or data in use, you must take the
following additional measures:

Data in transit : Protect your data while it is actively moving over a public or pri-
vate network by encrypting sensitive data on the client side or by using encrypted
connections, such as HTTPS, Secure Socket Layer (SSL), Transport Layer Security
(TLS), and File Transfer Protocol Secure (FTPS).

Data in use : Protect your data before sending it to DynamoDB by using client-side
encryption.

On-demand backup and restore : You can use on-demand backup and restore with
encrypted tables, and you can create a backup of an encrypted table. The table that
is restored with this backup has encryption enabled.

 Currently, you cannot enable encryption at rest for DynamoDB Streams.
If encryption at rest is a compliance/regulatory requirement, turn off
DynamoDB Streams for encrypted tables.

 IAM Policy Conditions for Fine-Grained Access Control
 When you grant permissions in DynamoDB, you can confi gure conditions that determine
how a permissions policy takes effect. In DynamoDB, you can specify conditions when
granting permissions by using an IAM policy. For example, you can set the following
confi gurations:

 ■ Grant permissions to allow users read-only access to certain items and attributes in a
table or a secondary index.

 ■ Grant permissions to allow users write-only access to certain attributes in a table,
based on the identity of that user.

 In DynamoDB, you can specify conditions in an IAM policy by using condition keys.

Amazon DynamoDB 733

 Examples of Permissions
 In addition to controlling access to DynamoDB API actions, you can also control access to
individual data items and attributes. For example, you can do the following:

 ■ Grant permissions on a table but restrict access to specific items in that table based on
certain primary key values. An example might be a social networking application for
games, where all users’ game data is stored in a single table, but no users can access
data items that they do not own, as shown in Figure 14.12 .

 f i gu r e 14 .12 Granting permissions on a table

 ■ Hide information so that only a subset of attributes is visible to the user. An example
might be an application that displays flight data for nearby airports based on the user’s
location. Airline names, arrival and departure times, and flight numbers are displayed.
However, attributes such as pilot names or number of passengers are hidden, as shown
in Figure 14.13 .

 f i gu r e 14 .13 Hiding information on a table

 To implement this kind of fi ne-grained access control, write an IAM permissions policy
that specifi es conditions for accessing security credentials and the associated permissions
and then apply the policy to IAM users, groups, or roles. Your IAM policy can restrict
access to individual items in a table, access to the attributes in those items, or both at the
same time.

 You can use web identity federation to control access by users who are
authenticated by Login with Amazon, Facebook, or Google.

734 Chapter 14 ■ Stateless Application Patterns

Use the IAM condition element to implement a fine-grained access control policy.
By adding a condition element to a permissions policy, you can allow or deny access to
items and attributes in DynamoDB tables and indexes, based on your particular business
requirements.

For example, in Figure 14.1, the game lets players select from and play a variety of
games. The application uses a DynamoDB table named GameScores to track high scores
and other user data. Each item in the table is uniquely identified by a user ID and the name
of the game that the user played. The GameScores table has a primary key consisting of a
partition key (UserId) and sort key (GameTitle). Users have access only to game data asso-
ciated with their user ID. A user who wants to play a game must belong to an IAM role
named GameRole, which has a security policy attached to it.

To manage user permissions in this application, you could write a permissions policy
such as the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAccessToOnlyItemsMatchingUserID",
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],
 "Resource": [
 "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores"
],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:LeadingKeys": [
 "${www.amazon.com:user_ID}"

],
 "dynamodb:Attributes": [
 "UserId",
 "GameTitle",
 "Wins",
 "Losses",

Amazon DynamoDB 735

 "TopScore",
 "TopScoreDateTime"
]
 },
 "StringEqualsIfExists": {
 "dynamodb:Select": "SPECIFIC_ATTRIBUTES"
 }
 }
 }
]
 }

 In addition to granting permissions for specifi c DynamoDB actions (Action
element) on the GameScores table (Resource element), the Condition element uses the con-
dition keys specifi c to DynamoDB that limit the permissions as follows:

dynamodb:LeadingKeys This condition key enables users to access only the items where
the partition key value matches their user ID. This ID, ${ www.amazon.com:user_ID} , is a
substitution variable.

dynamodb:Attributes This condition key limits access to the specifi ed attributes so
that only the actions listed in the permissions policy can return values for these attributes.
In addition, the StringEqualsIfExists clause ensures that the application provides a list of
specifi c attributes to act upon, and that the application cannot request all attributes.

 When an IAM policy is evaluated, the result is either true (access is allowed) or false
(access is denied). If any part of the Condition element is false , the entire policy evaluates
to false and access is denied.

 If you use dynamodb:Attributes , you must configure the names of all
the primary key and index key attributes for the table and any secondary
indexes that the policy lists. Otherwise, DynamoDB is unable to use these
key attributes to perform the requested action.

 Configure Conditions with Condition Keys
 AWS provides a set of predefi ned condition keys for all AWS offerings and services that
support IAM for access control. For example, use the aws:SourceIp condition key to check
the requester’s IP address before allowing an action to be performed.

 Condition keys are case-sensitive.

 Table 14.3 displays the DynamoDB service-specifi c condition keys that apply to
DynamoDB.

736 Chapter 14 ■ Stateless Application Patterns

TA b le 14 . 3 DynamoDB Condition Keys

DynamoDB Condition Key Description

dynamodb:LeadingKeys Represents the first key attribute of a table and is the partition
key for a simple primary key (partition key) or a composite
primary key (partition key and sort key). In addition, you must
use the ForAllValues modifier when using LeadingKeys in a
condition.

dynamodb:Select Represents the Select parameter of a Query or Scan request
using the following values:

 ■ ALL_ATTRIBUTES
 ■ ALL_PROJECTED_ATTRIBUTES
 ■ SPECIFIC_ATTRIBUTES
 ■ COUNT

dynamodb:Attributes Represents a list of the attribute names in a request or the
attributes that return from a request. Attributes values are
named the same way and have the same meaning as the
parameters for certain DynamoDB API actions:

 ■ AttributesToGet
Used by: BatchGetItem, GetItem, Query, Scan

 ■ AttributeUpdates
Used by: UpdateItem

 ■ Expected
Used by: DeleteItem, PutItem, UpdateItem

 ■ Item
Used by: PutItem

 ■ ScanFilter
Used by: Scan

dynamodb:ReturnValues Represents the ReturnValues parameter of a request:

 ■ ALL_OLD
 ■ UPDATED_OLD
 ■ ALL_NEW
 ■ UPDATED_NEW
 ■ NONE

dynamodb:
ReturnConsumedCapacity

Represents the ReturnConsumedCapacity parameter of a
request:

 ■ TOTAL
 ■ NONE

Amazon DynamoDB 737

 On-Demand Backup and Restore
 You can create on-demand backups and enable point-in-time recovery for your DynamoDB
tables. DynamoDB on-demand backups enable you to create full backups of your tables for
long-term retention and archival for regulatory compliance. You can back up and restore
your DynamoDB table data anytime either in the AWS Management Console or as an
API call. Backup and restore actions execute with zero impact on table performance or
availability.

 On-demand backup and restore scales without degrading the performance or availability
of your applications. With this distributed technology, you can complete backups in sec-
onds regardless of table size. You can create backups that are consistent across thousands of
partitions without worrying about schedules or long-running backup processes. All back-
ups are cataloged, discoverable, and retained until explicitly deleted.

 In addition, on-demand backup and restore operations do not affect performance or API
latencies. Backups are preserved regardless of table deletion. You can create table backups
using the console, the AWS CLI, or the DynamoDB API.

 The backup and restore functionality works in the same AWS Region as the source table.
DynamoDB on-demand backups are available at no additional cost beyond the normal pric-
ing that is associated with the backup storage size.

 Backups
 When you create an on-demand backup, a time marker of the request is cataloged. The
backup is created asynchronously by applying all changes until the time of the request to
the last full table snapshot. Backup requests process instantaneously and become available
for restore within minutes. Each time you create an on-demand backup, the entire table
data is backed up. You can make an unlimited number of on-demand backups.

 All backups in DynamoDB work without consuming any provisioned throughput on
the table. DynamoDB backups do not enable causal consistency across items; however, the
skew between updates in a backup is usually much less than a second. While a backup is in
progress, you cannot perform certain operations, such as pausing or canceling the backup
action, deleting the source table of the backup, or disabling backups on a table. However,
you can use AWS Lambda functions to schedule periodic or future backups.

 DynamoDB backups also include global secondary indexes, local second-
ary indexes, streams, and provisioned read and write capacity, in addition
to the data.

 Restores
 A table restores without consuming any provisioned throughput on the table. The destina-
tion table is set with the same provisioned read capacity units and write capacity units as
the source table, as recorded at the time that you request the backup. The restore process
also restores the local secondary indexes and the global secondary indexes.

738 Chapter 14 ■ Stateless Application Patterns

You can only restore the entire table data to a new table from a backup. Restore times
vary based on the size of the DynamoDB table that is being restored. You can write to the
restored table only after it becomes active, and you cannot overwrite an existing table dur-
ing a restore operation. You can use IAM policies for access control.

Point-in-Time Recovery
You can enable point-in-time recovery (PITR) and create on-demand backups for your
DynamoDB tables. Point-in-time recovery helps protect your DynamoDB tables from acci-
dental write or delete operations. With point-in-time recovery, you do not have to worry
about creating, maintaining, or scheduling on-demand backups. DynamoDB maintains
incremental backups of your table. In addition, point-in-time operations do not affect
performance or API latencies. You can enable point-in-time recovery using the AWS
Management Console, AWS CLI, or the DynamoDB API.

How Point-in-Time Recovery Works
When it is enabled, point-in-time recovery provides continuous backups until you
explicitly turn it off. After you enable point-in-time recovery, you can restore to any
point in time within EarliestRestorableDateTime and LatestRestorableDateTime.
LatestRestorableDateTime is typically 5 minutes before the current time. The point-in-
time recovery process always restores to a new table. For EarliestRestorableDateTime,
you can restore your table to any point in time during the last 35 days. The retention period
is a fixed 35 days (five calendar weeks) and cannot be modified. Any number of users can
execute up to four concurrent restores (any type of restore) in a given account.

When you restore using point-in-time recovery, DynamoDB restores your table data to a
new table and to the state based on the selected date and time (day:hour:minute:second).
In addition to the data, the following are also included on the newly restored table using
point-in-time recovery:

 ■ Global secondary indexes

 ■ Local secondary indexes

 ■ Provisioned read and write capacity

 ■ Encryption settings

After restoring a table, you must manually set up the following on the restored table:

 ■ Scaling policies

 ■ IAM policies

 ■ Amazon CloudWatch metrics and alarms

 ■ Tags

 ■ Stream settings

 ■ TTL settings

 ■ Point-in-time recovery settings

Amazon ElastiCache 739

Considerations for Point-in-Time Recovery
Before you enable point-in-time recovery on a DynamoDB table, consider the following:

 ■ If you disable point-in-time recovery and then later re-enable it on a table, reset the
start time for which you can recover that table. As a result, you can only immediately
restore that table using the LatestRestorableDateTime.

 ■ If you must recover a deleted table that had point-in-time recovery enabled, you must
contact AWS Support to restore that table within the 35-day recovery window.

 ■ You can enable point-in-time recovery on each local replica of a global table. When
you restore the table, the backup restores to an independent table that is not part of the
global table.

 ■ You can enable point-in-time recovery on an encrypted table.

 ■ AWS CloudTrail logs all console and API actions for point-in-time recovery to enable
logging, continuous monitoring, and auditing.

Amazon ElastiCache
Amazon ElastiCache is a web service that makes it easy to set up, manage, and scale
distributed in-memory cache environments on the AWS Cloud. It provides a high-
performance, resizable, and cost-effective in-memory cache while removing the complexity
associated with deploying and managing a distributed cache environment.

You can use ElastiCache to store the application state. Applications often store session
data in memory, but this approach does not scale well. To address scalability and provide
a shared data storage for sessions that can be accessible from any individual web server,
abstract the HTTP sessions from the web servers themselves. A common solution is to
leverage an in-memory key-value store. ElastiCache supports the following open-source
in-memory caching engines:

 ■ Memcached is an open source, high-performance, distributed memory object caching
system that is widely adopted by and protocol-compliant with ElastiCache.

 ■ Redis is an open source, in-memory data structure store that you can use as a database
cache and message broker. ElastiCache supports Master/Slave replication and Multi-
AZ replication that you can use to achieve cross-Availability Zone redundancy.

ElastiCache is an in-memory cache. Caching frequently used data is one of the most
important performance optimizations that you can make in your applications. Compared
to retrieving data from an in-memory cache, querying a database is a much more expensive
operation. By storing frequently accessed data in-memory, you can greatly improve the
speed and responsiveness of read-intensive applications. For instance, application state for a
web application can be stored in an in-memory cache, as opposed to storing state data in a
database.

740 Chapter 14 ■ Stateless Application Patterns

While key-value data stores are fast and provide submillisecond latency, the added net-
work latency and cost are the drawbacks. An added benefit of leveraging key-value stores
is that they can also cache any data, not only HTTP sessions, which helps boost the overall
performance of your applications.

Considerations for Choosing a Distributed Cache
One consideration when choosing a distributed cache for session management is determin-
ing the number of nodes necessary to manage the user sessions. You can determine this
number by how much traffic is expected and how much risk is acceptable. In a distributed
session cache, the sessions are divided by the number of nodes in the cache cluster. In the
event of a failure, only the sessions that are stored on the failed node are affected. If reduc-
ing risk is more important than cost, adding additional nodes to reduce further the percent-
age of stored sessions on each node may be ideal even when fewer nodes are sufficient.

Another consideration may be whether the sessions must be replicated. Some key-value
stores offer replication through read replicas. If a node fails, the sessions are not entirely
lost. Whether replica nodes are important in your individual architecture may inform
you as to which key-value store you should use. ElastiCache offerings for in-memory key-
value stores include ElastiCache for Redis, which supports replication, and ElastiCache for
Memcached, which does not support replication.

There are a number of ways to store sessions in key-value stores. Many application
frameworks provide libraries that can abstract some of the integration required to Get/Set
those sessions in memory. In other cases, you can write your own session handler to persist
the sessions directly.

ElastiCache makes it easy to deploy, operate, and scale an in-memory cache in the cloud.
ElastiCache improves the performance of web applications by enabling you to retrieve
information from fast, managed, in-memory caches instead of relying entirely on slower
disk-based databases.

Use Memcached if you require the following:

 ■ Use a simple data model

 ■ Run large nodes with multiple cores or threads

 ■ Scale out or scale in

 ■ Partition data across multiple shards

 ■ Cache objects, such as a database

Use Redis if you require the following:

 ■ Work with complex data types

 ■ Sort or rank in-memory datasets

 ■ Persist the key store

 ■ Replicate data from the primary to one or more read replicas for read-intensive
applications

Amazon ElastiCache 741

 ■ Automate failover if the primary node fails

 ■ Publish and subscribe (pub/sub): the client is informed of events on the server

 ■ Back up and restore data

Use Table 14.4 to determine which product best fits your needs.

TA b le 14 . 4 Memcached or Redis

Capability Memcached Redis

Simple cache to offload DB burden ✓ ✓

Ability to scale horizontally ✓

Multithreaded performance ✓

Advanced data types ✓

Sorting/ranking datasets ✓

Pub/sub capability ✓

Multi-AZ with auto-failover ✓

Persistence ✓

ElastiCache Terminology
This section describes some of the key terminology that ElastiCache uses.

Nodes
A node is the smallest building block of an ElastiCache deployment. A node is a fixed-size
chunk of secure, network-attached RAM. Each node runs an instance of Memcached or
Redis, depending on which you select when you create the cluster.

Clusters
Each ElastiCache deployment consists of one or more nodes in a cluster. When you create a
cluster, you may choose from many different nodes based on the requirements of both your
solution case and your capacity. One Memcached cluster can be as large as 20 nodes. Redis
clusters consist of a single node; however, you can group multiple clusters into a Redis rep-
lication group.

The individual node types are derived from a subset of the Amazon EC2 instance type
families, such as t2, m3, and r3. The t2 cache node family is ideal for development and

742 Chapter 14 ■ Stateless Application Patterns

low-volume applications with occasional bursts, but certain features may not be available.
The m3 family is a mix of memory and compute, whereas the r3 family is optimized for
memory-intensive workloads.

Based on your requirements, you may decide to have a few large nodes or many smaller
nodes in your cluster or replication group. As demand for your application fluctuates, you may
add or remove nodes over time. Each node type has a preconfigured amount of memory, with
a small portion of that memory reserved for both the caching engine and operating system.

Though it is unlikely, always plan for the possible failure of an individual cache node.
For a Memcached cluster, decrease the impact of the failure of a cache node by using a
larger number of nodes with a smaller capacity instead of a few large nodes.

If ElastiCache detects the failure of a node, it provisions a replacement and then adds
it back to the cluster. During this time, your database experiences increased load because
any requests that would have been cached now need to be read from the database. For
Redis clusters, ElastiCache detects failures and replaces the primary node. If you enable a
Multi-AZ replication group, a read replica automatically is promoted to primary automati-
cally to primary.

Replication group A replication group is a collection of Redis clusters with one primary
read/write cluster and up to five secondary, read-only clusters called read replicas. Each read
replica maintains a copy of the data from the primary cluster. Asynchronous replication
mechanisms keep the read replicas synchronized with the primary cluster. Applications can
read from any cluster in the replication group. Applications can write only to the primary
cluster. Read replicas enhance scalability and guard against data loss.

Endpoint An endpoint is the unique address your application uses to connect to an
ElastiCache node or cluster. Memcached and Redis have the following characteristics with
respect to endpoints:

 ■ A Memcached cluster has its own endpoint and a configuration endpoint.

 ■ A standalone Redis cluster has an endpoint to connect to the cluster for both reads
and writes.

 ■ A Redis replication group has two types of endpoints.

 ■ The primary endpoint connects to the primary cluster in the replication group.

 ■ The read endpoint points to a specific cluster in the replication group.

Cache Scenarios
ElastiCache caches data as key-value pairs. An application can retrieve a value correspond-
ing to a specific key. An application can store an item in cache by a specific key, value, and
an expiration time. Time to live (TTL) is an integer value that specifies the number of sec-
onds until the key expires.

A cache hit occurs when an application requests data from the cache, the data is both
present and not expired in the cache, and it returns to the application. A cache miss occurs
if an application requests data from the cache, and it is not present in the cache (returning a

Amazon ElastiCache 743

null). In this case, the application requests and receives the data from the database and then
writes the data to the cache.

Strategies for Caching
The strategy or strategies that you want to implement for populating and maintaining
your cache depend on what data you are caching and the access patterns to that data. For
example, you would likely not want to use the same strategy for a top-10 leaderboard on a
gaming site, Facebook posts, and trending news stories.

Lazy Loading

Lazy loading loads data into the cache only when necessary. Whenever your application
requests data, it first makes the request to the ElastiCache cache. If the data exists in the
cache and it is current, ElastiCache returns the data to your application. If the data does
not exist in the cache or the data in the cache has expired, your application requests the
data from your data store, which returns the data to your application. Your application
then writes the data received from the store to the cache so that it can be retrieved more
quickly the next time that it is requested.

Advantages of Lazy Loading

 ■ Only requested data is cached.

Because most data is never requested, lazy loading avoids filling up the cache with
data that is not requested.

 ■ Node failures are not fatal.

When a new, empty node replaces a failed node, the application continues to func-
tion, though with increased latency. As requests are made to the new node, each missed
cache results in a query of the database and adding the data copy to the cache so that
subsequent requests are retrieved from the cache.

Disadvantages of Lazy Loading

 ■ There is a cache miss penalty.

Each cache miss results in three trips:

1. Initial request for data from the cache

2. Querying of the database for the data

3. Writing the data to the cache

This can cause a noticeable delay in data getting to the application.

 ■ Stale data.

The application may receive stale data because another application may have
updated the data in the database behind the scenes.

Figure 14.14 summarizes the advantages and disadvantages of lazy loading.

744 Chapter 14 ■ Stateless Application Patterns

f i gu r e 14 .14 Lazy loading caching

Database

Amazon ElastiCache Application

Cache Hit

Cache Miss

Write-Through

The write-through strategy adds data or updates data in the cache whenever data is written
to the database.

Advantages of Write-Through

 ■ The data in the cache is never stale.

Because the data in the cache updates every time it is written to the database, the
data in the cache is always current.

Disadvantages of Write-Through

 ■ Write penalty

Every write involves two trips: a write to the cache and a write to the database.

 ■ Missing data

When a new node is created either to scale up or replace a failed node, the node does
not contain all data. Data continues to be missing until it is added or updated in the
database. In this scenario, you might choose to use a lazy caching approach to repopu-
late the cache.

 ■ Unused data

Because most data is never read, there can be a lot of data in the cluster that is never
read.

 ■ Cache churn

The cache may be updated often if certain records are updated repeatedly.

Amazon ElastiCache 745

 Data Access Patterns
 Retrieving a fl at key from an in-memory cache is faster than the most performance-tuned
database query. Analyze the access pattern of the data before you determine whether you
should store it in an in-memory cache.

 example 10: Cache Static elements

 An example of data to cache is a list of products in a catalog. For a high-volume web
application, the list of products could be returned thousands of times per second. Though
it may seem like a good idea to cache the most frequently requested items, your applica-
tion may also benefi t from caching items that are not frequently accessed.

 You should not store certain data elements in an in-memory cache. For instance, if your
application produces a unique page on every request, you probably do not want to cache
the page results. However, though the page is different every time, it makes sense to
cache the aspects of the page that are static.

 Scaling Your Environment
 As your workloads evolve over time, you can use ElastiCache to change the size of your
environment to meet the requirements of your workloads. To meet increased levels of write
or read performance, expand your cluster horizontally by adding cache nodes. To scale
your cache vertically, select a different cache node type.

Scale horizontally ElastiCache functionality enables you to scale the size of your cache
environment horizontally. This functionality differs depending on the cache engine you
select. With Memcached, you can partition your data and scale horizontally to 20 nodes
or more. A Redis cluster consists of a single cache node that handles read and write trans-
actions. You can create additional clusters to include a Redis replication group. Although
you can have only one node handle write commands, you can have up to fi ve read replicas
handle read-only requests.

Scale vertically The ElastiCache service does not directly support vertical scaling of your
cluster. You can create a new cluster with the desired cache node types and begin redirect-
ing traffi c to the new cluster.

 Understand that a new Memcached cluster starts empty. By comparison,
you can initialize a Redis cluster from a backup.

746 Chapter 14 ■ Stateless Application Patterns

Replication and Multi-AZ
Replication is an effective method for providing speedy recovery if a node fails and for
serving high quantities of read queries beyond the capacities of a single node. ElastiCache
clusters running Redis support both. In contrast, cache clusters running Memcached are
standalone in-memory services that do not provide any data redundancy-protection ser-
vices. Cache clusters running Redis support the notion of replication groups. A replication
group consists of up to six clusters, with five of them designated as read replicas. By using
a replication group, you can scale horizontally by developing code in the application to
offload reads to one of the five replicas.

Multi-AZ Replication Groups
With ElastiCache, you can provision a Multi-AZ replication group that allows your appli-
cation to raise the availability and reduce the loss of data. Multi-AZ streamlines the proce-
dure of dealing with a failure by automating the replacement and failover from the primary
node.

If the primary node goes down or is otherwise unhealthy, Multi-AZ selects a replica
and promotes it to become the new primary; then a new node is provisioned to replace the
failed one. ElastiCache updates the DNS entry of the new primary node to enable your
application to continue processing without any changes to the configuration of the applica-
tion and with only minimal disruption. ElastiCache replication is handled asynchronously,
meaning that there will be a small delay before the data is available on all cluster nodes.

Backup and Recovery
ElastiCache clusters that run Redis support snapshots. Use snapshots to persist your data
from your in-memory key-value stores to disk. Each snapshot is a full clone of the data that
you can use to recover to a specific point in time or to create a copy for other purposes.
Snapshots are not available to clusters that use the Memcached caching engine. This is
because Memcached is a purely in-memory, key-value store, and it always starts empty.
ElastiCache uses the native backup capabilities of Redis and generates a standard Redis
database backup file, which is stored in Amazon S3.

Snapshots need memory and compute resources to perform, and this can possibly have
a performance impact in heavily used clusters. ElastiCache attempts different backup tech-
niques depending on the amount of memory currently available. As a best practice, set up a
replication group and perform the snapshot against one of the read replicas instead of creat-
ing the snapshot against the primary node. You can automate the creation of snapshots on a
schedule, or you can manually initiate a snapshot. Additionally, you can configure a window
when a snapshot will be completed and then configure how many days of backups you want
to save. Manual snapshots are stored indefinitely until you delete them.

It does not matter whether the snapshot was created manually or automatically. You can
use the snapshot to provision a new cluster. The new cluster has the same configuration

Amazon Simple Storage Service 747

as the source cluster by default, but you can override these settings. You can also restore a
snapshot from the *.rdb file that is generated from any other Redis compatible cluster. The
Redis *.rdb file is a binary representation of the in-memory store. This binary file is suf-
ficient to restore the Redis state completely.

Control Access
The primary way to configure access to your ElastiCache cluster is by restricting con-
nectivity to your cluster through a security group. You can define a security group and
add one or more inbound rules that restrict the source traffic. When a cache cluster is
deployed inside a virtual private cloud, every node is assigned a private IP address within
one or more subnets that you choose. You cannot access individual nodes from the
internet or from Amazon EC2 instances outside of the Amazon Virtual Private Cloud
(Amazon VPC). You can use the access control lists (ACLs) to constrain network inbound
traffic.

Access to manage the configuration and infrastructure of the cluster is controlled sepa-
rately from access to the actual Memcached or Redis service endpoint. Using the IAM
service, you can define policies that control which AWS users can manage the ElastiCache
infrastructure.

The ability to configure the cluster and govern the infrastructure is handled indepen-
dently from access to the actual cache cluster endpoint, which is managed by using the
IAM service. Using IAM, you can set up policies that determine which users can manage
the ElastiCache infrastructure.

Amazon Simple Storage Service
There are situations when storing state requires the storage of larger files. This may be the
case when your application deals with user uploads or interim results of batch processes. In
such cases, consider using Amazon Simple Storage Service (Amazon S3) as your store.

Amazon S3 is storage for the internet. It is designed to make web-scale computing easier
for developers. Amazon S3 has a simple web services interface that you can use to store and
retrieve any amount of data, at any time, from anywhere on the web. The service aims both
to maximize benefits of scale and to pass those benefits on to developers.

Amazon S3 Core Concepts
Amazon S3 is a stateless application that does not save client data that generates in one
session for use in the next session with that client. Each session starts as if it was the first
time, and responses are not dependent on data from a previous session. This means that the
server does not store any state about the client session. Instead, the session data is stored on
the client and passed to the server as requested.

748 Chapter 14 ■ Stateless Application Patterns

Buckets
A bucket is a container for objects stored in Amazon S3. Every object is contained in
a bucket. For example, if the object named photos/car.jpg is stored in the anitacrandle
bucket, then it is addressable using the URL http://anitacrandle.s3.amazonaws.com/
photos/car.jpg.

Buckets serve several purposes:

 ■ They organize the Amazon S3 namespace at the highest level.

 ■ They identify the account responsible for storage and data transfer charges.

 ■ They play a role in access control.

 ■ They serve as the unit of aggregation for usage reporting.

Creating a Bucket
Amazon S3 provides APIs for creating and managing buckets. By default, you can create
up to 100 buckets in each of your accounts. If you need more buckets, increase your bucket
limit by submitting a service limit increase.

When you create a bucket, provide a name for the bucket, and then choose the AWS
Region where you want to create the bucket. You can store any number of objects in a
bucket.

Create a bucket by using any of the following methods:

 ■ Amazon S3 console

 ■ Programmatically, using the AWS SDKs

When using the AWS SDKs, first create a client and then use the client to deliver a
request to create a bucket. When you create the client, you can configure an AWS Region.
US East (N. Virginia) is the default region. You can also configure an AWS Region in your
request to create the bucket.

If you create a client specific to the US East (N. Virginia) Region, the client uses this
endpoint to communicate with: Amazon S3: s3.amazonaws.com. You can use this client to
create a bucket in any AWS Region in your create bucket request. If you do not specify
a region, Amazon S3 creates the bucket in the US East (N. Virginia) Region. If you select
an AWS Region, Amazon S3 creates the bucket in the specified region. If you create a
client specific to any other AWS Region, it maps to the region-specific endpoint: s3-.
amazonaws.com. For example, if you create a client and specify the us-east-2 Region, it
maps to the following region-specific endpoint: s3-us-east-2.amazonaws.com.

regions

You can choose the geographical region where Amazon S3 stores the buckets that you
create. You might choose a region to optimize latency, minimize costs, or address regula-
tory requirements. Objects stored in a region never leave the region unless you explicitly
transfer them to another region. For example, objects stored in the EU (Ireland) Region
never leave it.

Amazon Simple Storage Service 749

Objects Objects are the principal items stored in Amazon S3. Objects consist of object
data and metadata. The data part is opaque to Amazon S3. The metadata is a set of name-
value pairs that characterize the object. These include certain default metadata, such as the
date last modifi ed and standard HTTP metadata, such as Content-Type. It is also possible
for you to confi gure custom metadata at the time of object creation.

 A key (name) and a version ID uniquely identify an object within a bucket.

 Keys A key is the unique identifi er for an object within a bucket. Every object in a bucket
has exactly one key. Because the combination of a bucket, key, and version ID uniquely
identifi es each object, Amazon S3 is like a basic data map between bucket + key + version
and the object itself. Every object in Amazon S3 can be uniquely addressed through the
combination of the web service endpoint, bucket name, key, and, optionally, a version.
Figure 14.15 displays one object with a key and ID.

 f i gu r e 14 .15 Object with key and ID

Key = photo.gif
ID = 121212

Key = photo.gif
ID = 111111

Versioning Enabled

 Versioning Versioning is a way to keep multiple variations of an object in the same
bucket. You can use versioning to preserve, retrieve, and restore every version of every
object stored in your Amazon S3 bucket. With versioning, you can recover from both unin-
tended user actions and application failures.

 In Figure 14.16 , you can have two objects with the same key, but different version IDs, such
as photo.gif (version 111111) and photo.gif (version 121212) .

 Versioning-enabled buckets allow you to recover objects from accidental deletion or
 overwrite. For instance:

 ■ If you delete an object, instead of removing it permanently, Amazon S3 inserts a delete
marker, which becomes the current object version. You can restore the previous version.

 ■ You can delete object versions whenever you want.

750 Chapter 14 ■ Stateless Application Patterns

f i gu r e 14 .16 Same key, different version

Key = photo.gif
ID = 121212

Key = photo.gif

Key = photo.gif
ID = 111111

Versioning Enabled

PUT

In addition, you can also define lifecycle configuration rules for objects that
have a well-defined lifecycle to request Amazon S3 to expire current object versions
or permanently remove noncurrent object versions. When your bucket is version-
enabled or versioning is suspended, the lifecycle configuration actions work as
follows:

 ■ The expiration action applies to the current object version. Instead of deleting the
current object version, Amazon S3 retains the current version as a noncurrent ver-
sion by adding a delete marker, which then becomes the current version.

 ■ The NoncurrentVersionExpiration action applies to noncurrent object versions,
and Amazon S3 permanently removes these object versions. You cannot recover
permanently removed objects.

A Delete request has the following use cases:

 ■ When versioning is enabled, a simple Delete request cannot permanently delete an
object. Instead, Amazon S3 inserts a delete marker in the bucket, and that marker
becomes the current version of the object with a new ID.

 ■ When you send a Get request for an object whose current version is a delete
marker, Amazon S3 treats it as though the object has been deleted (even though
it has not been erased) and returns a 404 error. Figure 14.17 shows that a simple
Delete request does not actually remove the specified object. Instead, Amazon
S3 inserts a delete marker.

Amazon Simple Storage Service 751

f i gu r e 14 .17 Delete marker

Key = photo.gif
ID = 121212

Key = photo.gif

Key = photo.gif
ID = 111111

Versioning Enabled

Key = photo.gif
ID = 121212

Key = photo.gif
ID = 4857693

Delete Marker

Key = photo.gif
ID = 111111

Versioning Enabled

DELETE

 ■ To permanently delete versioned objects, you must use DELETE Object versionId.
Figure 14.18 shows that deleting a specified object version permanently removes
that object.

f i gu r e 14 .18 Permanent delete

Key = photo.gif
ID = 121212

Key = photo.gif
ID = 121212

Key = photo.gif
ID = 111111

Before DELETE

Key = photo.gif
ID = 111111

After DELETE

DELETE
ID=121212

 ■ If you overwrite an object, it results in a new object version in the bucket. You can
restore the previous version.

752 Chapter 14 ■ Stateless Application Patterns

 Accessing a Bucket
 Use the Amazon S3 console to access your bucket. You can perform almost all bucket oper-
ations without having to write any code. If you access a bucket programmatically, Amazon
S3 supports the RESTful architecture wherein your buckets and objects are resources, each
with a resource Uniform Resource Identifi er (URI) that uniquely identifi es the resource.

 Amazon S3 supports both path-style URLs and virtual hosted-style URLs to access a
bucket:

 ■ In a virtual hosted-style URL, the bucket name is part of the domain name in the
URL. Here’s an example:

http://bucket.s3.amazonaws.com

 http://bucket.s3-aws-region.amazonaws.com

 ■ In a path-style URL, the bucket name is not part of the domain (unless you use a
region-specific endpoint). Here’s an example:

 US East (N. Virginia) Region endpoint: http://s3.amazonaws.com/bucket

 Region-specifi c endpoint: http://s3-aws-region.amazonaws.com/bucket

 In a path-style URL, the endpoint you use must match the AWS Region where the
bucket resides. For example, if your bucket is in the South America (São Paulo) Region, you
must use the http://s3-saeast-1.amazonaws.com/bucket endpoint.

 Because you can access buckets by using either path-style or virtual
hosted-style URLs, as a best practice, AWS recommends that you create
buckets with DNS-compliant bucket names.

 Bucket Restrictions and Limitations
 The account that created the bucket owns it. By default, you can create up to 100 buckets
in each of your accounts. If you need additional buckets, increase your bucket limit by sub-
mitting a service limit increase.

 ■ Bucket ownership is not transferable; however, if a bucket is empty, you can delete it.

 After a bucket is deleted, the name becomes available for reuse, but the name may
not be available for you to reuse for various reasons. For instance, another account
could provision a bucket with the same name. Also, it might take some time before the
name can be reused. Therefore, if you want to use the same bucket name after empty-
ing the bucket, do not delete the bucket.

 ■ There is no limit to the number of objects that you can store in a bucket and no differ-
ence in performance whether you use many buckets or only a few.

 Moreover, you can store all of your objects in one bucket, or you can arrange all of
your objects across multiple buckets.

 ■ You cannot create a bucket within another bucket.

 ■ The high-availability engineering of Amazon S3 is focused on GET , PUT , LIST , and
 DELETE operations.

Amazon Simple Storage Service 753

 Because bucket operations work against a centralized, global resource space, it is
not appropriate to create or delete buckets on the high-availability code path of your
application. It is better to create or delete buckets in a separate initialization or setup
routine that you run less often.

 If your solution is designed to create buckets automatically, develop a
naming convention for your buckets that creates buckets that are glob-
ally unique. Also, make sure that your solution logic can create a different
bucket name if a bucket name is already taken.

 Rules for Naming Buckets
 After you create an S3 bucket, you cannot change the bucket name, so choose the name
wisely.

 The following are the rules for naming S3 buckets in all AWS Regions:

 ■ Bucket names must be unique across all existing bucket names in Amazon S3.

 ■ Bucket names must comply with DNS naming conventions.

 ■ Bucket names must be between 3 and 63 characters long.

 ■ Bucket names must not contain uppercase characters or underscores.

 ■ Bucket names must start with a lowercase letter or number.

 ■ Bucket names must be a series of one or more labels. Use a single period (.) to separate
adjacent labels. Bucket names can contain lowercase letters, numbers, and hyphens.
Each label must start and end with a lowercase letter or a number.

 ■ Bucket names must not be formatted as an IP address (for example, 192.168.4.5).

 ■ When you use virtual hosted-style buckets with SSL, the SSL wildcard certificate only
matches buckets that do not contain periods. To work around this, use HTTP, or write
your own certificate verification logic. AWS recommends that you do not use periods
(“ . ”) in bucket names when using virtual hosted-style buckets.

 Working with Amazon S3 Buckets
 Amazon S3 is cloud storage for the internet. To upload your data, such as images, videos,
and documents, you must fi rst create a bucket in one of the AWS Regions. You can then
upload any number of objects to the bucket.

 Amazon S3 is set up with buckets and objects as resources, and it includes APIs to inter-
act with its resources. For instance, you can use the Amazon S3 API to create a bucket and
then put objects in the bucket. Additionally, you can use the Amazon S3 web console to exe-
cute these actions. The console uses the Amazon S3 APIs to deliver requests to Amazon S3.

 An Amazon S3 bucket name is globally unique regardless of the AWS Region in which
you create the bucket. Confi gure the name at the time that you create the bucket. Amazon
S3 creates buckets in a region that you choose. To minimize latency, reduce costs, or address
regulatory requirements, choose any AWS Region that is geographically close to you.

754 Chapter 14 ■ Stateless Application Patterns

The following are the most common operations executed through the API:

Create a bucket Create and name the bucket where you will store your objects.

Write an object Store data by creating or writing over an object. When you write an
object, configure a unique key in the namespace of your bucket. Configure any access
control that you want on the object.

Read an object Retrieve data. You can download data through HTTP or BitTorrent.

Delete an object Delete data.

List keys List the keys contained in one of your buckets. You can filter the key list based
on a prefix.

Make requests Amazon S3 is a REST service. You can send requests to Amazon S3 using
the REST API or the AWS SDK wrapper libraries. These libraries wrap the underlying
Amazon S3 REST API, simplifying your programming tasks.

Every interaction with Amazon S3 is either authenticated or anonymous. Authentication
is a process of verifying the identity of the requester trying to access an AWS offering.
Authenticated requests must include a signature value that authenticates the request sender.
The signature value is, in part, generated from the requester’s AWS access keys (access key
ID and secret access key).

If you are using the AWS SDK, the libraries compute the signature from the keys you
provide. However, if you make direct REST API calls in your application, you must write
the code to compute the signature and then add it to the request.

Deleting or Emptying a Bucket
It is easy to delete an empty bucket. However, in certain situations, you may need to delete
or empty a bucket that contains objects. In other situations, you may choose to empty
a bucket instead of deleting it. This section explains various options that you can use to
delete or empty a bucket that contains objects.

You can delete a bucket and its content programmatically using the AWS SDKs. You can
also use lifecycle configuration on a bucket to empty its content and then delete the bucket.
There are additional options, such as using Amazon S3 console and AWS CLI, but there
are limitations on these methods based on the number of objects in your bucket and the
bucket’s versioning status.

Deleting a Bucket Using Lifecycle Configuration

You can configure lifecycle on your bucket to expire objects. Amazon S3 then deletes
expired objects. You can add lifecycle configuration rules to expire all or a subset of objects
with a specific key name prefix. For example, to remove all objects in a bucket, set a life-
cycle rule to expire objects one day after creation.

If your bucket has versioning enabled, you can also configure the rule to expire noncur-
rent objects. After Amazon S3 deletes all of the objects in your bucket, you can delete the
bucket or keep it. If you want to only empty the bucket but not delete it, remove the life-
cycle configuration rule you added to empty the bucket so that any new objects you create
in the bucket remain in the bucket.

Amazon Simple Storage Service 755

Object Lifecycle Management

To manage your objects so that they are stored cost-effectively throughout their life, con-
figure their lifecycle policy. A lifecycle policy is a set of rules that designates actions that
Amazon S3 applies to a group of objects. There are two types of actions:

Transition actions Designate when objects transition from one storage class to another.
For instance, you might decide to transition objects to the STANDARD_IA storage class
45 days after you created them, or archive objects to the GLACIER storage class six
months after you created them.

Expiration actions Designate when objects expire. Amazon S3 deletes expired objects on
your behalf.

When to Use Lifecycle Configuration

Set up lifecycle configuration rules for objects that have a clear-cut lifecycle. For example,
set up configuration rules for these types of situations:

 ■ If you upload logs periodically to a bucket, your solution may need access to them for a
week or so. When you no longer need access to them, you may want to remove them.

 ■ Some objects are frequently accessed for a specific period. When that period is over,
they are sporadically accessed. You may not need real-time access to these objects, but
your business or regulations might require that you archive them for a specific period.
After that, you can delete them.

 ■ You might upload certain types of data to Amazon S3 primarily for archival purposes.
For instance, you might archive digital media, healthcare and financial data, database
backups, and data that you must retain for regulatory compliance.

With lifecycle configuration policies, you can instruct Amazon S3 to transition objects
to less expensive storage classes, archive them for later, or remove them altogether.

Bucket Configuration Options
Amazon S3 supports various options to configure your bucket. For example, you can con-
figure your bucket for website hosting, managing the lifecycle of objects in the bucket, and
enabling all access to the bucket. Amazon S3 supports subresources for you to store, and it
manages the bucket configuration information. Using the Amazon S3 API, you can create
and manage these subresources. You can also use the Amazon S3 console or the AWS SDKs.

Amazon S3 Consistency Model
Amazon S3 provides read-after-write consistency for PUT requests of new objects in your S3
bucket in all regions. However, if you make a HEAD or GET request to the key name (to deter-
mine whether the object exists) before creating the object, Amazon S3 provides eventual
consistency for read-after-write.

Amazon S3 offers eventual consistency for overwriting PUT and DELETE requests in all regions.
Updates to a single key are atomic. For example, if you PUT to an existing key, a subse-

quent read might return the old data or the updated data, but it will not write corrupted or
partial data.

756 Chapter 14 ■ Stateless Application Patterns

Amazon S3 achieves high availability by replicating data across multiple servers within
Amazon’s data centers. If a PUT request is successful, your data is safely stored. However,
information about the changes must replicate across Amazon S3, which can take time, so
you might observe the following behaviors:

 ■ A process writes a new object to Amazon S3 and immediately lists keys within its
bucket. Until the change is fully propagated, the object might not appear in the list.

 ■ A process replaces an existing object and immediately attempts to read it. Until the
change is fully propagated, Amazon S3 might return the prior data.

 ■ A process deletes an existing object and immediately attempts to read it. Until the dele-
tion is fully propagated, Amazon S3 might return the deleted data.

 ■ A process deletes an existing object and immediately lists keys within its bucket. Until
the deletion is fully propagated, Amazon S3 might list the deleted object.

Amazon S3 does not currently support object locking. If two PUT requests are simulta-
neously made to the same key, the request with the latest timestamp takes effect. If this is
an issue, build an object-locking mechanism into your application. Updates are key-based;
there is no way to make atomic updates across keys. For example, you cannot make the
update of one key dependent on the update of another key unless you design this function-
ality into your application.

Table 14.5 describes the characteristics of eventually consistent reads and consistent reads.

TA b le 14 .5 Amazon S3 Reads

Eventually Consistent Read Consistent Read

 ■ Stale reads possible ■ No stale reads

 ■ Lowest-read latency ■ Potential higher-read latency

 ■ Highest-read throughput ■ Potential lower-read throughput

Bucket Policies
Bucket policies are a centralized way to control access to buckets and objects based on
numerous conditions, such as operations, requesters, resources, and aspects of the request.
The policies are written using the IAM policy language and enable centralized management
of permissions.

Individuals and companies can use bucket policies. When companies register with
Amazon S3, they create an account. Thereafter, the company becomes synonymous with
the account. Accounts are financially responsible for the Amazon resources they (and
their employees) create. Accounts grant bucket policy permissions and assign employees

Amazon Simple Storage Service 757

permissions based on a variety of conditions. For instance, an account could create a policy
that grants a user read access in the following cases:

 ■ From a particular S3 bucket

 ■ From an account’s corporate network

 ■ During the weekend

An account can allow one user limited read and write access, while allowing other users
to create and delete buckets. An account could allow several field offices to store their daily
reports in a single bucket, allowing each office to write only to a certain set of names (e.g.,
Texas/* or Alabama/*) and only from the office’s IP address range.

Unlike ACLs, which can add (grant) permissions only on individual objects, policies
can grant or deny permissions across all (or a subset) of objects within a bucket. With
one request, an account can set the permissions of any number of objects in a bucket. An
account can use wildcards (similar to regular expression operators) on Amazon Resource
Names (ARNs) and other values so that an account can control access to groups of objects
that begin with a common prefix or end with a given extension, such as .doc.

Only the bucket owner is allowed to associate a policy with a bucket. Policies, written in
the IAM policy language, allow or deny requests based on the following:

 ■ Amazon S3 bucket operations (such as PUT Bucket acl) and object operations (such as
PUT Object, or GET Object)

 ■ Requester

 ■ Conditions specified in the policy

An account can control access based on specific Amazon S3 operations, such as
GetObject, GetObjectVersion, DeleteObject, or DeleteBucket.

The conditions can be such things as IP addresses, IP address ranges in Classless Inter-
Domain Routing (CIDR) notation, dates, user agents, HTTP referrer, and transports, such
as HTTP and HTTPS.

Amazon S3 Storage Classes
Amazon S3 offers a variety of storage classes devised for different scenarios. Among these
storage classes are Amazon S3 STANDARD for general-purpose storage of frequently
accessed data; Amazon S3 STANDARD_IA (Infrequent Access) for long-lived, but less fre-
quently accessed data; and GLACIER for long-term archival purposes.

Storage Classes for Frequently Accessed Objects
Amazon S3 provides storage classes for performance-sensitive use cases (millisecond access
time) and frequently accessed data. Amazon S3 provides the following storage classes:

STANDARD Standard is the default storage class. If you do not specify the storage class
when uploading an object, Amazon S3 assigns the STANDARD storage class.

REDUCED_REDUNDANCY The Reduced Redundancy Storage (RRS) storage class is
designed for noncritical, reproducible data that you can store with less redundancy than the
STANDARD storage class.

758 Chapter 14 ■ Stateless Application Patterns

 Regarding durability, RRS objects have an average annual expected loss of 0.01 percent
of objects. If an RRS object is lost, when requests are made to that object, Amazon S3
returns a 405 error.

 The STANDARD storage class is more cost-effective than the REDUCED_
REDUNDANCY storage class; therefore, AWS recommends that you do not
use the RRS storage class.

 Storage Classes for Infrequently Accessed Objects
 The STANDARD_IA and ONEZONE_IA storage classes are designed for data that is
long-lived and infrequently accessed. STANDARD_IA and ONEZONE_IA objects are
available for millisecond access (similar to the STANDARD storage class). Amazon S3
charges a fee for retrieving these objects; thus, they are most appropriate for infrequently
accessed data.

 Possible use cases for STANDARD_IA and ONEZONE_IA are as follows:

 ■ For storing backups

 ■ For older data that is accessed infrequently but that still requires millisecond access

 STAndArd_iA and oneZone_iA Storage Classes

 The STANDARD_IA and ONEZONE_IA storage classes are suitable for objects larger than
128 KB that you plan to store for at least 30 days. If an object is less than 128 KB, Amazon
S3 charges you for 128 KB. If you delete an object before the 30-day minimum, you are
charged for 30 days.

 These storage classes differ as follows:

STANDARD_IA Objects stored using this storage class are stored redundantly across
multiple, geographically distinct Availability Zones (similar to the STANDARD storage
class). STANDARD_IA objects are resilient to data loss of an Availability Zone. This storage
class provides more availability, durability, and resiliency than the ONEZONE_IA class.

ONEZONE_IA Amazon S3 stores the object data in only one Availability Zone, which
makes it less expensive than STANDARD_IA. However, the data is not resilient to the
physical loss of the Availability Zone resulting from disasters, such as earthquakes and
fl oods. The ONEZONE_IA storage class is as durable as STANDARD_IA, but it is less
available and less resilient.

 To determine when to use a particular storage class, follow these recommendations:

 STANDARD_IA Use for your primary copy (or only copy) of data that cannot be
regenerated.

 ONEZONE_IA Use if you can regenerate the data if the Availability Zone fails.

Amazon Simple Storage Service 759

 GLACIER Storage Class
 You use the GLACIER storage class to archive data where access is infrequent. Objects
that you archive are not available for real-time access. The GLACIER storage class offers
the same durability and resiliency as the STANDARD storage class.

 When you store objects in Amazon S3 with the GLACIER storage class, Amazon S3 uses
the low-cost Amazon Simple Storage Service Glacier (Amazon S3 Glacier) service to store
these objects. Though the objects are stored in Amazon S3 Glacier, these remain Amazon
S3 objects that are managed in Amazon S3, and they cannot be accessed directly through
Amazon S3 Glacier.

 At the time that you create an object, it is not possible to specify GLACIER as the stor-
age class. The way that GLACIER objects are created is by uploading objects fi rst using
STANDARD as the storage class. You can transition these objects to the GLACIER storage
class by using lifecycle management.

 You must restore the GLACIER objects to access them.

 Setting the Storage Class of an Object
 Amazon S3 APIs offer support for setting or updating the storage class of objects. When
you create a new object, confi gure its storage class. For example, when you create objects
with the PUT Object , POST Object , and Initiate Multipart Upload APIs, add the
x-amz-storageclass request header to confi gure a storage class. If you do not add this
header, Amazon S3 uses STANDARD, the default storage class.

 You can also change the storage class of an object that is already stored in Amazon S3
by making a copy of the object using the PUT Object - Copy API. Copy the object in the
same bucket with the same key name, and confi gure request headers as follows:

 ■ Set the x-amz-metadata-directive header to COPY .

 ■ Set the x-amz-storage-class to the storage class that you want to use.

 In a versioning-enabled bucket, you cannot change the storage class of a specifi c ver-
sion of an object. When you copy it, Amazon S3 gives it a new version ID. You can direct
Amazon S3 to change the storage class of objects by adding a lifecycle confi guration to a
bucket.

 Amazon S3 Default Encryption for S3 Buckets
 Amazon S3 default encryption provides a way to set the default encryption behavior for
an Amazon S3 bucket. You can set default encryption on a bucket so that all objects are
encrypted when they are stored in the bucket. The objects are encrypted using server-side
encryption with either Amazon S3 managed keys (SSE-S3) or AWS KMS managed keys
(SSE-KMS).

 When you use server-side encryption, Amazon S3 encrypts an object before saving it to
disk in its data centers and then decrypts the object when you download it.

760 Chapter 14 ■ Stateless Application Patterns

 Protecting Data Using Encryption
Data protection refers to protecting data while in transit (as it travels to and from Amazon
S3), and at rest (while it is stored on disks in Amazon S3 data centers). You can protect data
in transit by using SSL or by using client-side encryption with the following options of pro-
tecting data at rest in Amazon S3:

Use server-side encryption You request Amazon S3 to encrypt your object before saving it
on disks in its data centers and then decrypt the object when you download it.

Use client-side encryption You can encrypt data on the client side and upload the
encrypted data to Amazon S3 and then manage the encryption process, the encryption
keys, and related tools.

 Protecting Data Using Server-Side Encryption
 Server-side encryption is about data encryption at rest; that is, Amazon S3 encrypts your
data at the object level as it writes it to disks in its data centers and decrypts it for you when
you access it. As long as you authenticate your request and you have access permissions,
there is no difference in the way that you access encrypted or unencrypted objects. For
example, if you share your objects using a presigned URL, that URL works the same way
for both encrypted and unencrypted objects.

 Consider the following mutually exclusive options, depending on how you choose to
manage the encryption keys:

Use server-side encryption with Amazon S3 Managed Keys (SSE-S3) Each object is
encrypted with a unique key employing strong multifactor encryption. As an additional
safeguard, it encrypts the key itself with a master key that it regularly rotates. Amazon S3
server-side encryption uses one of the strongest block ciphers available, 256-bit Advanced
Encryption Standard (AES-256), to encrypt your data.

Use server-side encryption with AWS KMS Managed Keys (SSE-KMS) SSE-KMS is simi-
lar to SSE-S3, but with additional benefi ts and charges for using this service. There are
separate permissions for the use of an envelope key (that is, a key that protects your data’s
encryption key) that provides added protection against unauthorized access of your objects
in Amazon S3.

 SSE-KMS also provides you with an audit trail of when your key was used and by whom.
Additionally, you can create and manage encryption keys yourself or use a default key that
is unique to you, the service you are using, and the region in which you are working.

Use server-side encryption with customer-provided keys (SSE-C) You manage the encryp-
tion keys, and Amazon S3 manages the encryption as it writes to disks. You also manage
decryption when you access your objects.

 When you list objects in your bucket, the list API will return a list of all
objects, regardless of whether they are encrypted.

Amazon Simple Storage Service 761

 Working with Amazon S3 Objects
 Amazon S3 is a simple key-value store designed to store as many objects as you want. Store
these objects in one or more buckets. An object consists of the following:

Key The key is the name that you assign to an object. The object key is used to retrieve
the object.

Version ID Within a bucket, a key and version ID uniquely identify an object. The version
ID is a string that Amazon S3 generates when you add an object to a bucket.

 Value The information being stored. An object value can be any sequence of bytes.
Objects can range in size from 0 to 5 terabytes (TB).

 Metadata A set of key-value pairs with which you can store information about the object.
You can assign metadata, referred to as user-defi ned metadata , to your objects in Amazon
S3. Amazon S3 also assigns system metadata to these objects, which it uses for managing
objects.

Subresources Amazon S3 uses the subresource mechanism to store object-specifi c addi-
tional information. Because subresources are subordinates to objects, they are always asso-
ciated with an entity, such as an object or a bucket.

Access control information You can control access to the objects that you store in
Amazon S3. Amazon S3 supports both the resource-based access control, such as an access
control list (ACL) and bucket policies, and user-based access control.

 Object Keys and Metadata
 Each Amazon S3 object is composed of several parts. These parts include the data, a key,
and metadata. An object key (or key name) uniquely identifi es the object in a bucket.
 Object metadata is a set of name-value pairs. You can set the object metadata at the time
that you upload an object. However, after you upload the object, you cannot modify object
metadata. The only way to modify object metadata after it has been uploaded is to create a
copy of the object.

 When you upload an object, set the key name, which uniquely identifi es the object in
that bucket. As an example, in the Amazon S3 console, when you select a bucket, a list
of objects that reside in your bucket is displayed. These names are the object keys. The
name for a key is a sequence of Unicode characters whose UTF-8 encoding is limited to
1,024 bytes.

 If you anticipate that your workload against Amazon S3 will exceed 100
requests per second, follow the Amazon S3 key naming guidelines for best
performance.

762 Chapter 14 ■ Stateless Application Patterns

Object Key Naming Guidelines
Though you can use any UTF-8 characters in an object key name, the following best prac-
tices for key naming help ensure maximum compatibility with other applications. Each
application might parse special characters differently. The following guidelines help you
maximize compliance with DNS, web-safe characters, XML parsers, and other APIs.

The following character sets are generally safe for use in key names:

 ■ a–z

 ■ A–Z

 ■ 0–9

 ■ _ (underscore)

 ■ – (dash)

 ■ . (period)

 ■ ! (exclamation point)

 ■ * (asterisk)

 ■ ’ (apostrophe)

 ■ , (comma)

The following are examples of valid object key names:

 ■ 2your-customer

 ■ your.great_photos-2018/jane/yourvacation.jpg

 ■ videos/2018/graduation/video1.wmv

The Amazon S3 data model is a flat structure: you create a bucket, and the bucket stores
objects. There is no hierarchy of sub-buckets or subfolders; however, you can infer logical
hierarchy by using key name prefixes and delimiters as the Amazon S3 console does. The
Amazon S3 console supports the concept of folders.

Object Metadata
There are two kinds of object metadata: system metadata and user-defined metadata.

System-Defined Metadata

For each object stored in a bucket, Amazon S3 maintains a set of system metadata. Amazon S3
processes this system metadata as needed. For example, Amazon S3 maintains the object cre-
ation date and size metadata, and it uses this information as part of object management.

There are two categories of system metadata.

 ■ Metadata, such as object creation date, is system controlled where only Amazon S3 can
modify the value.

 ■ Other system metadata are examples of system metadata whose values you control.

If your bucket is configured as a website, sometimes you might want to redirect a
page request to another page or an external URL. In this case, a webpage is an object
in your bucket. Amazon S3 stores the page redirect value as system metadata whose
value you control.

Amazon Simple Storage Service 763

When you create objects, you can configure values of these system metadata items or
update the values when you need to.

Table 14.6 lists system-defined metadata and whether you can modify it.

TA b le 14 .6 System-Defined Metadata

Name Description Modifiable

Content-Length Size of object in bytes. No

Last-Modified The object creation date or last modified
date, whichever is the latest.

No

Content-MD5 The base64-encoded 128-bit MD5 digest
of the object.

No

x-amz-server-side-encryption Indicates whether server-side encryption
is enabled for the object and whether that
encryption is from the AWS Key Manage-
ment Service (SSE-KMS) or from AWS
managed encryption (SSE-S3).

Yes

x-amz-version-ID Object version. When you enable version-
ing on a bucket, Amazon S3 assigns a
version number to objects added to the
bucket.

No

x-amz-delete-marker In a bucket that has versioning enabled,
this Boolean marker indicates whether the
object is a delete marker.

No

x-amz-storage-class Storage class used for storing the object. Yes

x-amz-websiteredirect-
location

Redirects requests for the associated
object to another object in the same
bucket, or to an external URL.

Yes

x-amz-server-sideencryption-
aws-kmskey-ID

If x-amz-server-side-encryption is
present and has the value of aws:kms, this
indicates the ID of the AWS KMS mas-
ter encryption key that was used for the
object.

Yes

x-amz-server-sideencryption-
customeralgorithm

Indicates whether server-side encryption
with customer-provided encryption keys
(SSE-C) is enabled.

Yes

764 Chapter 14 ■ Stateless Application Patterns

User-Defined Metadata

When uploading an object, you can also attach metadata to the object. Provide this
optional information as a key-value pair when you deliver a PUT or POST request to create
the object. When you upload objects using the REST API, the optional user-defined meta-
data names must begin with x-amz-meta- to distinguish them from other HTTP headers.
When you retrieve the object using the REST API, this prefix is returned. User-defined
metadata is a set of key-value pairs. Amazon S3 stores user-defined metadata keys in
lowercase.

Object Tagging
You can use object tagging as a way to categorize your objects. Each tag is a key-value pair.
The following are tagging examples:

 ■ Suppose that an object contains protected health information (PHI) data. You might
tag the object by using the following key-value pair:

PHI=True

 ■ Suppose that you store project files in your S3 bucket. You might tag these objects with
a key called Project, and the following value:

Project=Aqua

 ■ You can set up multiple tags to an object, as shown in the following:

Project=Y

Classification=sensitive

You can add tags to new objects and existing objects. Note the following:

 ■ You can associate up to 10 tags with an object. Tags associated with an object must
have unique tag keys.

 ■ A tag key can be up to 128 Unicode characters in length, and tag values can be up to
256 Unicode characters in length.

 ■ Key and values are case-sensitive.

Object key name prefixes also enable you to categorize storage. However, prefix-based
categorization is one-dimensional. Consider the following object key names:

 ■ images/photo1.jpg

 ■ projects/accountingproject/document.pdf

 ■ project/financeproject/document2.pdf

These key names have the prefixes images/, projects/accountingproject/, and
projects/financeproject/. These prefixes enable one-dimensional categorization;
that is, everything under a prefix is one category. For example, the prefix projects/
accountingproject identifies all documents related to the project accountingproject.

Amazon Simple Storage Service 765

 Tagging creates another dimension. If you want photo1 in the project financeproject
category, tag the object accordingly. In addition to data classifi cation, tagging offers the
following additional benefi ts:

 ■ Object tags enable fine-grained access control of permissions. For instance, you could
grant an IAM user permissions to read-only objects with certain tags.

 ■ Object tags enable fine-grained object lifecycle policies where you can configure tag-
based filters, in addition to key name prefixes, in a lifecycle policy.

 ■ When using Amazon S3 analytics, you can configure filters to group objects together
for analysis by object tags, by key name prefix, or by both prefix and tags.

 ■ You can customize Amazon CloudWatch metrics to display information by specific
tag filters.

 Though it is acceptable to use tags to label objects that contain
confidential information, the tags themselves should not contain
any confidential data.

 Operations on Objects
 Amazon S3 enables you to store (POST and PUT), retrieve (GET), and delete (DELETE) objects.
You can retrieve an entire object or a portion of an object. If you have enabled versioning
on the bucket, you can retrieve a specifi c version of the object. You can also retrieve a sub-
resource associated with your object and update it where applicable. You can make a copy
of your existing object.

 Depending on the size of the object, consider the following when uploading or copying
a fi le:

 Uploading objects You can upload objects of up to 5 GB in size in a single operation.
If your object is larger than 5 GB, use the multipart upload API. By using the multipart
upload API, you can upload objects up to 5 TB each.

 Copying objects The Copy operation creates a copy of an object that is already stored in
Amazon S3. You can create a copy of your object up to 5 GB in size in a single atomic oper-
ation. However, for copying an object greater than 5 GB, use the multipart upload API.

 Getting Objects

 You can retrieve objects directly from Amazon S3. The following options are available to
you when retrieving objects:

 Retrieve an entire object A single GET operation can return the entire object stored in
Amazon S3.

 Retrieve object in parts Use the Range HTTP header in a GET request to retrieve a specifi c
range of bytes in an object stored in Amazon S3. Resume fetching other parts of the object
when your application is ready. This ability to resume the download is useful when you
need only portions of your object data. It is also useful where network connectivity is poor,
and you must react to failures.

766 Chapter 14 ■ Stateless Application Patterns

 When you retrieve an object, its metadata is returned in the response headers. There
are situations when you want to override certain response header values returned in a GET
response. For example, you might override the Content-Disposition response header value
in your GET request. To override these values, use the REST GET Object API to specify query
string parameters in your GET request.

 The AWS SDKs for Java, .NET, and PHP also provide necessary objects that you can use
to specify values for these response headers in your GET request. When retrieving objects
that are stored encrypted using server-side encryption, you must provide appropriate
request headers.

 Sharing an Object with Others

 All objects uploaded to Amazon S3 are private by default. Only the object owner has per-
mission to access these objects. However, the object owner can choose to share objects with
others by generating a presigned URL, using their own security credentials, to grant time-
limited permission to interact with the objects.

 When you create a presigned URL for your object, you must provide your security cre-
dentials, specify a bucket name and an object key, specify the HTTP method (GET to down-
load the object), and specify both the expiration date and the time. The presigned URLs are
valid only for the specifi ed duration.

 Anyone who receives the presigned URL can then access the object. For example, if you
have an image in your bucket and both the bucket and object are private, you can share the
image with others by generating a presigned URL. You can generate a presigned URL pro-
grammatically using the AWS SDK for Java and .NET.

 Anyone with valid security credentials can create a presigned URL. How-
ever, to access an object successfully, only someone who has permission
to perform the operation that the presigned URL is based upon can create
the presigned URL.

 Uploading Objects

 Depending on the size of the data that you are uploading, Amazon S3 provides the
following options:

Upload objects in a single operation Use a single PUT operation to upload objects up to
5 GB in size. For objects that are up to 5 TB in size, use the multipart upload API.

 Upload objects in parts The multipart upload API is designed to improve the upload
experience for larger objects. Upload these object parts independently, in any order, and in
parallel.

 AWS recommends that you use multipart uploading in the following ways:

 ■ If you are uploading large objects over a stable high-bandwidth network, use multipart
uploading to maximize the use of your available bandwidth by uploading object parts
in parallel for multithreaded performance.

Amazon Simple Storage Service 767

 ■ If you are uploading over a spotty network, use multipart uploading to increase resil-
iency to network errors by avoiding upload restarts. When using multipart uploading,
you must retry uploading only parts that are interrupted during the upload. You do not
need to restart uploading your object from the beginning.

When uploading an object, you can request that Amazon S3 encrypt it before saving it to
disk and decrypt it when you download it.

Uploading Objects Using Multipart Upload API

Use multipart upload to upload a single object as a set of parts. Each part is a contiguous
portion of the object’s data. You can upload these object parts independently and in any
order. If transmission of any part fails, you can retransmit that part without affecting other
parts. After all parts of your object are uploaded, Amazon S3 assembles these parts and
then creates the object. When your object size reaches 100 MB, consider using multipart
uploads instead of uploading the object in a single operation.

Using multipart upload provides the following advantages:

Improved throughput You can upload parts in parallel to improve throughput.

Quick recovery from any network issues Smaller part size minimizes the impact of
restarting a failed upload resulting from a network error.

Pause and resume object uploads You can upload object parts over time. Once you initiate
a multipart upload, there is no expiry; you must explicitly complete or abort the multipart
upload.

Begin an upload before you know the final object size You can upload an object as you
are creating it.

Copying Objects

The Copy operation creates a copy of an object that is already stored in Amazon S3. You
can create a copy of your object up to 5 GB in a single atomic operation. However, to copy
an object that is greater than 5 GB, you must use the multipart upload API.

Using the Copy operation, you can do the following:

 ■ Create additional copies of objects.

 ■ Rename objects by copying them and then deleting the original ones.

 ■ Move objects across Amazon S3 locations (for example, us-west-1 and EU).

 ■ Change object metadata.

Each Amazon S3 object has metadata. It is a set of name-value pairs. You can set
object metadata at the time you upload it. After you upload the object, you cannot
modify object metadata. The only way to modify object metadata is to make a copy of
the object and then set the metadata. In the Copy operation, you set the same object as the
source and target.

Each object has metadata, which can be system metadata or user-defined. Users con-
trol some of the system metadata, such as storage class configuration to use for the object
and configure server-side encryption. When you copy an object, both user-controlled

768 Chapter 14 ■ Stateless Application Patterns

system metadata and user-defi ned metadata are also copied. Amazon S3 resets the system-
controlled metadata. For example, when you copy an object, Amazon S3 resets the creation
date of the copied object. You do not need to set any of these values in your copy request.

 When you copy an object, you might decide to update several metadata values. For
example, if your source object is confi gured to use standard storage, you might choose to
use RRS for the object copy. You might also decide to alter user-defi ned metadata values
present on the source object. If you choose to update any of the object’s user-confi gurable
metadata (system- or user-defi ned) during the copy, then you must explicitly specify all of
the user-confi gurable metadata present on the source object in your request, even if you are
changing only one of the metadata values.

 If the source object is archived in Amazon S3 Glacier (the storage class of
the object is GLACIER), you must first restore a temporary copy before you
can copy the object to another bucket.

 When you copy objects, you can request that Amazon S3 save the target object
encrypted using an AWS KMS encryption key, an Amazon S3 managed encryption key, or
a customer-provided encryption key. Accordingly, you must confi gure encryption infor-
mation in your request. If the copy source is an object that is stored in Amazon S3 using
server-side encryption with a customer-provided key, then provide encryption information
in your request so that Amazon S3 can decrypt the object for copying.

 Copying objects across locations incurs bandwidth charges.

 Listing Object Keys

 You can list Amazon S3 object keys by prefi x. By choosing a common prefi x for the names
of related keys and marking these keys with a special character that delimits hierarchy, you
can use the list operation to select and browse keys in a hierarchical fashion. This can be
likened to how fi les are stored in directories within a fi le system.

 Amazon S3 exposes a list operation that enables you to enumerate the keys contained in
a bucket. Keys are selected for listing by bucket and prefi x. For instance, suppose that you
have a bucket named dictionary that contains a key for every English word. You might
make a call to list all of the keys in that bucket that start with the letter q . List results are
returned in UTF-8 binary order. Whether you use the SOAP or REST list operations does
not matter because they both return an XML document that has the names of matching
keys and data about the object identifi ed by each key.

 SOAP support over HTTP is deprecated, but it is still available over HTTPS.
New Amazon S3 features do not support SOAP. AWS recommends that
you use either the REST API or the AWS SDKs.

Amazon Simple Storage Service 769

Groups of keys that share a prefix terminated by a special delimiter can be rolled up by
that common prefix for the purposes of listing. This enables applications to organize and
browse their keys hierarchically, much like how you would organize your files into direc-
tories in a file system. For example, to extend the dictionary bucket to contain more than
only English words, you might form keys by prefixing each word with its language and a
delimiter, such as Spanish/logical. Using this naming scheme and the hierarchical listing
feature, you could retrieve a list of only Spanish words. You could also browse the top-level
list of available languages without having to cycle through all the lexicographically inter-
vening keys.

Listing Keys Hierarchically Using a Prefix and Delimiter

The prefix and delimiter parameters limit the kind of results the List operation
returns. The prefix parameter limits results to only those keys that begin with the speci-
fied prefix, and the delimiter parameter causes the list to roll up all keys that share a com-
mon prefix into a single summary list result.

The purpose of the prefix and delimiter parameters is to help you organize and
browse your keys hierarchically. To do this, first choose a delimiter for your bucket, such
as slash (/), that does not occur in any of your anticipated key names. Next, construct your
key names by concatenating all containing levels of the hierarchy, separating each level with
the delimiter.

For example, if you were storing information about cities, you might naturally organize
them by continent, then by country, and then by province or state. Because these names do
not usually contain punctuation, you might select slash (/) as the delimiter. The following
examples use a slash (/) delimiter:

 ■ Europe/Spain/Madrid

 ■ North America/Canada/Quebec/Bordeaux

 ■ North America/USA/Texas/San Antonio

 ■ North America/USA/Texas/Houston

If you stored data for every city in the world in this manner, it would become awkward
to manage a flat key namespace. By using Prefix and Delimiter response elements with
the list operation, you can use the hierarchy to list your data. For example, to list all of
the states in the United States, set Delimiter='/' and Prefix='North America/USA/'.
To list all of the provinces in Canada for which you have data, set Delimiter='/' and
Prefix='North America/Canada/'.

Iterating Through Multipage Results

Because buckets can contain a virtually unlimited number of objects and keys, the entire
results of a list operation can be large. To manage large result sets, the Amazon S3 API
supports pagination to break them into multiple responses. Each list keys response returns
a page of up to 1,000 keys with an indicator that illustrates whether the response is trun-
cated. Send a series of list keys requests until you have retrieved all of the keys.

770 Chapter 14 ■ Stateless Application Patterns

Deleting Objects

Amazon S3 provides several options for deleting objects from your bucket. You can delete
one or more objects directly from your S3 bucket. If you want to delete a single object, you
can use the Amazon S3 Delete API. If you want to delete multiple objects, you can use the
Amazon S3 Multi-Object Delete API, which enables you to delete up to 1,000 objects with
a single request. The Multi-Object Delete operation requires a single query string Delete
parameter to distinguish it from other bucket POST operations.

When deleting objects from a bucket that is not version-enabled, provide only the object
key name. However, when deleting objects from a version-enabled bucket, provide the ver-
sion ID of the object to delete a specific version of the object.

Deleting Objects from a Version-Enabled Bucket

If your bucket is version-enabled, then multiple versions of the same object can exist in the
bucket. When working with version-enabled buckets, the DELETE API enables the following
options:

Specify a nonversioned delete request Specify only the object’s key, not the version ID.
In this case, Amazon S3 creates a delete marker and returns its version ID in the response.
This makes your object disappear from the bucket.

Specify a versioned delete request Specify both the key and a version ID. In this case, the
following two outcomes are possible:

 ■ If the version ID maps to a specific object version, then Amazon S3 deletes the specific
version of the object.

 ■ If the version ID maps to the delete marker of that object, Amazon S3 deletes the delete
marker. This causes the object to reappear in your bucket.

Performance Optimization
This section discusses Amazon S3 best practices for optimizing performance.

Request Rate and Performance Considerations
Amazon S3 scales to support high request rates. If your request rate grows steadily, Amazon S3
automatically partitions your buckets as needed to support higher request rates. However, if
you expect a rapid increase in the request rate for a bucket to more than 300 PUT/LIST/DELETE
requests per second or more than 800 GET requests per second, AWS recommends that you
open a support case to prepare for the workload and avoid any temporary limits on your
request rate.

If your requests are typically a mix of GET, PUT, DELETE, or GET Bucket (List Objects),
choose the appropriate key names for your objects to ensure better performance by provid-
ing low-latency access to the Amazon S3 index. It also ensures scalability regardless of the
number of requests that you send per second. If the bulk of your workload consists of GET
requests, AWS recommends using the Amazon CloudFront content delivery service.

Amazon Simple Storage Service 771

 The Amazon S3 best practice guidelines apply only if you are routinely pro-
cessing 100 or more requests per second. If your typical workload involves
only occasional bursts of 100 requests per second and fewer than 800
requests per second, you do not need to follow these recommendations.

 Workloads with Different Request Types
 When you are uploading a large number of objects, you might use sequential numbers or
date-and-time values as part of the key names. For instance, you might decide to use key
names that include a combination of the date and time, as shown in the following example,
where the prefi x includes a timestamp:

 demobucket/2018-31-05-16-00-00/order1234234/receipt1.jpg
 demobucket/2018-31-05-16-00-00/order3857422/receipt2.jpg
 demobucket/2018-31-05-16-00-00/order1248473/receipt2.jpg
 demobucket/2018-31-05-16-00-00/order8474937/receipt2.jpg
 demobucket/2018-31-05-16-00-00/order1248473/receipt3.jpg
 …
 demobucket/2018-31-05-16-00-00/order1248473/receipt4.jpg
 demobucket/2018-31-05-16-00-00/order1248473/receipt5.jpg
 demobucket/2018-31-05-16-00-00/order1248473/receipt6.jpg
 demobucket/2018-31-05-16-00-00/order1248473/receipt7.jpg

 The way these keys are named presents a performance problem. To get a better under-
standing of this issue, consider the way that Amazon S3 stores key names. Amazon S3
maintains an index of object key names in each AWS Region. These keys are stored in
UTF-8 binary ordering across multiple partitions in the index. The key name dictates where
(or which partition) the key is stored in. In this case, where you use a sequential prefi x such
as a timestamp, or an alphabetical sequence, would increase the chances that Amazon S3
targets a specifi c partition for a large number of your keys, overwhelming the I/O capacity
of the partition. However, if you introduce randomness in your key name prefi xes, the key
names, and therefore the I/O load, distribute across more than one partition.

 If you anticipate that your workload will consistently exceed 100 requests per second,
avoid sequential key names. If you must use sequential numbers or date-and-time patterns
in key names, add a random prefi x to the key name. The randomness of the prefi x more
evenly distributes key names across multiple index partitions.

 The guidelines for the key name prefi xes also apply to the bucket names. When Amazon
S3 stores a key name in the index, it stores the bucket names as part of the key name
(demobucket/object.jpg).

 One way to introduce randomness to key names is to add a hash string as a prefi x to the
key name. For instance, you can compute an MD5 hash of the character sequence that you
plan to assign as the key name. From the hash, select a specifi c number of characters and
add them as the prefi x to the key name.

772 Chapter 14 ■ Stateless Application Patterns

 A hashed prefix of three or four characters should be sufficient. AWS
strongly recommends using a hexadecimal hash as the prefix.

GET -Intensive Workloads
 If your workload consists mostly of sending GET requests, then in addition to the preceding
guidelines, consider using Amazon CloudFront for performance optimization.

 Integrating CloudFront with Amazon S3 enables you to deliver content with low latency
and a high data transfer rate. You will also send fewer direct requests to Amazon S3, which
helps to lower your costs.

 Suppose that you have a few objects that are popular. CloudFront fetches those objects
from Amazon S3 and caches them. CloudFront can then serve future requests for the
objects from its cache, reducing the number of GET requests it sends to Amazon S3.

 Storing Large Attribute Values in Amazon S3
 Amazon DynamoDB currently limits the size of each item that you store in a table to
400 KB. If your application needs to store more data in an item than the DynamoDB size
limit permits, store the large attributes as an object in Amazon S3. You can then store the
Amazon S3 object identifi er in your item.

 You can also use the object metadata support in Amazon S3 to store the primary key
value of the corresponding table item as Amazon S3 object metadata. Doing this provides a
link back to the parent item in DynamoDB, which helps with maintenance of the Amazon
S3 objects.

 example 11: Store large Attribute values in Amazon S3

 Suppose that you have a table that stores product data, such as item price, descrip-
tion, book authors, and dimensions for other products. If you want to store an image of
each product that was too large to fi t in an item , use Amazon S3 images as an item in
DynamoDB.

 When implementing this strategy, remember the following limitations and restrictions:

 ■ DynamoDB does not support transactions that cross Amazon S3 and DynamoDB.
Therefore, your application must deal with any failures, which could include cleaning
up orphaned Amazon S3 objects.

 ■ Amazon S3 limits the length of object identifi ers. You must organize your data in a way
that does not generate excessively long object identifi ers or violate other Amazon S3
constraints.

Amazon Elastic File System 773

Amazon Elastic File System
Amazon Elastic File System (Amazon EFS) provides simple, scalable file storage for use
with Amazon EC2. With Amazon EFS, storage capacity is elastic, growing and shrinking
automatically as you add and remove files so your applications have the storage they need
when they need it. The simple web services interface helps you create and configure file
systems quickly and easily. The service manages all of the file storage infrastructure, mean-
ing that you can avoid the complexity of deploying, patching, and maintaining complex file
system configurations, such as situations where it must facilitate user uploads or interim
results of batch processes. By placing those files in a shared storage layer, it helps you to
avoid the introduction of stateful components.

Amazon EFS supports the Network File System versions 4.0 and 4.1 (NFSv4) proto-
col, so the applications and tools that you use today work seamlessly with Amazon EFS.
Multiple Amazon EC2 instances can access an Amazon EFS file system at the same time,
providing a common data source for workloads and applications running on more than one
instance or server.

The service is highly scalable, highly available, and highly durable. Amazon EFS stores
data and metadata across multiple Availability Zones in a region, and it can grow to
petabyte scale, drive high levels of throughput, and allow massively parallel access from
Amazon EC2 instances to your data.

Amazon EFS provides file system access semantics, such as strong data consistency and
file locking. Amazon EFS also allows you to control access to your file systems through
Portable Operating System Interface (POSIX) permissions.

Amazon EFS supports two forms of encryption for file systems: encryption in transit
and encryption at rest. You can enable encryption at rest when creating an Amazon EFS file
system. If you do, all of your data and metadata is encrypted. You can enable encryption in
transit when you mount the file system.

Amazon EFS is designed to provide the throughput, input/output operations per sec-
ond (IOPS), and low latency needed for a broad range of workloads. With Amazon EFS,
throughput and IOPS scale as a file system grows, and file operations are delivered with
consistent, low latencies.

How Amazon EFS Works
Figure 14.19 shows an example of VPC accessing an Amazon EFS file system. In this
example, Amazon EC2 instances in the VPC have file systems mounted.

Amazon EFS provides file storage in the AWS Cloud. With Amazon EFS, you can create
a file system, mount the file system on an Amazon EC2 instance, and then read and write
data to and from your file system. You can mount an Amazon EFS file system in your VPC
through the NFSv4 protocol.

774 Chapter 14 ■ Stateless Application Patterns

f i gu r e 14 .19 VPC accessing an Amazon EFS

Server

On-Premises Network AWS Direct Connect Location

AWS Region

192.0.2.1

192.0.2.0

VPC

Amazon
EFS

Mount
Target

Amazon
EFS

Mount
Target

Amazon
EFS

Mount
Target

Customer or
Partner
Router

Customer or
Partner
Router

AWS Direct
Connect Router

Customer or
Partner Cage

AWS Cage Availability
Zone

Availability
Zone

Availability
Zone

Server

You can access your Amazon EFS file system concurrently from Amazon EC2 instances
in your Amazon VPC so that applications that scale beyond a single connection can access
a file system. Amazon EC2 instances running in multiple Availability Zones within the
same region can access the file system so that many users can access and share a common
data source.

However, there are restrictions. You can mount an Amazon EFS file system on
instances in only one VPC at a time. Both the file system and VPC must be in the same
AWS Region.

To access your Amazon EFS file system in a VPC, create one or more mount targets in
the VPC. A mount target provides an IP address for an NFSv4 endpoint at which you can
mount an Amazon EFS file system. Mount your file system using its DNS name, which
resolves to the IP address of the Amazon EFS mount target in the same Availability Zone
as your EC2 instance. You can create one mount target in each Availability Zone in a
region. If there are multiple subnets in an Availability Zone in your Amazon VPC, cre-
ate a mount target in one of the subnets, and all EC2 instances in that Availability Zone
share that mount target.

Mount targets themselves are designed to be highly available. When designing your
application for both high availability and the ability to failover to other Availability Zones,
keep in mind that the IP addresses and DNS for your mount targets in each Availability
Zone are static. After mounting the file system via the mount target, use it like any other
POSIX-compliant file system.

You can mount your Amazon EFS file systems on your on-premises data center servers
when connected to your Amazon VPC with AWS Direct Connect (DX). You can mount
your Amazon EFS file systems on on-premises servers to migrate datasets to Amazon EFS,
enable cloud-bursting scenarios, or back up your on-premises data to Amazon EFS.

You can mount Amazon EFS file systems on Amazon EC2 instances or on-premises
through a DX connection.

Amazon Elastic File System 775

How Amazon EFS Works with AWS Direct Connect
Using an Amazon EFS file system mounted on an on-premises server, you can migrate on-
premises data into the AWS Cloud hosted in an Amazon EFS file system. You can also take
advantage of bursting. This means that you can move data from your on-premises servers
into Amazon EFS, analyze it on a fleet of Amazon EC2 instances in your Amazon VPC,
and then store the results permanently in your file system or move the results back to your
on-premises server.

Consider the following when using Amazon EFS with DX:

 ■ Your on-premises server must have a Linux-based operating system. AWS recommends
Linux kernel version 4.0 or later.

 ■ For the sake of simplicity, AWS recommends mounting an Amazon EFS file system on
an on-premises server using a mount target IP address instead of a DNS name.

 ■ AWS Virtual Private Network (AWS VPN) is not supported for accessing an Amazon
EFS file system from an on-premises server.

You can use any one of the mount targets in your Amazon VPC as long as the subnet of
the mount target is reachable by using the DX connection between your on-premises server
and Amazon VPC. To access Amazon EFS from an on-premises server, you must add a rule
to your mount target security group to allow inbound traffic to the NFS port (2049) from
your on-premises server.

In Amazon EFS, a file system is the primary resource. Each file system has properties
such as ID, creation token, creation time, file system size in bytes, number of mount targets
created for the file system, and the file system state.

Amazon EFS also supports other resources to configure the primary resource. These
include mount targets and tags:

Mount Target

 ■ To access your file system, create mount targets in your Amazon VPC. Each mount
target has the following properties:

 ■ Mount target ID

 ■ Subnet ID where it is created

 ■ File system ID for which it is created

 ■ IP address at which the file system may be mounted

 ■ Mount target state

You can use the IP address or the DNS name in your mount command.

Tags

 ■ To help organize your file systems, assign your own metadata to each of the file sys-
tems that you create. Each tag is a key-value pair.

Each file system has a DNS name of the following form:

file-system-ID.efs.aws-region.amazonaws.com

776 Chapter 14 ■ Stateless Application Patterns

You can configure this DNS name in your mount command to mount the Amazon EFS
file system.

Suppose that you create an efs-mount-point subdirectory in your home directory on
your EC2 instance or on-premises server. Use the mount command to mount the file system.
For example, on an Amazon Linux AMI, you can use following mount command:

$ sudo mount -t nfs -o nfsvers=4.1,rsize=1048576,wsize=1048576,hard,timeo=600,
retrans=2,noresvport file-system-DNS-name:/ ~/efs-mount-point

You can think of mount targets and tags as subresources that do not exist without being
associated with a file system.

Amazon EFS provides API operations for you to create and manage these resources. In
addition to the create and delete operations for each resource, Amazon EFS also supports
a describe operation that enables you to retrieve resource information. The following
options are available for creating and managing these resources:

 ■ Use the Amazon EFS console.

 ■ Use the Amazon EFS command line interface (CLI).

You can also manage these resources programmatically as follows:

Use the AWS SDKs The AWS SDKs simplify your programming tasks by wrapping the
underlying Amazon EFS API. The SDK clients also authenticate your requests by using
access keys that you provide.

Call the Amazon EFS API directly from your application If you cannot use the SDKs, you
can make the Amazon EFS API calls directly from your application. However, if you use
this option, you must write the necessary code to authenticate your requests.

Authentication and Access Control
You must have valid credentials to make Amazon EFS API requests, such as creating a
file system. In addition, you must also have permissions to create or access resources. By
default, when you use the account root user credentials, you can create and access resources
owned by that account. However, AWS does not recommend using account root user cre-
dentials. In addition to creating or accessing resources, you must grant permissions to any
AWS IAM users and roles you create in your account.

Data Consistency in Amazon EFS
Amazon EFS provides the open-after-close consistency semantics that applications expect
from NFS. In Amazon EFS, write operations are durably stored across Availability Zones
when an application performs a synchronous write operation (for example, using the open
Linux command with the O_DIRECT flag, or the fsync Linux command) and when an appli-
cation closes a file.

Amazon EFS provides stronger consistency than open-after-close semantics, depending
on the access pattern. Applications that perform synchronous data access and perform non-
appending writes have read-after-write consistency for data access.

Amazon Elastic File System 777

Creating an IAM User
Services in AWS, such as Amazon EFS, require that you provide credentials when you
access them so that the service can determine whether you have permissions to access its
resources. AWS recommends that you do not use the AWS account credentials of your
account to make requests. Instead, create an IAM user, and grant that user full access.
AWS refers to these users as administrators. You can use the administrator credentials,
instead of AWS account credentials, to interact with AWS and perform tasks, such as creat-
ing a bucket, creating users, and granting them permissions.

For all operations, such as creating a file system and creating tags, a user must have
IAM permissions for the corresponding API action and resource. You can perform any
Amazon EFS operations using the AWS account credentials of your account. However,
using AWS account credentials is not considered a best practice. If you create IAM users in
your account, you can give them permissions for Amazon EFS actions with user policies.
Additionally, you can use roles to grant cross-account permissions.

Creating Resources for Amazon EFS
Amazon EFS provides elastic, shared file storage that is POSIX-compliant. The file system
that you create supports concurrent read and write access from multiple Amazon EC2
instances, and it is accessible from all of the Availability Zones in the AWS Region where
it is created. You can mount an Amazon EFS file system on EC2 instances in your Amazon
VPC through the Network File System versions 4.0 and 4.1 protocol (NFSv4).

As an example, suppose that you have one or more EC2 instances launched in your
Amazon VPC. You want to create and use a file system on these instances. To use Amazon
EFS file systems in the VPC, follow these steps:

1. Create an Amazon EFS file system. When creating a file system, AWS recommends that
you consider using the Name tag, because its value appears in the console, making the
file easier to identify. You can also add other optional tags to the file system.

2. Create mount targets for the file system. To access the file system in your Amazon VPC
and mount the file system to your Amazon EC2 instance, you must create mount tar-
gets in the VPC subnets.

3. Create security groups. Both an Amazon EC2 instance and mount target must have
associated security groups. These security groups act as a virtual firewall that controls
the traffic between them. You can use the security group that you associated with the
mount target to control inbound traffic to your file system by adding an inbound rule
to the mount target security group that allows access from a specific EC2 instance.
Then you can mount the file system only on that EC2 instance.

Creating a File System
You can use the Amazon EFS console, or the AWS CLI, to create a file system. You can also
use the AWS SDKs to create file systems programmatically.

778 Chapter 14 ■ Stateless Application Patterns

Using File Systems
Amazon EFS presents a standard file system interface that supports semantics for full
file system access. Using NFSv4.1, you can mount your Amazon EFS file system on any
Amazon EC2 Linux-based instance. Once mounted, you can work with the files and direc-
tories as you would with a local file system. You can also use AWS DataSync to copy files
from any file system to Amazon EFS.

After you create the file system and mount it on your EC2 instance, you should be aware
of several rules to use it effectively. For example, when you first create the file system, there
is only one root directory at /. By default, only the root user (UID 0) has read-write-execute
permissions. For other users to modify the file system, the root user must explicitly grant
them access.

NFS-Level Users, Groups, and Permissions
Amazon EFS file system objects have a Unix-style mode associated with them. This value
defines the permissions for performing actions on that object, and users familiar with Unix-
style systems can understand how Amazon EFS manages these permissions.

Further, on Unix-style systems, users and groups are mapped to numeric identifiers,
which Amazon EFS uses to represent file ownership. A single owner and a single group
own file system objects, such as files or directories on Amazon EFS. Amazon EFS uses these
numeric IDs to check permissions when a user attempts to access a file system object.

User and Group ID Permissions on Files and Directories
within a File System
Files and directories in an Amazon EFS file system support standard Unix-style
read/write/execute permissions based on the user ID and group ID asserted by the mount-
ing NFSv4.1 client. When a user tries to access files and directories, Amazon EFS checks
their user ID and group IDs to determine whether the user has permission to access the
objects. Amazon EFS also uses these IDs as the owner and group owner for new files and
directories that the user creates. Amazon EFS does not inspect user or group names—it
uses only the numeric identifiers.

When you create a user on an EC2 instance, you can assign any numeric UID and GID
to the user. The numeric user IDs are set in the /etc/passwd file on Linux systems. The
numeric group IDs are in the /etc/group file. These files define the mappings between
names and IDs. Outside of the EC2 instance, Amazon EFS does not perform any authenti-
cation of these IDs, including the root ID of 0.

If a user accesses an Amazon EFS file system from two different EC2 instances, depend-
ing on whether the UID for the user is the same or different on those instances, you may
observe different behavior. If the user IDs are the same on both EC2 instances, Amazon
EFS considers them the same user, regardless of the EC2 instance they use. The user experi-
ence when accessing the file system is the same from both EC2 instances. If the user IDs are
not the same on both EC2 instances, Amazon EFS considers them to be different users, and
the user experience will not be the same when accessing the Amazon EFS file system from

Amazon Elastic File System 779

the two different EC2 instances. If two different users on different EC2 instances share an
ID, Amazon EFS considers them the same user.

 Deleting an Amazon EFS File System
 File system deletion is a permanent action that destroys the fi le system and any data in it.
Any data that you delete from a fi le system is gone, and you cannot restore the data.

 Always unmount a file system before you delete it.

 Managing Access to Encrypted File Systems
 Using Amazon EFS, you can create encrypted fi le systems. Amazon EFS supports two
forms of encryption for fi le systems: encryption in transit and encryption at rest. Any key
management that you must perform is related only to encryption at rest. Amazon EFS auto-
matically manages the keys for encryption in transit. If you create a fi le system that uses
encryption at rest, data and metadata are encrypted at rest.

 Amazon EFS uses AWS KMS for key management. When you create a fi le system
using encryption at rest, specify a customer master key (CMK). The CMK can be
aws/elasticfilesystem (the AWS managed CMK for Amazon EFS), or it can be a CMK
that you manage. File data, the contents of your fi les, is encrypted at rest using the CMK that
you specifi ed when you created your fi le system.

 The AWS managed CMK for your fi le system is used as the master key for the metadata
in your fi le system; for instance, fi le names, directory names, and directory contents. You
are responsible for the CMK used to encrypt your fi le data (the contents of your fi les) at
rest. Moreover, you are responsible for the management of who has access to your CMKs
and the contents of your encrypted fi le systems. IAM policies and AWS KMS control these
permissions. IAM policies control a user’s access to Amazon EFS API actions. AWS KMS
key policies control a user’s access to the CMK that you specifi ed when the fi le system was
created.

 As a key administrator, you can both import external keys and modify keys by enabling,
disabling, or deleting them. The state of the CMK that you specifi ed (when you created the
fi le system with encryption at rest) affects access to its contents. To provide users access to
the contents of an encrypted at rest fi le system, the CMK must be in the enabled state.

 Amazon EFS Performance
 Amazon EFS fi le systems are spread across an unconstrained number of storage servers,
allowing fi le systems to expand elastically to petabyte scale. The distribution also allows
them to support massively parallel access from Amazon EC2 instances to your data.
Because of this distributed design, Amazon EFS avoids the bottlenecks and limitations
inherent to conventional fi le servers.

780 Chapter 14 ■ Stateless Application Patterns

This distributed data storage design means that multithreaded applications and appli-
cations that concurrently access data from multiple Amazon EC2 instances can drive
substantial levels of aggregate throughput and IOPS. Analytics and big data workloads,
media processing workflows, content management, and web serving are examples of these
applications.

Additionally, Amazon EFS data is distributed across multiple Availability Zones, provid-
ing a high level of availability and durability.

Performance Modes
To support a wide variety of cloud storage workloads, Amazon EFS offers two performance
modes: General Purpose and Max I/O. At the time that you create your file system, you
select a file system’s performance mode. There are no additional charges associated with the
two performance modes. Your Amazon EFS file system is billed and metered the same, irre-
spective of the performance mode chosen. You cannot change an Amazon EFS file system’s
performance mode after you have created the file system.

General Purpose performance mode AWS recommends the General Purpose performance
mode for the majority of your Amazon EFS file systems. General Purpose is ideal for
latency-sensitive use cases, such as web serving environments, content management sys-
tems, home directories, and general file serving. If you do not choose a performance mode
when you create your file system, Amazon EFS selects the General Purpose mode for you by
default.

Max I/O performance mode File systems in the Max I/O mode can scale to higher levels
of aggregate throughput and operations per second with a trade-off of slightly higher laten-
cies for file operations. Highly parallelized applications and workloads, such as big data
analysis, media processing, and genomics analysis can benefit from this mode.

Throughput Scaling in Amazon EFS
Throughput on Amazon EFS scales as a file system grows. Because file-based workloads are
typically spiky, driving high levels of throughput for short periods of time and low levels of
throughput the rest of the time, Amazon EFS is designed to burst to high throughput levels
for periods of time.

All file systems, regardless of size, can burst to 100 MB/s of throughput, and those
larger than 1 TB can burst to 100 MB/s per TB of data stored in the file system. For exam-
ple, a 10-TB file system can burst to 1,000 MB/s of throughput (10 TB × 100 MB/s/TB).
The portion of time a file system can burst is determined by its size, and the bursting model
is designed so that typical file system workloads will be able to burst virtually any time
they need to.

Amazon EFS uses a credit system to determine when file systems can burst. Each file
system earns credits over time at a baseline rate that is determined by the size of the file sys-
tem, and it uses credits whenever it reads or writes data. The baseline rate is 50 MB/s per
TB of storage (equivalently, 50 KB/s per GB of storage).

Summary 781

Accumulated burst credits give the file system permission to drive throughput above its
baseline rate. A file system can drive throughput continuously at its baseline rate. Whenever
the file system is inactive or when it is driving throughput below its baseline rate, the file
system accumulates burst credits.

Summary
In this chapter, stateless applications are defined as those that do not require knowledge
of previous individual interactions and do not store session information locally. Stateless
application design is beneficial because it reduces the risk of loss of session information or
critical data. It also improves user experience by reducing the chances that context-specific
data is lost if a resource containing session information becomes unavailable. To accom-
plish this, AWS customers can use Amazon DynamoDB, Amazon ElastiCache, Amazon
Simple Storage Service (Amazon S3), and Amazon Elastic File System (Amazon EFS).

DynamoDB is a fast and flexible NoSQL database service that is used by applications
that require consistent, single-digit millisecond latency at any scale. In stateless applica-
tion design, you can use DynamoDB to store and rapidly retrieve session information. This
separates session information from application resources responsible for processing user
interactions. For example, a web application can use DynamoDB to store user shopping
carts. If an application server becomes unavailable, the users accessing the application do
not experience a loss of service.

To further improve speed of access, DynamoDB supports global secondary indexes and
local secondary indexes. A secondary index contains a subset of attributes from a table and
uses an alternate key to support custom queries. A local secondary index has the same par-
tition key as a table but uses a different sort key. A global secondary
index has different partition and sort keys.

DynamoDB uses read and write capacity units to determine cost. A single read capacity
unit represents one strongly consistent read per second (or two eventually consistent reads
per second) for items up to 4 KB in size. A single write capacity unit represents one write
per second for items up to 1 KB in size. Items larger than these values consume additional
read or write capacity.

ElastiCache enables you to quickly deploy, manage, and scale distributed in-
memory cache environments. With ElastiCache, you can store application state informa-
tion in a shared location by using an in-memory key-value store. Caches can be created
using either Memcached or Redis caching engines. Read and write operations to a back-
end database can be time-consuming. Thus, ElastiCache is especially effective as a caching
layer for heavy-use applications that require rapid access to backend data. You can also use
ElastiCache to store HTTP sessions, further improving the performance of your applications.

ElastiCache offers various scalability configurations that improve access times and avail-
ability. For example, read-heavy applications can use additional cache cluster nodes to
respond to queries. Should there be an increase in demand, additional cluster nodes can be
scaled out quickly.

782 Chapter 14 ■ Stateless Application Patterns

There are some differences between the available caching engines. AWS recommends
that you use Memcached for simple data models that may require scaling and partitioning/
sharding. Redis is recommended for more complex data types, persistent key stores, read-
replication, and publish/subscribe operations.

In certain situations, storing state information can involve larger file operations (such as
file uploads and batch processes). Amazon S3 can support millions of operations per second
on trillions of objects through a simple web service. Through simple integration, developers
can take advantage of the massive scale of object storage.

Amazon S3 stores objects in buckets, which are addressable using unique URLs (such as
http://johnstiles.s3.amazonaws.com/). Buckets enable you to group similar objects and
configure access control policies for internal and external users. Buckets also serve as the
unit of aggregation for usage reporting. There is no limit to the number of objects that can
be stored in a bucket, and there is no performance difference between using one or multiple
buckets for your web application. The decision to use one or more buckets is often a consid-
eration of access control.

Amazon S3 buckets support versioning and lifecycle configurations to maintain the
integrity of objects and reduce cost. Versioning ensures that any time an object is modified
and uploaded to a bucket, it is saved as a new version. Authorized users can access previous
versions of objects at any time. In versioned buckets, a delete operation places a marker on
the object (without deleting prior versions). Conversely, you must use a separate operation
to fully remove an object from a versioned bucket. Use lifecycle configurations to reduce
cost by automatically moving infrequently accessed objects to lower-cost storage tiers.

Amazon EFS provides simple, scalable file storage for use with multiple concurrent
Amazon EC2 instances or on-premises systems. In stateless design, having a shared block
storage system removes the risk of loss of data in situations where one or more instances
become unavailable.

Exam Essentials
Understand block storage vs. object storage. The difference between block storage and
object storage is the fundamental unit of storage. With block storage, each file saved to the
drive is composed of blocks of a specific size. With object storage, each file is saved as a
single object regardless of size.

Understand when to use Amazon Simple Storage Service and when to use Amazon Elastic
Block Storage or Amazon Elastic File System. This is an architectural decision based on
the type of data that you are storing and the rate at which you intend to update that data.
Amazon Simple Storage Service (Amazon S3) can hold any type of data, but Amazon S3
would not be a good choice for a database or any rapidly changing data types.

Understand Amazon S3 versioning. Once Amazon S3 versioning is enabled, you cannot
disable the feature—you can only suspend it. Also, when versioning is activated, items that
are deleted are assigned a delete marker and are not accessible. The deleted objects are still
in Amazon S3, and you will continue to incur charges for storing them.

Exam Essentials 783

Know how to control access to Amazon S3 objects. IAM policies specify which actions
are allowed or denied on specific AWS resources. Amazon S3 bucket policies are attached
only to Amazon S3 buckets. Amazon S3 bucket policies specify which actions are allowed
or denied for principals on the bucket to which the bucket policy is attached.

Know how to create or select a proper primary key for an Amazon DynamoDB table.
DynamoDB stores data as groups of attributes, known as items. Items are similar to rows
or records in other database systems. DynamoDB stores and retrieves each item based on
the primary key value, which must be unique. Items are distributed across 10 GB storage
units, called partitions (physical storage internal to DynamoDB). Each table has one or
more partitions. DynamoDB uses the partition key value as an input to an internal hash
function. The output from the hash function determines the partition in which the item is
stored. The hash value of its partition key determines the location of each item. All items
with the same partition key are stored together. Composite partition keys are ordered by
the sort key value. If the collection size grows bigger than
10 GB, DynamoDB splits partitions by sort key.

Understand how to configure the read capacity units and write capacity units properly
for your tables. When you create a table or index in DynamoDB, you must specify your
capacity requirements for read and write activity. By defining your throughput capacity in
advance, DynamoDB can reserve the necessary resources to meet the read and write activ-
ity your application requires while ensuring consistent, low-latency performance.

One read capacity unit (RCU) represents one strongly consistent read per second, or two
eventually consistent reads per second, for an item up to 4 KB in size. If you need to read
an item that is larger than 4 KB, DynamoDB must consume additional RCUs. The total
number of RCUs required depends on the item size and whether you want an eventually
consistent or strongly consistent read.

One write capacity unit (WCU) represents one write per second for an item up to 1 KB in
size. If you need to write an item that is larger than 1 KB, DynamoDB must consume addi-
tional WCUs. The total number of WCUs required depends on the item size.

Understand the use cases for DynamoDB streams. A DynamoDB stream is an ordered
flow of information about changes to items in an DynamoDB table. When you enable a
stream on a table, DynamoDB captures information about every modification to data
items in the table. Whenever an application creates, updates, or deletes items in the table,
DynamoDB Streams writes a stream record with the primary key attributes of the items
that were modified. A stream record contains information about a data modification to a
single item in a DynamoDB table. You can configure the stream so that the stream records
capture additional information, such as the before and after images of modified items.

Know what secondary indexes are and when to use a local secondary index versus a global
secondary index and the differences between the two. A global secondary index is an
index with a partition key and a sort key that can be different from those on the base table.

784 Chapter 14 ■ Stateless Application Patterns

A global secondary index is considered global because queries on the index can span all
of the data in the base table, across all partitions. A local secondary index is an index that
has the same partition key as the base table, but a different sort key. A local secondary
index is local in the sense that every partition of a local secondary index is scoped to a base
table partition that has the same partition key value.

Know the operations that can be performed using the DynamoDB API. Know the more
common DynamoDB API operations: CreateTable, UpdateTable, Query, Scan, PutItem,
GetItem, UpdateItem, DeleteItem, BatchGetItem, and BatchWriteItem. Understand the
purpose of each operation and be familiar with some of the parameters and limitations for
the batch operations.

Be familiar with handling errors when using DynamoDB. Understand the differences
between 400 error codes and 500 error codes and how to handle both classes of errors.
Also, understand which techniques to use to mitigate the different errors. In addition, you
should understand what causes a ProvisionedThrouphputExceededException error and
what you can do to resolve the issue.

Understand how to configure your Amazon S3 bucket to serve as a static website. To host
a static website, you configure an Amazon S3 bucket for website hosting and then upload
your website content to the bucket. This bucket must have public read access. It is inten-
tional that everyone has read access to this bucket. The website is then available at the AWS
Region specific website endpoint of the bucket.

Be familiar with the Amazon S3 API operations. Be familiar with the API operations,
such as PUT, GET, SELECT, and DELETE. Understand how having versioning enabled affects
the behavior of the DELETE operation. You should also be familiar with the situations that
require a multipart upload and how to use the associated API.

Understand the differences among the different Amazon S3 storage classes. The stor-
age classes are Standard, Infrequent Access (IA), Glacier, and Reduced Redundancy.
Understand the differences and why you might choose one storage class over the other and
knowing the consequences of those choices.

Know how to use Amazon ElastiCache. Improve the performance of your application by
deploying ElastiCache clusters as a part of your application and offloading read requests
for frequently accessed data. Use the lazy loading caching strategy in your solution to first
check the cache for your query results before checking the database.

Understand when to choose one specific cache engine over another. ElastiCache provides
two open source caching engines. You are responsible for choosing the engine that meets
your requirements. Use Redis when you must persist and restore your data, you need mul-
tiple replicas of your data, or you are seeking advanced features and functionality, such as
sort and rank or leaderboards. Redis supports these features natively. Alternatively, you can
use Memcached when you need a simpler, in-memory object store that can be easily parti-
tioned and horizontally scaled.

Resources to Review 785

Resources to Review

AWS Database Blog:

https://aws.amazon.com/blogs/database/

Amazon DynamoDB Blog:

https://aws.amazon.com/blogs/aws/tag/amazon-dynamo-db/

Best Practices for Amazon DynamoDB:

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
best-practices.html

Amazon DynamoDB Read Consistency:

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
HowItWorks.ReadConsistency.html

Amazon ElastiCache for Redis User’s Guide:

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/WhatIs.html

Amazon ElastiCache Tutorials and Videos:

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/
Tutorials.html

Performance at Scale with Amazon ElastiCache (Whitepaper):

https://d0.awsstatic.com/whitepapers/performance-at-scale-with-
amazon-elasticache.pdf

Amazon ElastiCache FAQs:

https://aws.amazon.com/elasticache/faqs/

Amazon VPCs and ElastiCache Security:

https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/VPCs.html

Amazon Simple Storage Service Developer Guide:

https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html

Getting Started with Amazon Simple Storage Service:

https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html

AWS Storage Services Overview (Whitepaper):

https://d1.awsstatic.com/whitepapers/Storage/
AWS%20Storage%20Services%20Whitepaper-v9.pdf

Projects on AWS: Host a Static Website:

https://aws.amazon.com/getting-started/projects/host-static-
website/?trk=gs_card

786 Chapter 14 ■ Stateless Application Patterns

Amazon S3 Frequently Asked Questions:

https://aws.amazon.com/s3/faqs/?nc=sn&loc=6

Deep Dive on Amazon S3 & Amazon Glacier Storage
Management (Video):

https://www.youtube.com/watch?v=SUWqDOnXeDw

What is Cloud Object Storage?

https://aws.amazon.com/what-is-cloud-object-storage/

When to Choose Amazon EFS:

https://aws.amazon.com/efs/when-to-choose-efs/

Amazon EFS FAQs:

https://aws.amazon.com/efs/faq/

Amazon Elastic File System: Choosing Between the Different Throughput and
Performance Modes (Whitepaper):

https://d1.awsstatic.com/whitepapers/Storage/amazon_efs_choosing_
between_different_performance_and_throughput.pdf

Deep Dive on Amazon EFS (Video):

https://www.youtube.com/watch?v=LWiAwIa2H7c&feature=youtu.be

Exercises
e x e r C i S e 14 .1

Create an Amazon elastiCache Cluster running memcached

In this exercise, you will create an Amazon ElastiCache cluster using the Memcached
engine.

1. Sign in to the AWS Management Console, and open the ElastiCache console at
https://console.aws.amazon.com/elasticache/.

2. To create a new ElastiCache cluster, begin the launch and configuration
process.

3. For Cluster engine, choose Memcached and configure the cluster name, number of
nodes, and node type.

4. (Optional) Configure the security group and maintenance window as needed.

5. Review the cluster configuration, and begin provisioning the cluster. Connect to the
cluster with any Memcached client by using the DNS name of the cluster.

You have now created your first ElastiCache cluster.

Exercises 787

e x e r C i S e 14 . 2

expand the Size of a memcached Cluster

In this exercise, you will expand the size of an existing Amazon ElastiCache Memcached
cluster.

1. Launch a Memcached cluster by following the steps in the previous exercise.

2. Navigate to the Amazon ElastiCache dashboard, and view the configuration of your
existing cluster.

3. View the list of nodes that are currently being used, and then add one new node by
increasing the number of nodes.

4. Apply the changes to the configuration, and wait for the new node to finish provisioning.

5. Confirm that the new node has been provisioned, and connect to the node using a
Memcached client.

You have horizontally scaled an existing ElastiCache cluster by adding a new cache node.

e x e r C i S e 14 . 3

Create and Attach an Amazon efS volume

In this exercise, you will create a new Amazon EFS volume and attach it to a running
instance.

1. While signed in to the AWS Management Console, open the Amazon EC2 console at
https://console.aws.amazon.com/ec2.

If you don’t see a running Linux instance, launch a new instance.

2. Open the Amazon EFS service dashboard. Choose Create File System.

3. Select the Amazon VPC where your Linux instance is running.

4. Accept the default mount targets, and make a note of the security group ID assigned
to the targets.

5. Choose any settings, and then create the file system.

6. Assign the same default security group used by the file system to your Linux
instance.

(continued)

788 Chapter 14 ■ Stateless Application Patterns

7. Log in to the console of the Linux instance, and install the NFS client on the Amazon
EC2 instance. For Amazon Linux, use the following command:

sudo yum install –y nfs-utils

8. Create a new directory on your Amazon EC2 instances, such as awsdev: sudo mkdir
awsdev.

9. Mount the file system using the DNS name:

sudo mount –t nfs4 –o nfsvers=4.1,rsize=1048576,wsize=1048576,hard,timeo=600,
retrains=2 fs-12341234.efs.region-1.amazonaws.com:/ awsdev

You have mounted the Amazon EFS volume to the instance.

e x e r C i S e 14 . 4

Create and upload to an Amazon S3 bucket

In this exercise, you will create an Amazon S3 bucket and upload and publish files of the
bucket.

1. While signed in to the AWS Management Console, open the Amazon S3 console at
https://console.aws.amazon.com/s3/.

2. Choose Create bucket.

3. On the Name and region page, enter a globally unique name for your bucket and
select the appropriate AWS Region. Accept all of the remaining default settings.

4. Choose Create the bucket.

5. Select your bucket.

6. Upload data files to the new Amazon S3 bucket:

a. Choose Upload.

b. In the Upload - Select Files wizard, choose Add Files and choose a file that you
want to share publicly.

c. Choose Next.

7. To make the file available to the general public, on the Set Permissions page, under
Manage Public Permissions, grant everyone read access to the object.

8. Review and upload the file.

9. Select the object name to go to the properties screen. Select and open the URL for
the file in a new browser window.

You should see your file in the S3 bucket.

e x e r C i S e 14 . 3 (c ont inue d)

Exercises 789

e x e r C i S e 14 . 5

Create an Amazon dynamodb Table

In this exercise, you will create an DynamoDB table.

1. While signed in to the AWS Management Console, open the DynamoDB console at
https://console.aws.amazon.com/dynamodb/.

2. Choose Create Table and then do the following:

a. In Table, enter the table name.

b. For Primary key, in the Partition field, type Id.

c. Set the data type to String.

3. Retain all the remaining default settings and choose Create.

You have created a DynamoDB table.

e x e r C i S e 14 . 6

enable Amazon S3 versioning

In this exercise, you will enable Amazon S3 versioning, which prevents objects from
being accidentally deleted or overwritten.

1. While signed in to the AWS Management Console, open the Amazon S3 console at
https://console.aws.amazon.com/s3/.

2. In the Bucket name list, choose the name of the bucket for which you want to enable
versioning.

If you don’t have a bucket, follow the steps in Exercise 14.4 to create a new bucket.

3. Choose Properties.

4. Choose Versioning.

5. Choose Enable versioning, and then choose Save.

Your bucket is now versioning enabled.

790 Chapter 14 ■ Stateless Application Patterns

e x e r C i S e 14 . 7

Create an Amazon dynamodb global Table

In this exercise, you will create a DynamoDB global table.

1. While signed in to the AWS Management Console, open the Amazon S3 console at
https://console.aws.amazon.com/dynamodb.

2. Choose a region for the source table for your DynamoDB global table.

3. In the navigation pane on the left side of the console, choose Create Table and then
do the following:

a. For Table name, type Tables.

b. For Primary key, choose an appropriate primary key. Choose Add sort key, and
type an appropriate sort key. The data type of both the partition key and the sort
key should be strings.

4. To create the table, choose Create.

This table will serve as the first replica table in a new global table, and it will be
the prototype for other replica tables that you add later.

5. Select the Global Tables tab, and then choose Enable streams. Leave the View
type at its default value (New and old images).

6. Choose Add region, and then choose another region where you want to deploy
another replica table. In this case, choose US West (Oregon) and then choose
Continue. This will start the table creation process in US West (Oregon).

The console will check to ensure that there is no table with the same name in the
selected region. (If a table with the same name does exist, then you must delete the
existing table before you can create a new replica table in that region.)

The Global Table tab for the selected table (and for any other replica tables) will
show that the table is replicated in multiple regions.

7. Add another region so that your global table is replicated and synchronized across
the United States and Europe. To do this, repeat step 6, but this time specify EU
(Frankfurt) instead of US West (Oregon).

You have created a DynamoDB global table.

Exercises 791

e x e r C i S e 14 . 8

enable Cross-region replication

In this exercise, you will enable cross-region replication of the contents of the original
bucket to a new bucket in a different region.

1. While signed into the AWS Management Console, open the Amazon S3 console at
https://console.aws.amazon.com/s3/.

2. Create a new bucket in a different region from the bucket that you created in Exercise
14.4. Enable versioning on the new bucket (see Exercise 14.6).

3. Choose Management, choose Replication, and then choose Add rule.

4. In the Replication rule wizard, under Set Source, choose Entire Bucket.

5. Choose Next.

6. On the Set destination page, under Destination bucket, choose your newly-created
bucket.

7. Choose the storage class for the target bucket. Under Options, select Change the
storage class for the replicated objects. Select a storage class.

8. Choose Next.

9. For IAM, on the Configure options page, under Select role, choose Create new role.

10. Choose Next.

11. Choose Save.

12. Load a new object in the source bucket.

The object appears in the target bucket.

You have enabled cross-region replication, which can be used for compliance and disas-
ter recovery.

e x e r C i S e 14 . 9

Create an Amazon dynamodb backup Table

In this exercise, you will create a DynamoDB table backup.

1. While signed into the AWS Management Console, open the DynamoDB console at
https://console.aws.amazon.com/dynamodb/.

2. Choose one of your existing tables. If there are no tables, follow the steps in
Exercise 14.7 to create a new table.

(continued)

792 Chapter 14 ■ Stateless Application Patterns

3. On the Backups tab, choose Create Backup.

4. Type a name for the backup name of the table you are backing. Then choose Create
to create the backup.

While the backup is being created, the backup status is set to Creating. After the
backup is finalized, the backup status changes to Available.

You have created a backup of a DynamoDB table.

e x e r C i S e 14 .10

restoring an Amazon dynamodb Table from a backup

In this exercise, you will restore a DynamoDB table by using the backup created in the
previous exercise.

1. While signed in to the AWS Management Console, navigate to the DynamoDB
console at https://console.aws.amazon.com/dynamodb/.

2. In the navigation pane on the left side of the console, choose Backups.

3. In the list of backups, choose the backup that you created in the previous step.

4. Choose Restore Backup.

5. Type a table name as the new table name. Confirm the backup name and other
backup details. Then choose Restore table to start the restore process.

The table that is being restored is shown with the status Creating. After the
restore process is finished, the status of your new table changes to Active.

You have performed the restoration of a DynamoDB table from a backup.

e x e r C i S e 14 . 9 (c ont inue d)

Review Questions 793

Review Questions
1. Which of the following is the maximum Amazon DynamoDB item size limit?

A. 512 KB

B. 400 KB

C. 4 KB

D. 1,024 KB

2. Which of the following is true when using Amazon Simple Storage Service (Amazon S3)?

A. Versioning is enabled on a bucket by default.

B. The largest size of an object in an Amazon S3 bucket is 5 GB.

C. Bucket names must be globally unique.

D. Bucket names can be changed after they are created.

3. Which of the following is not a deciding factor when choosing an AWS Region for your
bucket?

A. Latency

B. Storage class

C. Cost

D. Regulatory requirements

4. Which of the following features can you use to protect your data at rest within Amazon
DynamoDB?

A. Fine-grained access controls

B. Transport Layer Security (TLS) connections

C. Server-side encryption provided by the DynamoDB service

D. Client-side encryption

5. You store your company’s critical data in Amazon Simple Storage Service (Amazon S3).
The data must be protected against accidental deletions or overwrites. How can this be
achieved?

A. Use a lifecycle policy to move the data to Amazon S3 Glacier.

B. Enable MFA Delete on the bucket.

C. Use a path-style URL.

D. Enable versioning on the bucket.

6. How does Amazon Simple Storage Service (Amazon S3) object storage differ from block
and file storage? (Select TWO.)

A. Amazon S3 stores data in fixed blocks.

B. Objects can be any size.

C. Objects are stored in buckets.

D. Objects contain both data and metadata.

794 Chapter 14 ■ Stateless Application Patterns

7. What is the lifetime of data in an Amazon DynamoDB stream?

A. 14 days

B. 12 hours

C. 24 hours

D. 4 days

8. How many times does each stream record in Amazon DynamoDB Streams appear in the
stream?

A. Twice

B. Once

C. Three times

D. This value can be configured.

9. Versioning is a means of keeping multiple variants of an object in the same bucket. You
can use versioning to preserve, retrieve, and restore every version of every object stored in
your Amazon S3 bucket. With versioning, you can easily recover from both unintended
user actions and application failures. Which of the following is not a versioning state of a
bucket?

A. Versioning paused

B. Versioning disabled

C. Versioning suspended

D. Versioning enabled

10. Your team has built an application as a document management system that maintains meta-
data on millions of documents in a DynamoDB table. When a document is retrieved, you
want to display the metadata beside the document. Which DynamoDB operation can you
use to retrieve metadata attributes from a table?

A. QueryTable

B. UpdateTable

C. Search

D. Scan

11. Which of the following objects are good candidates to store in a cache? (Select THREE.)

A. Session state

B. Shopping cart

C. Product catalog

D. Bank account balance

12. Which of the following cache engines does Amazon ElastiCache support? (Select TWO.)

A. Redis

B. MySQL

C. Couchbase

D. Memcached

Review Questions 795

13. How many nodes can you add to an Amazon ElastiCache cluster that is running Redis?

A. 100

B. 5

C. 20

D. 1

14. What feature does Amazon ElastiCache provide?

A. A highly available and fast indexing service for querying

B. An Amazon Elastic Compute Cloud (Amazon EC2) instance with a large amount of
memory and CPU

C. A managed in-memory caching service

D. An Amazon EC2 instance with Redis and Memcached already installed

15. When designing a highly available web solution using stateless web servers, which services
are suitable for storing session-state data? (Select THREE.)

A. Amazon CloudFront

B. Amazon DynamoDB

C. Amazon CloudWatch

D. Amazon Elastic File System (Amazon EFS)

E. Amazon ElastiCache

F. Amazon Simple Queue Service (Amazon SQS)

16. Which AWS database service is best suited for nonrelational databases?

A. Amazon Simple Storage Service Glacier (Amazon S3 Glacier)

B. Amazon Relational Database Service (Amazon RDS)

C. Amazon DynamoDB

D. Amazon Redshift

17. Which of the following statements about Amazon DynamoDB table is true?

A. Only one local secondary index is allowed per table.

B. You can create global secondary indexes only when you are creating the table.

C. You can have only one global secondary index.

D. You can create local secondary indexes only when you are creating the table.

Chapter

15
Monitoring and
Troubleshooting

The AWS CerTified developer –
ASSoCiATe exAM TopiCS Covered in
ThiS ChApTer MAy inClude, buT Are
noT liMiTed To, The folloWing:

Domain 5: Monitoring and Troubleshooting

 ✓ 5.1 Write code that can be monitored.

Content may include the following:

 ■ Monitoring basics

 ■ Using Amazon CloudWatch

 ■ Using AWS CloudTrail

 ✓ 5.2 Perform root cause analysis on faults found in
testing or production.

Content may include the following:

 ■ Using AWS X-Ray to troubleshoot application issues

AWS® Certified Developer Official Study Guide
By Nick Alteen, Jennifer Fisher, Casey Gerena, Wes Gruver, Asim Jalis,
Heiwad Osman, Marife Pagan, Santosh Patlolla and Michael Roth

 Amazon Web Services, Inc.

Introduction to Monitoring
and Troubleshooting
Monitoring the applications and services you build is vital to the success of any informa-
tion technology (IT) organization. With the AWS Cloud, you can leverage monitoring
resources to drive business decisions such as what resources to create, improve, optimize,
and secure.

Traditional approaches to monitoring do not scale for cloud architectures. Large sys-
tems can be difficult to set up, configure, and scale. These efforts are compounded by
the trend away from monolithic installations toward service-oriented architecture (SOA),
microservices, and serverless architectures. Monitoring modern IT systems is proportion-
ally difficult. When working on a monolithic application, you can add logging statements
and troubleshoot with breakpoints. However, applications today are spread across multiple
systems over large networks that make it difficult to track the health of systems and react
to issues. For example, using logging statements to monitor execution time and error rates
of AWS Lambda functions can become difficult as your infrastructure grows and spreads
across multiple AWS Regions.

The AWS Cloud provides fully managed services to help you implement monitoring
solutions that are reliable, scalable, and secure. AWS offers services to help you monitor,
log, and analyze your applications and infrastructure. In this section, you explore Amazon
CloudWatch, AWS CloudTrail, and AWS X-Ray. Figure 15.1 shows the AWS monitoring
services available.

f i gu r e 15 .1 Various monitoring services on AWS

Amazon
CloudWatch

AWS
CloudTrail

AWS
X-Ray

Introduction to Monitoring and Troubleshooting 799

Monitoring Basics
Before you explore these services, consider why they are essential. As a developer, you are
designing systems to provide IT or business solutions to a customer. Success is measured by
the effective application of software to business objectives. What are some of the metrics
that you must track over time to ensure that these objectives are being met?

Choosing Metrics
AWS takes the approach of “working backward” from the customer. You can accomplish
this by starting with the customer and tracing the underlying components that affect the
customer’s experience. This provides a foundation for identifying which metrics to monitor,
as they correlate directly to the customer experience. Frequently, the top characteristics that
directly affect the customer experience are performance and cost. Changes to either have a
direct impact on how customers perceive the software they use.

Deciding which metrics to monitor requires that you answer several crucial questions.

Performance and Cost

Question: Are my customers having a good experience with the services or systems that
that I provide?

The phrase good experience can be broken down into measurable metrics, such as
request latency, time to first byte, error rates, and more. Metrics, such as instance CPU
utilization or network bytes in/out, however, may not be representative of the customer
experience.

It is good practice to measure any metric that directly affects customers using your soft-
ware or system. The second question to ask is: “What is the overall cost of my system?”
Increases in performance often correlate directly to increases in cost. With unlimited
money, it would be easy to design a system that scales infinitely in response to customer
usage. However, this is never a reality. Instead, you need to measure the performance of
your system to determine what is acceptable performance based on the usage at any point
in time. This is the case when metrics that are not customer-facing often take precedence.

Trends

Question: How can I use monitoring to predict changes in customer demand?

With the agility and elasticity of the AWS Cloud, this can be especially useful.
Monitoring and measuring customer demand over time allows you to scale your infrastruc-
ture predictively to meet changes in customer demand without having to purchase more
resources than are necessary. For example, suppose that you have a web application that
runs on three Amazon Elastic Compute Cloud (Amazon EC2) instances during the day. In
the evenings, demand increases significantly for several hours before decreasing again late
at night. On weekends, your application sees almost no traffic. With historical information
obtained through monitoring, you can design your application to scale out across more
Amazon EC2 instances during the evenings and scale in on the weekends when there is lit-
tle demand. Predictive scaling occurs before customer demand changes, ensuring a smooth
experience while new resources are created and brought online.

800 Chapter 15 ■ Monitoring and Troubleshooting

 Troubleshooting and Remediation

Question : Where do problems occur?

 As Werner Vogels, VP and CTO of AWS, once said, “Everything fails all the time.” No
system is impervious to failure. By gathering potentially relevant information ahead of time,
it becomes easier to determine causes for failure. By collecting this information, you can
reduce mean time between failure (MTBF), mean time to resolution (MTTR), and other
key operational performance metrics.

 Learning and Improvement

Question : “Can you detect or prevent problems in the future?”

 By evaluating operational metrics over time, you can reveal patterns and common issues
in your systems.

 When choosing metrics, align them closely to your business processes
to provide a better customer experience. For example, suppose that you
have an application running in AWS Elastic Beanstalk. Unknown to you,
the application has a memory leak. Without tracking memory utilization
over time, you will not have insight into why customers are experienc-
ing degraded performance. If your Elastic Beanstalk environment is con-
figured to scale out based on CPU utilization, it is possible that no new
instances are launched to serve customer requests. In this case, the mem-
ory leak prevents new requests from being processed, causing a drop in
CPU utilization. Without comprehensive tracking of system performance,
issues such as this can go unnoticed until system-wide outages occur.

 These factors impact what is referred to as the health of your systems. As a developer
and contributor, you are not only responsible for the code that you develop but also for the
operational health of these services. It is vital to align operational and health metrics prop-
erly with customer expectations and experiences.

 Amazon CloudWatch
Amazon CloudWatch is a monitoring and metrics service that provides you with a fully
managed system to collect, store, and analyze your metrics and logs. By using CloudWatch,
you can create notifi cations on changes in your environment.

 Typical use cases include the following:

 ■ Infrastructure monitoring and troubleshooting

 ■ Resource optimization

 ■ Application monitoring

 ■ Logging analytics

 ■ Error reporting and notification

Amazon CloudWatch 801

CloudWatch enables you to collect and store monitoring and operations data from
logs, metrics, and events that run on AWS and on-premises resources. To ensure that
your applications run smoothly, you can use CloudWatch to perform the following
tasks:

 ■ Set alarms

 ■ Visualize logs and metrics

 ■ Automate recovery from errors

 ■ Troubleshoot issues

 ■ Discover insights that enable you to optimize your resources

How Amazon CloudWatch Works
CloudWatch acts as a metrics repository, storing metrics and logs from various sources.
These metrics can come from AWS resources using built-in or custom metrics. Figure 15.2
illustrates the role of CloudWatch in operational health.

f i gu r e 15 . 2 Diagram of Amazon CloudWatch

AWS
Amazon

CloudWatch

Metrics

Email

Other Metrics...
SVR1-CPU-Percent

SVR2-CPU-Percent
Hrs/ Week-Count

Resources That
Use CloudWatch

Your Custom
Data

Available
Statistics

Amazon
CloudWatch

Alarm

AWS
Management Console

Statistics
Consumer

Auto Scaling

SNS Email
Notification

Actions

CloudWatch can process these metrics into statistics that are made available through the
CloudWatch console, AWS APIs, the AWS Command Line Interface (AWS CLI), and AWS
software development kits (AWS SDKs). Using CloudWatch, you can display graphs, create
alarms, or integrate with third-party solutions.

802 Chapter 15 ■ Monitoring and Troubleshooting

 Amazon CloudWatch Metrics
 To understand CloudWatch better, especially how data is collected and organized, review
the following terms.

 Built-In Metrics
 A metric is a set of time-series data points that you publish to CloudWatch. For example, a
commonly monitored metric for Amazon EC2 instances is CPU utilization. Data points can
come from multiple systems, both AWS and on-premises. You can also defi ne custom met-
rics based on data specifi c to your system. A metric is identifi ed uniquely by a namespace, a
name, and zero or more dimensions.

 Namespace

 A namespace is a collection of metrics or a container of related metrics; for example,
namespaces used by AWS offerings or services that all start with AWS . Amazon EC2 uses the
AWS/EC2 namespace. As a developer, you can create namespaces for different components of
your applications, such as front-end, backend, and database components.

 Name

 A name for a given metric defi nes the attribute or property that you are monitoring; for
example, CPU Utilization in the AWS/EC2 namespace. The AWS/EC2 namespace contains
various metrics that are important to monitoring the health of Amazon EC2 resources,
such as CPU Utilization, Disk I/O, Network I/O, or Status Check. You can also create cus-
tom metrics for attributes, such as request latency , HTTP 400/500 response codes , and
throttling .

 Dimension

 A dimension is a name/value pair used to defi ne a metric uniquely. For example, for
the namespace AWS/EC2 and name/metric CPUUtilization , the dimension might be
 InstanceId . For a fl eet of Amazon EC2 instances, you can measure CPUUtilization as one
metric for multiple dimensions (one for each instance). You can use the dimensions to struc-
ture and organize the data points you gather.

 When you’re creating metrics, consider defining namespaces that align
with your different services and assigning dimensions as important met-
rics that describe the health of that service. For example, if you have a
front-end web fleet running NGINX servers, then dimensions , such as
requests-per-second, response time, active connections, and response
codes, could help you determine what configuration changes would
optimize system performance.

 Data Points
 When data is published to CloudWatch, it is pushed in sets of data points. Each data point
contains information such as the timestamp, value, and unit of measurement.

Amazon CloudWatch 803

Timestamp

Timestamps are dateTime objects with the complete date and time; for example,
2016-10-31T23:59:59Z. Although not required, AWS recommends formatting times as
Coordinated Universal Time (UTC).

Value

The value is the measurement for the data point.

Unit

A unit of measurement is used to label your data. This offers a better understanding of
what the value represents. Example units include Bytes, Seconds, Count, and Percent. If
you do not specify a unit in CloudWatch, your data point units are designated as None.

CloudWatch stores this data based on the retention period, which is the length of time
to keep data points available. Data points are stored in CloudWatch based on how often the
data points are published.

 ■ Data points with a published frequency less than 60 seconds are available for 3 hours.
These data points are high-resolution custom metrics.

 ■ Data points with a published frequency of 60 seconds (1 minute) are available for 15 days.

 ■ Data points with a published frequency of 300 seconds (5 minutes) are available for
63 days.

 ■ Data points with a published frequency of 3,600 seconds (1 hour) are available for
455 days (15 months).

From these data points, CloudWatch can calculate statistics to provide you with insight
into your application, service, or environment. In the next section, you will discover how
CloudWatch calculates and organizes these statistics.

Statistics
CloudWatch provides statistics based on metric data provided to the service. Statistics are
aggregations of data points over specified periods of time for specified metrics. A period is
the length of time, in seconds. Periods can be defined in values of 1, 5, 10, 30, or any mul-
tiple of 60 seconds (up to 86,400 seconds, or 1 day). The available statistics in CloudWatch
include the following:

 ■ Minimum (Min), the lowest value recorded over the specified period

 ■ Maximum (Max), the highest value recorded over the specified period

 ■ Sum, the total value of the samples added together over the specified period

 ■ Average (Avg), the Sum divided by the SampleCount over the specified period

 ■ SampleCount, the number of data points used in the calculation over the specified
period

 ■ pNN, percentile statistics for tracking metric outliers

804 Chapter 15 ■ Monitoring and Troubleshooting

Statistics can be used to gain insight into the health of your application and to help
you determine the correct settings for various configurations. For example, you may want
to implement automatic scaling on your fleet of Amazon EC2 instances in order to avoid
having to launch and terminate instances manually. To do so, you must configure an Auto
Scaling group. Configuration settings for an Auto Scaling group include the minimum,
desired, and maximum number of instances to run in your account. By monitoring statis-
tics over time, you can determine the minimum and maximum number of instances needed
to support the average, minimum, and maximum workload.

CloudWatch statistics provide a powerful way to process large amounts of metrics at
scale and present insightful data that is easy to consume. Now that you understand how
CloudWatch metrics work and are organized, explore the metrics available.

Aggregations
CloudWatch aggregates metrics according to the period of time you specify when
retrieving statistics. When you request this statistic, you also can have CloudWatch
filter the data points based on the dimensions of the metrics. For example, in Amazon
DynamoDB, metrics are fetched across all DynamoDB operations. You can specify
a filter on the dimension operations to exclude specific operations, such as GetItem
requests. CloudWatch does not aggregate data across regions.

Available Metrics
Table 15.1 describes the available metrics for Elastic Load Balancing resources. To discover
all of the available metrics, refer to the AWS documentation.

TA b le 15 .1 Elastic Load Balancing Metrics

Namespace

AWS/ELB
AWS/ApplicationELB
AWS/NetworkELB

Dimensions LoadBalancerName: name of the load balancer

Key metrics ■ HealthyHostCount: number of responding backend
servers

 ■ RequestCount: number of IPv4 and IPv6 requests

 ■ ActiveConnectionCount: total number of concurrent
active connections from clients

Table 15.2 describes the available Amazon EC2 metrics.

Amazon CloudWatch 805

 TA b le 15 . 2 Amazon EC2 Metrics

Namespace AWS/EC2

Dimensions ■ InstanceId : identifi er of a particular Amazon EC2 instance

 ■ InstanceType : type of Amazon EC2 instance, such as t2.
micro , m4.large

Key metrics ■ CPUUtilization : percentage of vCPU utilization on the
instance

 ■ DiskReadOps , DiskWriteOps : number of operations per
second on attached disk

 ■ DiskReadBytes , DiskWriteBytes : volume of bytes to transfer
on attached disk

 ■ NetworkIn , NetworkOut : number of bytes sent or received by
network interfaces

 ■ NetworkPacketsIn , NetworkPacketsOut : number of packets
sent or received by network interfaces

 Amazon EC2 does not report memory utilization to CloudWatch. This is
because memory is allocated in full to an instance by the underlying host.
Memory consumption is visible only to the guest operating system (OS) of
the instance. However, you can report memory utilization to CloudWatch
using the CloudWatch agent.

 Table 15.3 describes the AWS Auto Scaling group metrics.

 TA b le 15 . 3 AWS Auto Scaling Groups

Namespace AWS/AutoScaling

Dimensions AutoScalingGroupName : name of the Auto Scaling group

Key metrics ■ GroupMinSize , GroupMaxSize , GroupDesiredCapacity :
minimum, maximum, and desired size of the Auto Scaling
group

 ■ GroupInServiceInstances : number of instances up and
running in the Auto Scaling group

 ■ GroupTotalInstances : total number of instances in the Auto
Scaling group, regardless of state

806 Chapter 15 ■ Monitoring and Troubleshooting

Table 15.4 describes the Amazon Simple Storage Service (Amazon S3) metrics.

TA b le 15 . 4 Amazon S3 Metrics

Namespace AWS/S3

Dimensions ■ BucketName: name of a specific Amazon S3 bucket

 ■ StorageType: the Amazon S3 storage class (STANDARD,
STANDARD_IA, and GLACIER storage classes) of the bucket

Key metrics ■ BucketSizeBytes: total size, in bytes, of data stored in an
Amazon S3 bucket

 ■ NumberOfObjects: total number of objects stored in an
Amazon S3 bucket

 ■ AllRequests: total number of requests made to an Amazon
S3 bucket

Table 15.5 describes the Amazon DynamoDB metrics.

TA b le 15 .5 Amazon DynamoDB Metrics

Namespace AWS/DynamoDB

Dimensions ■ TableName: name of Amazon DynamoDB table

 ■ Operation: limits metrics to either a particular operation
(PutItem, GetItem, UpdateItem, DeleteItem, Query, Scan,
BatchGetItem) or BatchWriteITem

Key metrics ■ ConsumedReadCapacityUnits, ConsumedWriteCapacityUnits:
total number of read and write capacity units consumed

 ■ ThrottledRequests: requests to DynamoDB that exceed the
provisioned throughput limits on a resource (such as a table or
an index)

 ■ ReadThrottleEvents: requests to DynamoDB that exceed
the provisioned read capacity units for a table or a global
secondary index

 ■ WriteThrottleEvents: requests to DynamoDB that exceed
the provisioned write capacity units for a table or a global
secondary index

 ■ ReturnedBytes: size of response returned in request

 ■ ReturnedItemCount: number of items returned in request

Amazon CloudWatch 807

Table 15.6 describes the Amazon API Gateway metrics.

TA b le 15 .6 Amazon API Gateway Metrics

Namespace AWS/ApiGateway

Dimensions ■ ApiName: filters out metrics for a particular API

 ■ ApiName, Method, Resource, Stage: filters out metrics for a
particular API, method, resource, and stage

 ■ ApiName, Stage: filters out metrics for a particular deployed
stage of an API

Key metrics ■ 4XXError: number of HTTP 400 errors

 ■ 5XXError: number of HTTP 500 errors

 ■ Latency: time between when Amazon API Gateway
receives a request and when it responds to the client

Table 15.7 describes the AWS Lambda metrics.

TA b le 15 .7 AWS Lambda Metrics

Namespace AWS/Lambda

Dimensions FunctionName: name of your AWS Lambda function

Key metrics ■ Invocations: number of executions of your AWS Lambda
function

 ■ Errors: number of executions in which your AWS Lambda
function failed

 ■ Duration: total time for each execution of your AWS
Lambda function

Table 15.8 describes the Amazon Simple Queue Service (Amazon SQS) metrics.

808 Chapter 15 ■ Monitoring and Troubleshooting

 TA b le 15 . 8 Amazon SQS Metrics

Namespace AWS/SQS

Dimensions QueueName : name of the Amazon SQS queue

Key metrics ■ ApproximateNumberOfMessagesVisible : number of messages
currently available for retrieval

 ■ ApproximateNumberOfMessagesNotVisible : number of
messages currently being processed, or messages that are
infl ight (Visibility Timeout is still active)

 ■ NumberOfMessagesDeleted : number of messages that have
been deleted

 Amazon SQS does not report the total number of messages in the queue.
You can find this value by adding ApproximateNumberOfMessagesVisible
and ApproximateNumberOfMessagesNotVisible.

 Table 15.9 describes the Amazon Simple Notifi cation Service (Amazon SNS) metrics.

 TA b le 15 . 9 Amazon SNS Metrics

Namespace AWS/SNS

Dimensions TopicName : name of the Amazon SNS topic

Key metrics ■ NumberOfMessagesPublished : number of messages sent to
an SNS topic

 ■ NumberOfNotificationsDelivered : number of messages
that were successfully delivered to subscribers

 ■ NumberOfNotificationsFailed : number of messages that
were unsuccessfully delivered to subscribers

 Custom Metrics
 In addition to the built-in metrics that AWS provides, CloudWatch also supports custom
metrics that you can publish from your systems. This section includes some commands that
you can use to publish metrics to CloudWatch.

Amazon CloudWatch 809

High-Resolution Metrics

With custom metrics, you have two options for resolution (the time interval between data
points) for your metrics. You can use standard resolution for data points that have a granu-
larity of one minute or high resolution for data points that have a granularity of less than
one second. By default, most metrics delivered by AWS services have standard resolution.

Publishing Metrics

CloudWatch supports multiple options when you publish metrics. You can publish them
as single data points, statistics sets, or zero values. Single data points are optimal for most
telemetry. However, statistics sets are recommended for values with high-resolution data
points in which you are sampling multiple times per minute. Statistics sets are sets of cal-
culated values, such as minimum, maximum, average, sum, and sample count, as opposed
to individual data points. The value 0 is for applications that have periods of inactivity,
where no data is sent. The following are some sample scripts using the AWS CLI to publish
data points.

uSing The AWS Cli To publiSh Single dATA poinTS

The following commands each publish a single data point under the Metric Name
PageViewCount to the Namespace MyService with respective values and timestamps. You
are not required to create a metric name or namespace. CloudWatch is aware of the data
points to a metric or creates a new metric if it does not exist.

aws cloudwatch put-metric-data \
--metric-name PageViewCount \
--namespace MyService \
--value 2 \
--timestamp 2018-10-20T12:00:00.000Z

aws cloudwatch put-metric-data \

--metric-name PageViewCount \
--namespace MyService \
--value 4 \
--timestamp 2018-10-20T12:00:01.000Z

aws cloudwatch put-metric-data \
--metric-name PageViewCount \
--namespace MyService \
--value 5 \
--timestamp 2018-10-20T12:00:02.000Z

810 Chapter 15 ■ Monitoring and Troubleshooting

uSing The AWS Cli To publiSh STATiSTiCS SeTS

The following command publishes a statistic set to the metric-name PageViewCount to the
namespace MyService, with values for various statistics (Sum 11, Minimum 2, Maximum 5),
and SampleCount 3 with the corresponding timestamp:

aws cloudwatch put-metric-data \
--metric-name PageViewCount \
--namespace MyService \
--statistic-values Sum=11,Minimum=2,Maximum=5,SampleCount=3 \
--timestamp 2018-10-14T12:00:00.000Z

uSing The AWS Cli To publiSh The vAlue Zero

The following command publishes a single data point with the value 0 to the metric-name
PageViewCount to the namespace MyService with the corresponding timestamp:

aws cloudwatch put-metric-data \
--metric-name PageViewCount \
--namespace MyService \
--value 0 \
--timestamp 2018-10-14T12:00:00.000Z

Retrieving Statistics for a Metric

After you publish data to CloudWatch, you may want to retrieve statistics for a specified
metric of a given resource.

uSing The AWS Cli To reTrieve STATiSTiCS for A MeTriC

This command retrieves the Sum, Max, Min, Average, and SampleCount statistics for the
 metric-name PageViewCount to the namespace MyService with a period interval of
60 seconds between the start-time and end-time. This means that CloudWatch will
aggregate data points in one-minute intervals to calculate statistics.

aws cloudwatch get-metric-statistics \
--namespace MyService \
--metric-name PageViewCount \
--statistics "Sum" "Maximum" "Minimum" "Average" "SampleCount" \
--start-time 2018-10-20T12:00:00.000Z \
--end-time 2018-10-20T12:05:00.000Z \
--period 60

Amazon CloudWatch 811

Example output from this command displays a single data point for the Metric
PageViewCount.

{
 "Datapoints": [
 {
 "SampleCount": 3.0,
 "Timestamp": "2016-10-20T12:00:00Z",
 "Average": 3.6666666666666665,
 "Maximum": 5.0,
 "Minimum": 2.0,
 "Sum": 11.0,
 "Unit": "None"
 }
],
 "Label": "PageViewCount"
}

Amazon CloudWatch Logs
Though most commercial standard applications already produce some form of logging,
most modern applications are deployed in distributed or service-oriented architectures.
Collecting and processing these logs can be a challenge as a system grows and expands
across multiple regions. Centralized logging using CloudWatch Logs can overcome this
challenge. With CloudWatch Logs, you can set up a central log storage location to ingest
and process logs at scale.

Log Aggregation
Setting up centralized logging with CloudWatch Logs is a straightforward process. The
first step is to install and configure the CloudWatch agent, which is used to collect custom
logs and metrics from Amazon EC2 instances or on-premises servers. You can choose
which log files you want to ingest by pointing to the locations using a JavaScript Object
Notation (JSON) configuration file. The second step is to configure AWS Identity and
Access Management (IAM) roles or users to grant permission for the agent to publish
logs into CloudWatch. In addition to the CloudWatch agent, you can also send metrics to
CloudWatch using the AWS CLI, AWS SDK, or AWS API.

Because you are collecting logs from multiple sources, CloudWatch organizes your logs
into three conceptual levels: groups, streams, and events.

Log Groups

A log group is collection of log streams. For example, if you have a service that consists of a
cluster of multiple machines, a log group would be a container for the logs from each of the
individual instances.

812 Chapter 15 ■ Monitoring and Troubleshooting

Log Streams

A log stream is a sequence of log events such as a single log file from one of your instances.

Log Events

A log event is a record of some activity from an application, process, or service. This is
analogous to a single line in a log file.

CloudWatch stores log events based on your retention settings, which are assigned
at the log group. The default configuration is to store log data in Amazon CloudWatch
Logs indefinitely. You are charged for any data stored in CloudWatch Logs in addition to
data transferred out of the service. You can export CloudWatch Logs to Amazon S3 for
long-term storage, which is valuable when regulations require long-term log retention.
Long-term retention can be combined with Amazon S3 lifecycle policies to archive data to
Amazon S3 Glacier for additional cost savings.

Log Searches
With centralized logging on CloudWatch Logs, you do not need to search through hundreds
of individual servers to find a problem. After logs are ingested into CloudWatch Logs, you
can search for logs through a central location using metric filters.

Metric Filters

A metric filter is a text pattern used to parse log data for specific events. As an example,
consider the log in Table 15.10.

TA b le 15 .10 Example Log

Line Log Event

1 [ERROR] Caught IllegalArgumentException

2 [ERROR] Unhandled Exception

3 Another message

4 Exiting with ERRORCODE: -1

5 [WARN] Some message

6 [ERROR][WARN] Some other message

To look for occurrences of the ERROR event, you use ERROR as your metric filter, as illus-
trated in Table 15.11. CloudWatch will search for that term across the logs.

Amazon CloudWatch 813

TA b le 15 .11 Example Metric Filters

Metric Filter Description

"" Matches all log events.

"ERROR" Matches log events containing the term “ERROR.”

Based on the events in the example log in Table 15.10, this
metric filter would find lines 1–3 and 6.

"ERROR" – "EXITING" Matches log events containing the term “ERROR” except
“EXITING.”

Based on the events in the example log in Table 15.10, this
metric filter would find lines 1, 2, and 6.

"ERROR Exceptions" Matches log events containing both terms “ERROR” and
“Exceptions.” This filter is an AND function.

Based on the events in the example log in Table 15.10, this
metric filter would find lines 1 and 2.

"?ERROR ?WARN" Matches log events containing either the term “ERROR” or
“WARN.” This filter is an OR function.

Based on the event in the example log in Table 15.10, this
metric filter would find lines 1, 2, 4, and 6.

If your logs are structured in JSON format, CloudWatch can also filter object properties.
Consider the following example JSON log.

example AWS CloudTrail JSon log event

{
 "user": {
 "id": 1,
 "email": "Admin@example.com"

 },
 "users": [
 {
 "id": 2,
 "email": "John.Doe@example.com"

 },
 {
 "id": 3,
 "email": "Jane.Doe@example.com"

814 Chapter 15 ■ Monitoring and Troubleshooting

 }
],
 "actions": [
 "GET",
 "PUT",
 "DELETE"
],
 "coordinates": [
 [0, 1, 2],
 [4, 5, 6],
 [7, 8, 9]
]
}

You can create a metric filter that selects and compares certain properties of this event,
as shown in Table 15.12.

TA b le 15 .12 Example JSON Metric Filters

JSON Metric Filter Description

{ ($.user.id = 1) && ($.users[0]
.email = “John.Doe@example.com") }

Check that the property user.id equals 1 and
the first user’s email is John.Doe@example.com.

The preceding log event would be returned.

{ ($.user.id = 2 && $.users[0]
.email = "John.Doe@exmple.com") ||
$.actions[2] = "GET" }

Check that the property user.id equals 2 and
the first user’s email is John.Doe@example.com
or the second action is GET.

The preceding example would not be returned,
because the second action is PUT, not GET.

Log Processing
Instead of having to write additional code to add monitoring to your application, CloudWatch
can process logs that you already generate and provide valuable metrics. Using the example
from the previous section, the same metric filter can be used to generate metrics correspond-
ing to the number of occurrences of the term ERROR in your logs.

Amazon CloudWatch Alarms
After data points are established in CloudWatch, either as metrics or as logs (from which
you generate metrics), you can set alarms to monitor your metrics and trigger actions in

Amazon CloudWatch 815

response to changes in state. CloudWatch alarms have three possible states: OK, ALARM, and
INSUFFICIENT_DATA. Table 15.13 defines each alarm state.

TA b le 15 .13 Alarm States

State Description

OK The metric or expression is within the defined threshold.

ALARM The metric or expression is outside of the defined threshold.

INSUFFICIENT_DATA The alarm has just started, the metric is not available, or not
enough data is available for the metric to determine the alarm
state.

An ALARM state may not indicate a problem. It means that the given metric is outside the
defined threshold. For example, you have two alarms for Auto Scaling groups: one for high
CPU utilization and one for low CPU utilization. During normal use, both alarms should
be OK, indicating that you have adequate capacity to handle the current workload. If your
workload changes, the high CPU utilization metric threshold may be breached, sending the
corresponding alarm into ALARM state. With an Auto Scaling group, the alarm’s state change
triggers a scale-out event, adding capacity to your infrastructure.

Using Amazon CloudWatch Alarms
When you create an alarm, specify three settings that determine when the alarm should
change states: the threshold, period, and data points on which you want to notify, as
described in Table 15.14.

TA b le 15 .14 Alarm Settings

Setting Description

Period The length of time (in seconds) to evaluate the metric or
expression to create each individual data point for an alarm.
If you choose one minute as the period, there is one data
point every minute.

Evaluation Period The number of the most recent periods, or data points, to
evaluate when determining alarm state.

Data Points to Alarm The number of data points within the evaluation period that
must breach the specified threshold to cause the alarm to
go to the ALARM state. These data points do not have to be
consecutive.

816 Chapter 15 ■ Monitoring and Troubleshooting

Figure 15.3 illustrates how an alarm works based on configuration settings.

f i gu r e 15 . 3 Alarm evaluation

After three periods
over threshold, an
action is invoked.

Only one period
over threshold; no
action is invoked.

Threshold

Value

6

5

4

3

Un
its

Time Periods

2

6 7 8 9 10 115432

1

0
1

The figure illustrates a threshold configured to the value 3 (in blue), a period set
to 3, and data points in red. Notice how the settings drive the alarm occurrence. Even
though the data points breach the threshold after the third period, it is not sustained
for the required three periods to be in an ALARM state. Only after the fifth period would
the alarm change to an ALARM state (the upper threshold is breached for three periods).
Between the fifth and sixth period, the data points drop below the threshold. However,
because the state has not dropped below the threshold for three periods, it does not
change to an OK state until the eighth period. It remains in the OK state past the ninth
period because three consecutive periods exceeding the threshold are necessary for the
alarm state to change.

Alarms can trigger Amazon EC2 actions and EC2 Auto Scaling actions. CloudWatch
can leverage Amazon SNS or Amazon SQS for alarm state notifications, both of which
provide numerous integrations with other AWS services.

Amazon CloudWatch 817

 Exercise caution when creating email notifications for alarms in your envi-
ronment. This can lead to many unnecessary emails to you or your team.
Ultimately, these notifications get filtered as spam or result in “notification
fatigue.” Evaluate your alarms and the metrics you are monitoring to deter-
mine whether notifications are necessary. If they are only status updates,
set notifications sparingly.

 Amazon CloudWatch Dashboards
 CloudWatch offers a convenient way to observe operational metrics for all of your appli-
cations. CloudWatch dashboards are customizable pages in the CloudWatch console that
you can use to monitor resources in a single view (see Figure 15.4).

 f i gu r e 15 . 4 Amazon CloudWatch dashboard

818 Chapter 15 ■ Monitoring and Troubleshooting

CloudWatch dashboards provide customizable status pages in the CloudWatch con-
sole. These status pages can be used to monitor resources across multiple regions and on-
premises in a consolidated view using widgets. Each widget can be customized to present
information in CloudWatch in a user-friendly way so that educated decisions can be made
based on the current status of your system.

AWS CloudTrail
All actions in your AWS account are composed of API calls, regardless of the origin (the
AWS Management Console or programmatic/scripted actions). As you create resources in
your account, API calls are being made to AWS services in different regions around the
world. AWS CloudTrail is a fully managed service that continuously monitors and records
API calls and stores them in Amazon S3. You can use these logs to troubleshoot and resolve
operational issues, meet and verify regulatory compliance, and monitor or alarm on specific
events in your account. CloudTrail supports most AWS services, making it easy for IT and
security administrators to analyze activity in accounts. IT auditors can also use log files as
compliance aids.

CloudTrail helps answer the following five key questions about monitoring access:

 ■ Who made the API call?

 ■ When was the API call made?

 ■ What was the API call?

 ■ Which resources were acted upon in the API call?

 ■ Where was the origin of the API call?

AWS CloudTrail Events
A CloudTrail event is any single API activity in an AWS account. This activity can be an
action triggered by any of the following:

 ■ AWS IAM user

 ■ AWS IAM role

 ■ AWS service

CloudTrail tracks two types of events: management events and data events. Events are
recorded in the region where the action occurred, except for global service events.

Management Events

Management events give insight into operations performed on AWS resources, such as the
following examples:

Configuring security: An example is attaching a policy to an IAM role.

Configuring routing rules: An example is adding inbound security group rules.

AWS CloudTrail 819

Data Events

Data events give insight into operations that store data in (or extract data from) AWS
resources, such as the following examples:

Amazon S3 object activity: Examples are GetObject and PutObject operations.

AWS Lambda function executions: These use the InvokeFunction operation.

By default, CloudTrail tracks the last 90 days of API history for management events. The
following is example output for a CloudTrail event:

{
 "Records": [{
 "eventVersion": "1.01",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDAJDPLRKLG7UEXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "Alice",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2014-03-18T14:29:23Z"
 }
 }
 },
 "eventTime": "2014-03-18T14:30:07Z",
 "eventSource": "cloudtrail.amazonaws.com",
 "eventName": "StartLogging",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "198.162.198.64",
 "userAgent": "signin.amazonaws.com",
 "requestParameters": {
 "name": "Default"
 },
 "responseElements": null,
 "requestID": "cdc73f9d-aea9-11e3-9d5a-835b769c0d9c",
 "eventID": "3074414d-c626-42aa-984b-68ff152d6ab7"
 },
 ... additional entries ...
]

820 Chapter 15 ■ Monitoring and Troubleshooting

This event provides the following information:

 ■ The user who made the request from the userIdentityField. In this example, it is the
IAM user Alice.

 ■ When the request was made (the eventTime). In this case, it is 2014-03-18T14:30:07Z.

 ■ Where the request was made (the sourceIPAddress). In this case, it is 198.162.198.64.

 ■ The action the request is trying to perform (the eventName). In this case, it is the
StartLogging operation.

As a security precaution, you can use events such as this example to configure alerts
when an IAM user attempts to sign in to the AWS Management Console too many times.

Global Service Events

Some AWS services allow you to create, modify, and delete resources from any region.
These are referred to as global services. Examples of global services include the following:

 ■ IAM

 ■ AWS Security Token Service (AWS STS)

 ■ Amazon CloudFront

 ■ Amazon Route 53

Global services are logged as occurring in US East (N. Virginia) Region. Any trails cre-
ated in the CloudTrail console log global services by default, which are delivered to the
Amazon S3 bucket for the trail.

Trails
If you need long-term storage of events (for example, for compliance purposes), you can
configure a trail of events as log files in CloudTrail. A trail is a configuration that enables
delivery of CloudTrail events to an Amazon S3 bucket, Amazon CloudWatch Logs, and
Amazon CloudWatch Events. When you configure a trail, you can filter the events that you
want to be delivered.

AWS X-Ray
The services covered so far are centered on the concept of using logs as monitoring
and troubleshooting tools. Developers often write code, test the code, and inspect
the logs. If there are errors, they may add breakpoints, run the test again, and
add log statements. This works well in small cases, but it becomes cumbersome as
teams, software, and infrastructure grow. Traditional troubleshooting and debug-
ging processes do not work well at scaling across multiple services. Troubleshooting
cross-service and cross-region interactions can be especially difficult when different
systems use varying log formats.

AWS X-Ray 821

AWS X-Ray is a service that collects data about requests served by your application. It
provides tools you can use to view, filter, and gain insights into that data to identify issues
and opportunities for optimization.

AWS X-Ray Use Cases
X-Ray helps developers build, monitor, and improve applications. Use cases include the
following:

 ■ Identifying performance bottlenecks

 ■ Pinpointing specific service issues

 ■ Identifying errors

 ■ Identifying impact to users

X-Ray integrates with the AWS SDK, adding traces to track your application requests as
they are generated and received from various services.

Tracking Application Requests
To understand better how X-Ray works, consider the example service shown in Figure 15.5.
In this service, the front-end fleet relies on a backend API, which is built using API Gateway,
which acts as proxy to Lambda. Lambda then uses Amazon DynamoDB to store data.

f i gu r e 15 .5 Microservice example

Service

Amazon
EC2

Front-End
User

Subsegment Subsegment Subsegment

Segment Segment

Trace

Amazon API
Gateway

API

AWS
Lambda

Amazon
SQS

Queue

Amazon
DynamoDB

Table

822 Chapter 15 ■ Monitoring and Troubleshooting

X-Ray can track a user request using a trace, segment, and subsegment.

Trace A trace is the path of a request through your application. This is the end-to-end
request from the client—from its entry into your environment to the backend and back
to the user. A trace ID is passed through the AWS services with the request so that X-Ray
can collate related segments.

Segment A segment is data from a particular service. When a segment is reported to
X-Ray, a trace ID is reported. Segments are analogous to links in a chain whereby the chain
is the request generated by the user. In the example microservice, two segments correspond
to two services: the front-end service and the backend API.

Subsegment A subsegment identifies the underlying API calls made from a particular
service. Subsegments are collated into segments. In this scenario, the backend API sends
requests to Amazon DynamoDB and Amazon SQS.

From these components of a request, X-Ray compiles the traces into a service graph that
describes the components and their interactions needed to complete a request. A service
graph is a visual representation of the services and resources that make up your application.
Figure 15.6 shows an example of a service graph.

f i gu r e 15 .6 Example service graph for an application

Clients

Web App Resources

API

avg. 294ms
2 t/min

avg. 99ms
0.2 t/min

scorekeep-user
AWS::DynamoDB::Table

avg. 28ms
0.2 t/min

scorekeep-move
AWS::DynamoDB::Table

avg. 20ms
2 t/min

scorekeep-game
AWS::DynamoDB::Table

avg. 25ms
0.8 t/min

scorekeep-session
AWS::DynamoDB::Table

avg. 27ms
1 t/min

scorekeep-state
AWS::DynamoDB::Table

avg. 460ms
0.4 t/min

SNS
AWS::SNS

Scorekeep
AWS::ElasticBeanstalk::Environment

Exam Essentials 823

The service graph provides an overview of the health of various aspects of your system,
such as average latencies and request rates between your services and dependent resources.
The colored circles also show the ratio of different response codes, as listed in Table 15.15.

TA b le 15 .15 AWS X-Ray Service Graph Status Codes

Color Status Code

Purple Throttling or HTTP 5XX codes

Orange Client-side or HTTP 4XX codes

Red Fault application failure

Green OK or HTTP 2XX codes

X-Ray provides a convenient way for you to view system performance and to identify
problems or bottlenecks in your applications. However, it does not provide auditing capa-
bilities or the tracking of all requests to a system. X-Ray collects a statistically significant
number of requests to a system so that meaningful insights can be provided. These insights
enable you to focus on troubleshooting a particular service or improvements to a specific
component of your application.

Summary
AWS provides multiple options for monitoring and troubleshooting your applications. As
you have discovered, AWS services help you manage logs from various systems, either run-
ning on the cloud or on-premises, create triggers that notify you about application health
and issues in your infrastructure, and build applications with modern debugging tools for
distributed applications. These services overcome the difficulties of creating a centralized
logging solution.

Exam Essentials
Know what Amazon CloudWatch is and why it is used. CloudWatch is the service used
to aggregate, analyze, and alert on metrics generated by other AWS services. It is used to
monitor the resources you create in AWS and the on-premises infrastructure. You can use
CloudWatch to store logs from your applications and trigger actions in response to events.

824 Chapter 15 ■ Monitoring and Troubleshooting

Know what common metrics are available for Amazon Elastic Compute Cloud (Amazon
EC2) in Amazon CloudWatch. Amazon EC2 metrics in CloudWatch include the
following:

 ■ CPUUtilization

 ■ DiskReadOps

 ■ DiskReadBytes

 ■ DiskWriteOps

 ■ DiskWriteBytes

 ■ NetworkIn

 ■ NetworkOut

 ■ StatusCheckFailed

Amazon EC2 does not report OS-level metrics such as memory utilization.

Understand the difference between high-resolution and standard-resolution metrics.
High-resolution metrics are delivered in a period of less than one minute. Standard-
resolution metrics are delivered in a period greater than or equal to one minute.

Know what AWS CloudTrail is and why it is used. CloudTrail is used to monitor API
calls made to the AWS Cloud for various services. CloudTrail helps IT administrators, IT
security administrators, DevOps engineers, and auditors to enable compliance and the
monitoring of access to AWS resources within an account.

Know what AWS CloudTrail tracks automatically. By default, CloudTrail tracks the last
90 days of activity. These events are limited to management events with create, modify, and
delete API calls.

Understand the difference between AWS CloudTrail management and data events.
Management events are operations performed on resources in your AWS account. Data
events are operations performed on data stored in AWS resources. Examples are creating or
deleting objects in Amazon S3 and inserting or updating items in an Amazon DynamoDB
table.

Know what AWS X-Ray is and why it is used. X-Ray is a service that collects data about
your application requests, including the various subservices or systems that perform tasks to
complete a request. X-Ray is commonly used to help developers find bottlenecks in distributed
applications and monitor the health of various components in their services.

Know the basics of AWS X-Ray and how it helps troubleshoot applications. X-Ray
records requests by initiating a trace ID with the origin of the request. This trace ID is
added as a header to the request that propagates to various services. If you enable the
X-Ray SDK in your applications, X-Ray submits telemetry and the request as segments for
each service and subsegments for downstream services upon which you depend. Using these
traces, X-Ray collates the data to view request performance metrics, such as latency and
error rates. The data can then be used to create a graph of your application and its depen-
dencies and the health of any requests your application might make.

Resources to Review 825

Resources to Review
Launch your application with the AWS Startup Kit:

https://aws.amazon.com/blogs/startups/launch-your-app-with-the-aws-
startup-kit/

AWS re:Invent 2018: Monitor All Your Things: Amazon CloudWatch in Action with
BBC (DEV302):

https://www.youtube.com/watch?v=uuBuc6OAcVY

Create a CloudWatch Dashboard:

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
create_dashboard.html

What is Amazon CloudWatch?

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
WhatIsCloudWatch.html

Using Amazon CloudWatch Alarms:

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
AlarmThatSendsEmail.html

Using Amazon CloudWatch Metrics:

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
working_with_metrics.html

AWS re:Invent 2018: Augmenting Security Posture and Improving Operational Health
with AWS CloudTrail (SEC323):

https://www.youtube.com/watch?v=YWzmoDzzg4U

What is Amazon CloudWatch Logs?

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
WhatIsCloudWatchLogs.html

SID 341: Using AWS CloudTrail Logs for Scalable, Automated Anomaly Detection:

https://github.com/aws-samples/aws-cloudtrail-analyzer-workshop

What Is AWS CloudTrail?

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
cloudtrail-user-guide.html

CloudTrail Concepts:

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
cloudtrail-concepts.html

AWS X-Ray Sample Application:

https://docs.aws.amazon.com/xray/latest/devguide/xray-scorekeep.html

826 Chapter 15 ■ Monitoring and Troubleshooting

AWS re:Invent 2017: Monitoring Modern Applications: Introduction to AWS X-Ray
(DEV204):

https://www.youtube.com/watch?v=kFsIZsaqpzE

AWS X-Ray Service Graph:

https://docs.aws.amazon.com/xray/latest/devguide/xray-concepts
.html#xray-concepts-servicegraph

AWS CloudTrail Event History Now Available to All Customers:

https://aws.amazon.com/about-aws/whats-new/2017/08/aws-cloudtrail-event-
history-now-available-to-all-customers/

Exercises
e x e r C i S e 15 .1

Create an Amazon CloudWatch Alarm on an Amazon S3 bucket

It is common to monitor the storage usage of your Amazon S3 buckets and trigger noti-
fications when there is a large increase in storage used. In this exercise, you will use the
AWS CLI to configure an Amazon CloudWatch alarm to trigger a notification when more
than 1 KB of data is uploaded to an Amazon S3 bucket.

If you need directions while completing this exercise, see “Using Amazon CloudWatch
Alarms” here:

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
AlarmThatSendsEmail.html

1. Create an Amazon S3 bucket in your AWS account. For instructions, see this page:

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/
create-bucket.html

2. Open the Amazon CloudWatch console at https://console.aws.amazon.com/
cloudwatch/.

3. Select Alarms ➢ Create Alarm.

4. Choose Select Metric.

a. Select the All Metrics tab.

b. Expand AWS Namespaces.

c. Select S3.

d. Select Storage Metrics.

e. Select a metric where BucketName matches the name of the Amazon S3 bucket
that you created and where Metric Name is BucketSizeBytes.

Exercises 827

5. Choose Select Metric.

6. Under Alarm Details:

a. For Name, enter S3 Storage Alarm.

b. For the comparator, select >= (greater than or equal to).

c. Set the value to 1000 for 1 KB.

7. Under Actions:

a. For Whenever This Alarm, select State Is ALARM.

b. For Send Notification To, select New List.

c. For Name, enter My S3 Alarm List.

d. For Email List, enter your email address.

8. Choose Create Alarm.

The alarm is created in your account. If you already have data in your Amazon S3 bucket,
it is switched from Insufficient Data to Alarm state. Otherwise, try uploading several
files to your bucket to monitor changes in alarm state.

To delete the alarm, follow these steps:

1. Open the Amazon CloudWatch console at https://console.aws.amazon.com/
cloudwatch/.

2. Select Alarms.

3. Select the alarm you want to delete.

4. For Actions, select Delete.

In this exercise, you created an Amazon CloudWatch alarm to notify administrators when
large files are uploaded to Amazon S3 buckets in your account.

e x e r C i S e 15 . 2

enable an AWS CloudTrail Trail on an Amazon S3 bucket

1. In this exercise, you will set up access logs to an Amazon S3 bucket in your account
to monitor activity.Create an Amazon S3 bucket in your AWS account.

For instructions on how to do so, see the following:

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/
create-bucket.html

2. Open the AWS CloudTrail console at https://console.aws.amazon.com/
cloudtrail/.

(continued)

828 Chapter 15 ■ Monitoring and Troubleshooting

e x e r C i S e 15 . 2 (c ont inue d)

3. Select Create Trail.

4. Set Trail name to s3_logs.

5. Under Management Events, select None.

6. Under Data Events, select Add S3 Bucket.

7. For S3 bucket, enter your Amazon S3 bucket name.

8. Under Storage Location, for Create A New S3 bucket, select Yes.

9. For Name, enter a name for your Amazon S3 bucket.

10. Choose Create.

In this exercise, you enabled AWS CloudTrail to record data events and store correspond-
ing logs to an Amazon S3 bucket.

e x e r C i S e 15 . 3

Create an Amazon CloudWatch dashboard

In this exercise, you will create an Amazon CloudWatch dashboard to see graphed
metric data.

1. Open the Amazon CloudWatch console at https://console.aws.amazon.com/
cloudwatch/.

2. In the navigation pane, select Dashboards.

3. Choose Create Dashboard.

4. For Dashboard Name, enter a name for your dashboard.

5. Select Create Dashboard.

6. In the modal window, select the Line graph.

7. Choose Configure.

8. From the available metrics, select one or more metrics that you want to monitor.

9. Choose Create Widget.

10. To add more widgets, choose Add Widget and repeat steps 6 through 9 for other wid-
get types.

11. Choose Save Dashboard.

In this exercise, you created an Amazon CloudWatch dashboard to create graphs of
important metric data for resources in your account.

Review Questions 829

Review Questions
1. You are required to set up dynamic scaling using Amazon CloudWatch alarms.

Which of the following metrics could you monitor to trigger Auto Scaling events to scale
out and scale in your instances?

A. High CPU utilization to trigger scale-in action, and low CPU utilization to trigger
scale-out action

B. High CPU utilization to trigger scale-out action, and low CPU utilization to trigger
scale-in action

C. High latency to trigger a scale-in action, and low latency to trigger a scale-out action

D. None of the above

2. What is the length of time that metrics are stored for a data point with a period of
300 seconds (5 minutes) in Amazon CloudWatch?

A. The data point is stored for 3 hours.

B. The data point is stored for 15 days.

C. The data point is stored for 30 days.

D. The data point is stored for 63 days.

E. The data point is stored for 455 days (15 months).

3. Which of the following does an AWS CloudTrail event not provide?

A. Who made the request

B. When the request was made

C. What request is being made

D. Why the request was made

E. Which resource was acted on

4. You must set up centralized logging for an application and create a cost-effective way to
archive logs for compliance purposes.

Which is the best solution?

A. Install the Amazon CloudWatch agent on your servers to ingest the logs and store them
indefinitely.

B. Configure Amazon CloudWatch to ingest logs from your application servers.

C. Install the Amazon CloudWatch agent on your servers to ingest the logs and set a new
retention period for logs with regular exports to Amazon S3 for archival.

D. None of the above.

830 Chapter 15 ■ Monitoring and Troubleshooting

5. Which of the following options allow logs and metrics to be ingested into Amazon
CloudWatch? (Select THREE.)

A. Install the Amazon CloudWatch agent and configure it to ingest logs.

B. Execute API operations to push metrics to Amazon CloudWatch.

C. Configure Amazon CloudWatch to pull logs from servers.

D. Use the AWS CLI to push metrics to Amazon CloudWatch.

6. The following are Apache HTTP access logs.

Which filter pattern would select events matching 404 errors?
127.0.0.1 - - [24/Sep/2013:11:49:52 -0700] "GET /index.html HTTP/1.1" 404 287
127.0.0.1 - - [24/Sep/2013:11:49:52 -0700] "GET /index.html HTTP/1.1" 404 287
127.0.0.1 - - [24/Sep/2013:11:50:51 -0700] "GET /~test/ HTTP/1.1" 200 3
127.0.0.1 - - [24/Sep/2013:11:50:51 -0700] "GET /favicon.ico HTTP/1.1" 404 308
127.0.0.1 - - [24/Sep/2013:11:50:51 -0700] "GET /favicon.ico HTTP/1.1" 404 308
127.0.0.1 - - [24/Sep/2013:11:51:34 -0700] "GET /~test/index.html HTTP/1.1" 200 3

A. 4xx

B. 400

C. 404

D. None of the above

7. You build an application and enable AWS X-Ray tracing. You analyze the service graph and
determine that the application requests to Amazon DynamoDB are not performing well and
a majority of the issues are purple.

What kind of problem is your application experiencing?

A. Throttling

B. Error

C. Faults

D. OK

8. Which AWS service enables you to monitor resources and gather statistics, such as CPU
utilization, from a single “pane of glass” interface?

A. AWS CloudTrail logs

B. Amazon CloudWatch alarms

C. Amazon CloudWatch dashboards

D. Amazon CloudWatch Logs

9. By default, what is the number of days of AWS account activity that you can view, search,
and download from the AWS CloudTrail event history?

A. 30 days

B. 60 days

C. 75 days

D. 90 days

Review Questions 831

10. Which of the following is not able to access AWS CloudTrail data?

A. AWS CLI

B. AWS Management Console

C. AWS CloudTrail API

D. None of the above

11. In AWS CloudTrail, which of the following are management events? (Select TWO.)

A. Adding a row to an Amazon DynamoDB table

B. Modifying an Amazon S3 bucket policy

C. Uploading an object to an Amazon S3 bucket

D. Creating an Amazon Relational Database Service (Amazon RDS) database instance

E. Sending a notification to Amazon Simple Notification Service (Amazon SNS)

12. Suppose that you have a custom web application running on an Amazon Elastic Compute
Cloud (Amazon EC2) instance.

What steps are needed to configure this instance to send custom application logs to Amazon
CloudWatch Logs? (Select THREE.)

A. Install the Amazon CloudWatch Logs agent.

B. Attach an Elastic IP address to your Amazon EC2 instance.

C. Configure the agent to send specific logs.

D. Start the agent.

E. Install the AWS Systems Manager agent.

13. Which of the following are not supported Amazon CloudWatch alarm actions?

A. AWS Lambda functions

B. Amazon Simple Notification Service (Amazon SNS) topics

C. Amazon Elastic Compute Cloud (Amazon EC2) actions

D. EC2 Auto Scaling actions

14. Which of the following Amazon Elastic Compute Cloud (Amazon EC2) metrics is not
directly available through Amazon CloudWatch metrics?

A. CPU utilization

B. Network traffic in/out

C. Disk I/O

D. Memory (RAM) utilization

15. Which of the following is the correct Amazon CloudWatch metric namespace for Amazon
Elastic Compute Cloud (Amazon EC2) instances?

A. AWS/EC2

B. Amazon/EC2

C. AWS/EC2Instance

D. Amazon/EC2Instance

Optimization

The AWS CerTified develOper –
ASSOCiATe exAm TOpiCS COvered in
ThiS ChApTer mAy inClude, buT Are
nOT limiTed TO, The fOllOWing:

Domain 3: Development with AWS Services

 ✓ 3.4 Write code that interacts with AWS services by using
APIs, SDKs, and AWS CLI.

Content may include the following:

 ■ Programming AWS APIs

Domain 4: Refactoring

 ✓ 4.1 Optimize application to best use AWS services
and features.

Content may include the following:

 ■ Cost optimization

 ■ Performance optimization

 ■ Best practices for achieving optimization

Domain 5: Monitoring and Troubleshooting

 ✓ 5.1 Write code that can be monitored.

Content may include the following:

 ■ Tools for cost monitoring

 ■ Tools for performance monitoring

Chapter

16

AWS® Certified Developer Official Study Guide
By Nick Alteen, Jennifer Fisher, Casey Gerena, Wes Gruver, Asim Jalis,
Heiwad Osman, Marife Pagan, Santosh Patlolla and Michael Roth

 Amazon Web Services, Inc.

Introduction to Optimization
Creating a software system is a lot like constructing a building. If the foundation is not
solid, structural problems can undermine the integrity and function of the building. The
AWS Well-Architected Tool helps you understand the pros and cons of decisions that you
make while building systems on AWS. By using the tool, you will learn architectural best
practices for designing and operating reliable, secure, efficient, and cost-effective systems
in the AWS Cloud. When architecting technology solutions, if you neglect the five pillars of
operational excellence, security, reliability, performance efficiency, and cost optimization,
it can become challenging to build a system that delivers on your expectations and require-
ments. Incorporating these pillars into your architecture helps you to produce stable and
efficient systems.

This chapter covers some of the best practices and considerations in designing systems
with the most effective use of services and resources to achieve business outcomes at a min-
imal cost and maintain the optimal performance efficiency.

Cost Optimization: Everyone’s
Responsibility
All teams help manage cloud costs, and cost optimization is everyone’s responsibility.
Make sure that costs are known from beginning to end, at every level, and from executives
to engineers. Ensure that project owners and budget holders know what their upfront and
ongoing costs are. Business decision makers must track costs against budgets and under-
stand return on investment (ROI).

Encourage everyone to track their cost optimization daily so that they can establish a
habit of efficiency and see the daily impact of their cost savings over time.

Developers’ and engineers’ contributions are a significant part of the organization’s suc-
cess. Every engineer can be a cost engineer. Engineers should design the code to consume
resources only when needed, control the utilization, build sizing into architecture, and tag
the resources to optimize usage.

Cost Optimization: Everyone’s Responsibility 835

Tagging
By tagging your AWS resources, you can assign custom metadata to instances, images, and
other resources. For example, you can categorize resources by owner, purpose, or environ-
ment, which helps you organize them and assign cost accountability. When you apply tags
to your AWS resources and activate the tags, AWS adds this information to the Cost and
Usage reports.

Follow Mandatory Cost Tagging
An effective tagging strategy gives you improved visibility and monitoring, helps you create
accurate chargeback and showback models, and extract more granular and precise insights
into usage and spending by applications and teams. The following tag categories help you
achieve these goals:

Environment Distinguishes among development, test, and production infrastructure.
Specifying an environment tag reduces analysis time, post-processing, and the need to
maintain a separate mapping file of production versus nonproduction accounts.

Application ID Identifies resources that are related to a specific application for easy track-
ing of spending changes and that turn off at the end of projects.

Automation Opt-In/Opt-Out Indicates whether a resource should be included in an auto-
mated activity such as starting, stopping, or resizing instances.

Cost Center/Business Unit Identifies the cost center or business unit associated with a
resource, typically for cost allocation and tracking.

Owner Used to identify who is responsible for the resource. This is typically the technical
owner. If needed, you can add a separate business owner tag. You can specify the owner
as an email address. Using email addresses supports automated notifications to both the
technical and business owners as required (for example, if the resource is a candidate for
elasticity or right sizing).

Tag on Creation
You can make tagging a part of your build process and automate it with AWS management
tools, such as AWS Elastic Beanstalk and AWS OpsWorks.

The following AWS CLI sample adds two tags, CostCenter and environment, for an
Amazon Machine Image (AMI) and an instance:

aws ec2 create-tags --resources ami-1a2b3c4d i-1234567890abcdef0 --tags
Key=CostCenter,Value=123 Key=environment,Value=Production

You can execute management tasks at scale by listing resources with specific tags and
then executing the appropriate actions. For example, you can list all the resources with the
tag and value of environment:test; then, for each of the resources, delete or terminate
the resource. This is useful for automating shutdown or removal of a test environment
at the end of the working day. Running reports on tagged and, more importantly, untagged
resources enables greater compliance with internal cost management policies.

836 Chapter 16 ■ Optimization

Enforce Tag Use
Using AWS Identity and Access Management (IAM) policies, you can enforce tag use to
gain precise control over access to resources, ownership, and accurate cost allocation.

The following example policy allows a user to create an Amazon Elastic Block Store
(Amazon EBS) volume only if the user applies the tags (Costcenter and environment) that
are defined in the policy using the qualifier ForAllValues. If the user applies any tag that is
not included in the policy, the action is denied. To enforce case sensitivity, use the condition
aws:TagKeys as follows:

Effect: Allow
Action: 'ec2:CreateVolume'
Resource: 'arn:aws:ec2:us-east-1:123456789012:volume/*'
Condition:
 StringEquals:
 'aws:RequestTag/costcenter': '115'
 'aws:RequestTag/environment': prod
 'ForAllValues:StringEquals':
 'aws:TagKeys':
 - Costcenter
 - environment

Tagging Tools
The following tools help you manage your tags:

AWS Tag Editor—Finds resources with search criteria (including missing and
misspelled tags) and enables you to edit tags from the AWS Management Console

AWS Config—Identifies resources that do not comply with tagging policies

Capital One’s Cloud Custodian (open source)—Ensures tagging compliance and
remediation

Reduce AWS Usage
Set a continuous practice to review your consumption of AWS resources, and understand
the factors that contribute to cost. Use various AWS monitoring tools to provide visibility,
control, and cost optimization. Implement the best practice of oversight to make sure that
you are not overspending. Following the DevOps phase, use dashboards to view the esti-
mated costs of your AWS usage, top services that you use most, and the proportion of your
costs to which each service contributed. If your monthly bill increases, make sure that it is
for the right reason (business growth) and not the wrong reason (waste).

Delete Unnecessary EBS Volumes
Stopping an Amazon Elastic Compute Cloud (Amazon EC2) instance leaves any attached
Amazon Elastic Block Store (Amazon EBS) volumes operational. You continue to incur
charges for these volumes until you delete them.

Cost Optimization: Everyone’s Responsibility 837

Stop Unused Instances
Stop instances used in development and production during hours when these instances are
not in use and then start them again when their capacity is needed. Assuming a 50-hour
workweek, you can save 70 percent of costs by automatically stopping dev/test/production
instances during nonbusiness hours.

Delete Idle Resources
Consider the following best practices to reduce costs associated with AWS idle resources,
such as unattached Amazon EBS volumes and unused Elastic IP addresses:

 ■ The easiest way to reduce operational costs is to turn off instances that are no longer
being used. If you find instances that have been idle for more than two weeks, it’s safe
to stop or even terminate them.

 ■ Terminating an instance, however, automatically deletes attached EBS volumes and
requires effort to re-provision if the instance is needed again. If you decide to delete an
EBS volume, consider storing a snapshot of the volume so that it can be restored later if
needed.

 ■ Spin up instances to test new ideas. If the ideas work, keep the instance for further
refinement. If not, spin it down.

 ■ An Elastic IP address does not incur charges as long as it is associated with an Amazon
EC2 instance. If an Elastic IP address is not used, you can avoid charges by releasing
the IP address. After you release an IP address, you cannot provision that same Elastic
IP address again.

Update Outdated Resources
As AWS releases new services and features, it is a best practice to review your existing
architectural decisions to ensure that they remain cost effective and stay evergreen. As your
requirements change, be aggressive in decommissioning resources, components, and work-
loads that you no longer require.

Delete Unused Keys
Each customer master key (CMK) that you create in AWS Key Management Service (AWS
KMS), regardless of whether you use it with KMS-generated key material or key material
imported by you, incurs a cost you until you delete it. Before deleting a CMK, you might
want to know how many ciphertexts were encrypted under that key. Knowing how a CMK
was used in the past might help you decide whether you will need it in the future by using
AWS CloudTrail usage logs. After you are sure that you want to delete a CMK in AWS
KMS, schedule the key deletion.

Delete Old Snapshots
If your architecture suggests a backup policy that takes EBS volume snapshots daily or
weekly, then you will quickly accumulate snapshots. To reduce storage costs, check for

838 Chapter 16 ■ Optimization

“stale” snapshots—ones that are more than 30 days old—and delete them. Deleting a
snapshot has no effect on the volume. You can use the AWS Management Console or AWS
Command Line Interface (AWS CLI) for this purpose.

Right Sizing
Right sizing is the process of matching instance types and sizes to performance and capac-
ity requirements at the lowest possible cost. To achieve cost optimization, right sizing must
become an ongoing process within your organization. Even if you right size workloads
initially, performance and capacity requirements can change over time, which can result
in underused or idle resources. New projects and workloads require additional cloud
resources. Therefore, if there is no periodic check on right sizing, overprovisioning is the
likely outcome.

AWS provides APIs, SDKs, and features that allow resources to be modified as demands
change.

The following are examples of how you can change the instance type to match perfor-
mance and capacity requirements:

 ■ On Amazon Elastic Compute Cloud (Amazon EC2), you can perform a stop-and-start
to allow a change of instance size or instance type.

 ■ On Amazon EBS, you can increase volume size or adjust performance while volumes
are still in use to improve performance through increased input/output operations per
second (IOPS) or throughput or to reduce cost by changing the type of volume.

Select the Right Use Case
As you monitor current performance, identify the following usage needs and patterns so
that you can take advantage of potential right-sizing options:

Steady state The load remains constant over time, making forecasting simple. Consider
using Reserved Instances to gain significant savings.

Variable, but predictable The load changes on a predictable schedule. Consider using
AWS Auto Scaling.

Dev, test, production Development, testing, and production environments can usually be
turned off outside of work hours.

Temporary Temporary workloads that have flexible start times and can be interrupted are
good candidates for Spot Instances instead of On-Demand Instances.

Select the Right Instance Family
When you launch an instance, the instance type that you specify determines the hardware
of the host computer used for your instance. Each instance type offers different compute,

Right Sizing 839

memory, and storage capabilities, and they are grouped in instance families based on these
capabilities. Depending on the AWS offering, you can determine the right instance family
for your infrastructure.

Amazon Elastic Cloud Compute
Amazon Elastic Cloud Compute (Amazon EC2) provides a wide selection of instances,
which gives you flexibility to right size CPU and memory needs for your compute resources
to match capacity needs at the lowest cost. Following are the different options for CPU,
memory, and network resources:

General purpose (includes A1, T2, M3, and M4 instance types) A1 instances deliver
significant cost savings and are ideally suited for scale-out workloads, such as web servers,
containerized microservices, caching fleets, and distributed data stores. T2 instances are
a low-cost option that provides a small amount of CPU resources that can be increased in
short bursts when additional cycles are available. They are well suited for lower through-
put applications, such as administrative applications or low-traffic websites. M3 and M4
instances provide a balance of CPU, memory, and network resources, and they are ideal for
running small and midsize databases, more memory-intensive data processing tasks, cach-
ing fleets, and backend servers.

Compute optimized (includes the C3 and C4 instance types) This family has a higher
ratio of virtual CPUs to memory than the other families and the lowest cost per virtual
CPU of all of the Amazon EC2 instance types. Consider compute-optimized instances first
if you are running CPU-bound, scale-out applications, such as front-end fleets for high-
traffic websites, on-demand batch processing, distributed analytics, web servers, video
encoding, and high-performance science and engineering applications.

Memory optimized (includes the X1, R3, and R4 instance types) Designed for memory-
intensive applications, these instances have the lowest cost per GiB of RAM of all Amazon EC2
instance types. Use these instances if your application is memory-bound.

Storage optimized (includes the I3 and D2 instance types) Optimized to deliver tens of
thousands of low-latency, random input/output operations per second (IOPS) to applica-
tions. Storage-optimized instances are best for large deployments of NoSQL databases.
I3 instances are designed for I/O-intensive workloads and equipped with super-efficient
NVMe SSD storage. These instances can deliver up to 3.3 million IOPS in 4-KB blocks and
up to 16 GB per second of sequential disk throughput. D2 or dense storage instances are
designed for workloads that require high sequential read and write access to large datasets
such as Hadoop, distributed computing, massively parallel processing data warehousing,
and log-processing applications.

Accelerated computing (includes the P2, G3, and F1 instance types) Provides access to
hardware-based compute accelerators, such as graphics processing units (GPUs) or field
programmable gate arrays (FPGAs). Accelerated-computing instances enable more parallel-
ism for higher throughput on compute-intensive workloads.

840 Chapter 16 ■ Optimization

Amazon Relational Database Service
Similar to Amazon EC2 instances, Amazon Relational Database Service (Amazon RDS)
provides options to choose from database instances that are optimized for memory, perfor-
mance, and I/O.

Standard performance (includes the M3 and M4 instance types) Designed for general-
purpose database workloads that do not run many in-memory functions. This family has
the most options for provisioning increased IOPS.

Burstable performance (includes T2 instance types) For workloads that require burstable
performance capacity.

Memory optimized (includes the R3 and R4 instance types) Optimized for in-memory
functions and big data analysis.

Select the Right Instance Compatibility
You can right size an instance by migrating to a different model within the same instance
family or by migrating to another instance family. When you’re migrating within the same
instance family, consider vCPU, memory, network throughput, and ephemeral storage.

Virtualization type The instances must have the same Linux Amazon Machine Image
(AMI) virtualization type (PV AMI versus HVM) and platform (Amazon EC2-Classic
versus Amazon EC2-VPC).

Network Instances unsupported in Amazon EC2-Classic must be launched in a virtual
private cloud (VPC).

Platform If the current instance type supports 32-bit AMIs, make sure to select a new
instance type that also supports 32-bit AMIs (not all Amazon EC2 instance types do).

Using Instance Reservations
Amazon EC2 provides several purchasing options to enable you to optimize your costs
based on your needs.

AWS Pricing for Reserved Instances
Amazon EC2 Reserved Instances allow you to commit to usage parameters. To unlock an
hourly rate that is up to 75 percent lower than On-Demand pricing, you can commit to a
one-year or three-year duration at the time of purchase.

There are three payment options for Reserved Instances:

No Upfront No upfront payment is required, and Reserved Instances are billed monthly.
This requires a good payment history with AWS.

Using Instance Reservations 841

Partial Upfront A portion of the cost is paid upfront, and the remaining hours in the term
are billed at a discounted hourly rate, regardless of whether the RI is being used.

All Upfront Full payment is made at the start of the term, with no other costs or addi-
tional hourly charges incurred for the remainder of the term, regardless of hours used.

Amazon EC2 Reservations
Amazon EC2 Reserved Instances provide a reservation of resources and capacity when used
in a specific Availability Zone within an AWS Region:

 ■ With Reserved Instances, you commit to a period of usage (one or three years) and save
up to 75 percent over equivalent On-Demand hourly rates.

 ■ For applications that have steady state or predictable usage, Reserved Instances
can provide significant savings compared to using On-Demand Instances, without
requiring a change to your workload.

Convertible Reserved Instances
Convertible Reserved Instances are provided for a one-year or three-year term, and they
enable conversion to different families, new pricing, different instance sizes, different plat-
forms, or tenancy during the period. Use Convertible Reserved Instances when you are
uncertain about instance needs in the future, but you are still committed to using Amazon
EC2 instances for a three-year term in exchange for a significant discount.

Suppose that you own an Amazon EC2 Reserved Instance for a c4.8xlarge for three
years. This Reserved Instance applies to any usage of a Linux/Unix c4 instance with shared
tenancy in the same region as the Reserved Instance, such as 1 c4.8xlarge instance,
2 c4.4xlarge instances, or 16 c4.large instances, during this term. This adds flexibility to
match the new needs of your workloads:

 ■ There are no limits to how many times you perform an exchange, as long as the target
Convertible Reserved Instance is of an equal or higher value than the Convertible
Reserved Instances that you are exchanging.

 ■ Exchanging Convertible Reserved Instances is free of charge, but you might need to
pay a true-up cost if the value is lower than the value of the Reserved Instances for
which you’re exchanging. For example, you can convert C3 Reserved Instances to C4
Reserved Instances to take advantage of a newer instance type, or you can convert
C4 Reserved Instances to M4 Reserved Instances if your application requires more
memory. You can also use Convertible Reserved Instances to take advantage of
Amazon EC2 price reductions over time.

Reserved Instance Marketplace
Use the Reserved Instance Marketplace to sell your unused Reserved Instances and buy
Reserved Instances from other AWS customers. As your needs change throughout the

842 Chapter 16 ■ Optimization

course of your term, the AWS Marketplace provides an option to buy Reserved Instances
for shorter terms and with a wider selection of prices.

Amazon Relational Database Service Reservations
Reserved DB instances are not physical instances; they are a billing discount applied to
the use of certain on-demand DB instances in your account. Discounts for reserved DB
instances are tied to instance type and AWS Region.

All Reserved Instance types are available for Amazon Aurora, MySQL, MariaDB,
PostgreSQL, Oracle, and SQL Server database engines.

 ■ Reserved Instances can also provide significant cost savings for mission-critical
applications that run on Multi-AZ database deployments for higher availability and
data durability. Reserved Instances can minimize your costs up to 69 percent over
On-Demand rates when used in steady state.

 ■ Most production applications require database servers to be available 24/7. Consider
using Reserved Instances to gain substantial savings if you are currently using
On-Demand Instances.

 ■ Any usage of running DB instances that exceeds the number of applicable Reserved
Instances you have purchased are charged the On-Demand rate. For example, if you
own three Reserved Instances with the same database engine and instance type (or
instance family, if size flexibility applies) in a given region, the billing system checks
each hour to determine how many total instances you have running that match those
parameters. If it is three or fewer, you are charged the Reserved Instance rate for
each instance running that hour. If more than three are running, you are charged the
On-Demand rate for the additional instances.

 ■ With size flexibility, your Reserved Instance’s discounted rate is automatically
applied to usage of any size in the instance family (using the same database engine)
for the MySQL, MariaDB, PostgreSQL, and Amazon Aurora database engines
and the “Bring your own license” (BYOL) edition of the Oracle database engine.
For example, suppose that you purchased a db.m4.2xlarge MySQL Reserved
Instance in US East (N. Virginia). The discounted rate of this Reserved Instance can
automatically apply to two db.m4.xlarge MySQL instances without you needing to
do anything.

 ■ The Reserved Instance discounted rate also applies to usage of both Single-AZ and
Multi-AZ configurations for the same database engine and instance family.

Suppose that you purchased a db.r3.large PostgreSQL Single-AZ Reserved Instance
in EU (Frankfurt). The discounted rate of this Reserved Instance can automatically
apply to 50 percent of the usage of a db.r3.large PostgreSQL Multi-AZ instance in
the same region.

Using Spot Instances 843

Using Spot Instances
Amazon EC2 Spot Instances offer spare compute capacity in the AWS Cloud at steep dis-
counts compared to On-Demand Instances.

You can use Spot Instances to save up to 90 percent on stateless web applications, big
data, containers, continuous integration/continuous delivery (CI/CD), high performance
computing (HPC), and other fault-tolerant workloads. Or, scale your workload throughput
by up to 10 times and stay within the existing budget.

Spot Fleets
Use Spot Fleets to request and manage multiple Spot Instances automatically, which pro-
vides the lowest price per unit of capacity for your cluster or application, such as a batch-
processing job, a Hadoop workflow, or an HPC grid computing job. You can include the
instance types that your application can use. You define a target capacity based on your
application needs (in units, including instances, vCPUs, memory, storage, or network
throughput) and update the target capacity after the fleet is launched. Spot Fleets enable
you to launch and maintain the target capacity and to request resources automatically to
replace any that are disrupted or manually terminated.

To ensure that you have instance capacity, you can include a request for On-Demand
capacity in your Spot Fleet request. If there is capacity, the On-Demand request is fulfilled.
If there is capacity and availability, the balance of the target capacity is fulfilled as Spot.

The following example specifies the desired target capacity as 10, of which 5 must be
On-Demand capacity. Spot capacity is not specified; it is implied in the balance of the tar-
get capacity minus the On-Demand capacity. If there is available Amazon EC2 capacity and
availability, Amazon EC2 launches 5 capacity units as On-Demand and 5 capacity units
(10−5=5) as Spot.

{
"IamFleetRole":"arn:aws:iam::1234567890:role/aws-ec2-spot-fleet-tagging-role",
"AllocationStrategy":"lowestPrice",
"TargetCapacity":10,
"SpotPrice":null,
"ValidFrom":"2018-04-04T15:58:13Z",
"ValidUntil":"2019-04-04T15:58:13Z",
"TerminateInstancesWithExpiration": true,
"LaunchSpecifications":[],
"Type":"maintain",
"OnDemandTargetCapacity":5,
"LaunchTemplateConfigs":[
 {
"LaunchTemplateSpecification":{
"LaunchTemplateId": "lt-0dbb04d4a6abcabcabc",

844 Chapter 16 ■ Optimization

"Version": "2"
 },
"Overrides": [
 {
"InstanceType": "t2.medium",
"WeightedCapacity": 1,
"SubnetId": "subnet-d0dc51fb"
 }
]
 }
]
}

Amazon EC2 Fleets
With a single API call, Amazon EC2 Fleet enables you to provision compute capacity across
different instance types, Availability Zones, and across On-Demand, Reserved Instances,
and Spot Instances purchase models to help optimize scale, performance, and cost.

By default, Amazon EC2 Fleet launches the On-Demand option that is at the lowest
price. For Spot Instances, Amazon EC2 Fleet provides two allocation strategies: lowest
price and diversified. The lowest-price strategy allows you to provision Spot Instances in
pools that provide the lowest price per unit of capacity at the time of the request. The diver-
sified strategy allows you to provision Spot Instances across multiple Spot pools, and you
can maintain your fleet’s target capacity to increase application.

Design for Continuity
With Spot Instances, you avoid paying more than the maximum price you specified. If the
Spot price exceeds your maximum willingness to pay for a given instance or when capacity
is no longer available, your instance is terminated automatically (or stopped or hibernated,
if you opt for this behavior on a persistent request).

Spot offers features, such as termination notices, persistent requests, and spot block
duration, to help you better track and control when Spot Instances can run and terminate
(or stop or hibernate).

Using Termination Notices
If you need to save state, upload final log files, or remove Spot Instances from an Elastic
Load Balancing load balancer before interruption, you can use termination notices, which
are issued 2 minutes before interruption.

If your instance is marked for termination, the termination notice is stored in the
instance’s metadata 2 minutes before its termination time. The notice is accessible at
http://169.254.169.254/latest/meta-data/spot/termination-time.The notice includes
the time when the shutdown signal will be sent to the instance’s operating system.

Using AWS Auto Scaling 845

Relevant applications on Spot Instances should poll for the termination notice at
5- second intervals, which gives the application almost the entire 2 minutes to complete any
needed processing before the instance is terminated and taken back by AWS.

Using Persistent Requests
You can set your request to remain open so that a new instance is launched in its place
when the instance is interrupted. You can also have your Amazon EBS–backed instance
stopped upon interruption and restarted when Spot has capacity at your preferred price.

Using Block Durations
You can also launch Spot Instances with a fixed duration (Spot blocks, 1–6 hours), which
are not interrupted as the result of changes in the Spot price. Spot blocks can provide sav-
ings of up to 50 percent.

You submit a Spot Instance request and use the new BlockDuration parameter to specify
the number of hours that you want your instances to run, along with the maximum price
that you are willing to pay.

You can submit a request of this type by running the following command:

$ aws ec2 request-spot-instances \
 block-duration-minutes 360 \
 instance-count 2 \
 spot-price "0.25"
:

Alternatively, you can call the RequestSpotInstances function.

Minimizing the Impact of Interruptions
Because the Spot service can terminate Spot Instances without warning, it is important to
build your applications in a way that allows you to make progress even if your application
is interrupted. There are many ways to accomplish this, including the following:

Adding checkpoints Add checkpoints that save your work periodically, for example,
to an Amazon EBS volume. Another approach is to launch your instances from Amazon
EBS–backed AMI.

Splitting up the work By using Amazon Simple Queue Service (Amazon SQS), you can
queue up work increments and track work that has already been done.

Using AWS Auto Scaling
Using AWS Auto Scaling, you can scale workloads in your architecture. It automatically
increases the number of resources during the demand spikes to maintain performance and
decreases capacity when demand lulls to reduce cost. AWS Auto Scaling is well-suited for

846 Chapter 16 ■ Optimization

applications that have stable demand patterns and for ones that experience hourly, daily, or
weekly variability in usage. AWS Auto Scaling is useful for applications that show steady
demand patterns and that experience frequent variations in usage.

Amazon EC2 Auto Scaling
Amazon EC2 Auto Scaling helps you scale your Amazon EC2 instances and Spot Fleet
capacity up or down automatically according to conditions that you define. AWS Auto
Scaling is generally used with Elastic Load Balancing to distribute incoming application
traffic across multiple Amazon EC2 instances in an AWS Auto Scaling group. AWS Auto
Scaling is triggered using scaling plans that include policies that define how to scale
(manual, schedule, and demand spikes) and the metrics and alarms to monitor in Amazon
CloudWatch.

CloudWatch metrics are used to trigger the scaling event. These metrics can be stan-
dard Amazon EC2 metrics, such as CPU utilization, network throughput, Elastic Load
Balancing observed request and response latency, and even custom metrics that might origi-
nate from application code on your Amazon EC2 instances.

You can use Amazon EC2 Auto Scaling to increase the number of Amazon EC2
instances automatically during demand spikes to maintain performance and decrease
capacity during lulls to reduce costs.

Dynamic Scaling
The dynamic scaling capabilities of Amazon EC2 Auto Scaling refers to the functional-
ity that automatically increases or decreases capacity based on load or other metrics. For
example, if your CPU spikes above 80 percent (and you have an alarm set up), Amazon
EC2 Auto Scaling can add a new instance dynamically, reducing the need to provision
Amazon EC2 capacity manually in advance. Alternatively, you could set a target value by
using the new Request Count Per Target metric from Application Load Balancer, a load
balancing option for the Elastic Load Balancing service. Amazon EC2 Auto Scaling will
then automatically adjust the number of Amazon EC2 instances as needed to maintain
your target.

Scheduled Scaling
Scaling based on a schedule allows you to scale your application ahead of known load
changes, such as the start of business hours, thus ensuring that resources are available when
users arrive, or in typical development or test environments that run only during defined
business hours or periods of time.

You can use APIs to scale the size of resources within an environment (vertical scal-
ing). For example, you could scale up a production system by changing the instance size or
class. This can be achieved by stopping and starting the instance and selecting the different
instance size or class. You can also apply this technique to other resources, such as EBS
volumes, which can be modified to increase size, adjust performance (IOPS), or change the
volume type while in use.

Using AWS Auto Scaling 847

Fleet Management
Fleet management refers to the functionality that automatically replaces unhealthy instances
in your application, maintains your fleet at the desired capacity, and balances instances across
Availability Zones. Amazon EC2 Auto Scaling fleet management ensures that your applica-
tion is able to receive traffic and that the instances themselves are working properly. When
AWS Auto Scaling detects a failed health check, it can replace the instance automatically.

Instances Purchasing Options
With Amazon EC2 Auto Scaling, you can provision and automatically scale instances
across purchase options, Availability Zones, and instance families in a single application to
optimize scale, performance, and cost. You can include Spot Instances with On-Demand
and Reserved Instances in a single AWS Auto Scaling group to save up to 90 percent on
compute. You have the option to define the desired split between On-Demand and Spot
capacity, select which instance types work for your application, and specify preferences for
how Amazon EC2 Auto Scaling should distribute the AWS Auto Scaling group capacity
within each purchasing model.

Golden Images
A golden image is a snapshot of a particular state of a resource, such as an Amazon EC2
instance, Amazon EBS volumes, and an Amazon RDS DB instance. You can customize an
Amazon EC2 instance and then save its configuration by creating an Amazon Machine
Image (AMI). You can launch as many instances from the AMI as you need, and they will
all include those customizations. A golden image results in faster start times and removes
dependencies to configuration services or third-party repositories. This is important in
auto-scaled environments in which you want to be able to launch additional resources in
response to changes in demand quickly and reliably.

AWS Auto Scaling
AWS Auto Scaling monitors your applications and automatically adjusts capacity of all
scalable resources to maintain steady, predictable performance at the lowest possible cost.
Using AWS Auto Scaling, you can set up application scaling for multiple resources across
multiple services in minutes.

AWS Auto Scaling automatically scales resources for other AWS services, including
Amazon ECS, Amazon DynamoDB, Amazon Aurora, Amazon EC2 Spot Fleet requests,
and Amazon EC2 Scaling groups.

If you have an application that uses one or more scalable resources and experiences vari-
able load, use AWS Auto Scaling. A good example would be an ecommerce web application
that receives variable traffic throughout the day. It follows a standard three-tier architec-
ture with Elastic Load Balancing for distributing incoming traffic, Amazon EC2 for the
compute layer, and Amazon DynamoDB for the data layer. In this case, AWS Auto Scaling
scales one or more Amazon EC2 Auto Scaling groups and DynamoDB tables that are pow-
ering the application in response to the demand curve.

848 Chapter 16 ■ Optimization

AWS Auto Scaling continually monitors your applications to make sure that they are
operating at your desired performance levels. When demand spikes, AWS Auto Scaling
automatically increases the capacity of constrained resources so that you maintain a high
quality of service.

AWS Auto Scaling bases its scaling recommendations on the most popular scaling met-
rics and thresholds used for AWS Auto Scaling. It also recommends safe guardrails for scal-
ing by providing recommendations for the minimum and maximum sizes of the resources.
This way, you can get started quickly and then fine-tune your scaling strategy over time,
allowing you to optimize performance, costs, or balance between them.

The predictive scaling feature uses machine learning algorithms to detect changes in
daily and weekly patterns, automatically adjusting their forecasts. This removes the need
for the manual adjustment of AWS Auto Scaling parameters as cyclicality changes over
time, making AWS Auto Scaling simpler to configure, and provides more accurate capacity
provisioning. Predictive scaling results in lower cost and more responsive applications.

DynamoDB Auto Scaling
DynamoDB automatic scaling uses the AWS Auto Scaling service to adjust provisioned
throughput capacity dynamically on your behalf in response to actual traffic patterns. This
enables a table or a global secondary index to increase its provisioned read and write capacity
to handle sudden increases in traffic without throttling. When the workload decreases, AWS
Auto Scaling decreases the throughput so that you don’t pay for unused provisioned capacity.

Amazon Aurora Auto Scaling
Amazon Aurora automatic scaling dynamically adjusts the number of Aurora Replicas pro-
visioned for an Aurora DB cluster. Aurora automatic scaling is available for both Aurora
MySQL and Aurora PostgreSQL. Aurora automatic scaling enables your Aurora DB cluster
to handle sudden increases in connectivity or workload. When the connectivity or work-
load decreases, Aurora automatic scaling removes unnecessary Aurora Replicas so that you
don’t pay for unused provisioned DB instances.

Amazon Aurora Serverless is an on-demand, automatic scaling configuration for the
MySQL-compatible edition of Amazon Aurora. An Aurora Serverless DB cluster automati-
cally starts up, shuts down, and scales capacity up or down based on your application’s
needs. Aurora Serverless provides a relatively simple, cost-effective option for infrequent,
intermittent, or unpredictable workloads.

Accessing AWS Auto Scaling
There are several ways to get started with AWS Auto Scaling. You can set up AWS Auto
Scaling through the AWS Management Console, with the AWS CLI, or with AWS SDKs.

Using Containers 849

You can access the features of AWS Auto Scaling using the AWS CLI, which provides
commands to use with Amazon EC2 and Amazon CloudWatch and Elastic Load Balancing.

To scale a resource other than Amazon EC2, you can use the Application Auto Scaling
API, which allows you to define scaling policies to scale your AWS resources automatically
or schedule one-time or recurring scaling actions.

Using Containers
Containers provide a standard way to package your application’s code, configurations,
and dependencies into a single object. Containers share an operating system installed on
the server and run as resource-isolated processes, ensuring quick, reliable, and consistent
deployments, regardless of environment.

Containers provide process isolation that lets you granularly set CPU and memory utili-
zation for better use of compute resources.

Containerize Everything
Containers are a powerful way for developers to package and deploy their applications.
They are lightweight and provide a consistent, portable software environment for applica-
tions to run and scale effortlessly anywhere.

Use Amazon Elastic Container Service (Amazon ECS) to build all types of container-
ized applications easily, from long-running applications and microservices to batch jobs
and machine learning applications. You can migrate legacy Linux or Windows applications
from on-premises to the AWS Cloud and run them as containerized applications using
Amazon ECS.

Amazon ECS enables you to use containers as building blocks for your applications by
eliminating the need for you to install, operate, and scale your own cluster management
infrastructure. You can schedule long-running applications, services, and batch processes
using Docker containers. Amazon ECS maintains application availability and allows you
to scale your containers up or down to meet your application’s capacity requirements.
Amazon ECS is integrated with familiar features like Elastic Load Balancing, EBS volumes,
virtual private cloud (VPC), and AWS Identity and Access Management (IAM). Use APIs to
integrate and use your own schedulers or connect Amazon ECS into your existing software
delivery process.

Containers without Servers
AWS Fargate technology is available with Amazon ECS. With Fargate, you no longer have
to select Amazon EC2 instance types, provision and scale clusters, or patch and update
each server. You do not have to worry about task placement strategies, such as binpacking
or host spread, and tasks are automatically balanced across Availability Zones. Fargate
manages the availability of containers for you. You define your application’s requirements,

850 Chapter 16 ■ Optimization

select Fargate as your launch type in the AWS Management Console or AWS CLI, and
Fargate takes care of all of the scaling and infrastructure management required to run
your containers.

For developers who require more granular, server-level control over the infrastructure,
Amazon ECS EC2 launch type enables you to manage a cluster of servers and schedule
placement of containers on the servers.

Using Serverless Approaches
Serverless approaches are ideal for applications whereby load can vary dynamically. Using
a serverless approach means no compute costs are incurred when there is no user traffic,
while still offering instant scale to meet high demand, such as a flash sale on an ecommerce
site or a social media mention that drives a sudden wave of traffic. All of the actual hard-
ware and server software are handled by AWS.

Benefits gained by using AWS Serverless services include the following:

 ■ No need to manage servers

 ■ No need to ensure application fault tolerance, availability, and explicit fleet
management to scale to peak load

 ■ No charge for idle capacity

You can focus on product innovation and rapidly construct these applications:

 ■ Amazon S3 offers a simple hosting solution for static content.

 ■ AWS Lambda, with Amazon API Gateway, supports dynamic API requests using
functions.

 ■ Amazon DynamoDB offers a simple storage solution for session and per-user state.

 ■ Amazon Cognito provides a way to handle user registration, authentication, and access
control to resources.

 ■ AWS Serverless Application Model (AWS SAM) can be used by developers to describe
the various elements of an application.

 ■ AWS CodeStar can set up a CI/CD toolchain with a few clicks.

Compared to traditional infrastructure approaches, an application is also often less
expensive to develop, deliver, and operate when it has been architected in a serverless fash-
ion. The serverless application model is generic, and it applies to almost any type of appli-
cation from a startup to an enterprise.

Here are a few examples of application use cases:

 ■ Web applications and websites

 ■ Mobile backends

 ■ Media and log processing

Optimizing Storage 851

 ■ IT automation

 ■ AWS IoT Core backends

 ■ Web hooked systems

 ■ Chatbots

 ■ Clickstream and other near real-time streaming data processes

Optimize Lambda Usage
AWS Lambda provides the cloud-logic layer, and with Lambda you can run code for virtu-
ally any type of application or backend service, all with zero administration. A variety of
events can trigger Lambda functions, enabling developers to build reactive, event-driven
systems without managing infrastructure. When there are multiple, simultaneous events,
Lambda scales by running more copies of the function in parallel, responding to each indi-
vidual trigger. As a result, there is no possibility of an idle server or container. The problem
of wasted infrastructure expenditures is eliminated by design in architectures that use
Lambda functions.

Serverless applications are typically composed of one or more Lambda functions; there-
fore, monitor the execution duration and configuration of your functions closely.

Consider the following recommendations for optimizing Lambda functions:

Optimal memory size The memory usage for your function is determined per invoca-
tion and can be viewed in CloudWatch Logs. By analyzing the Max Memory Used: field in
the Invocation report, you can determine whether your function needs more memory or
whether you over-provisioned your function’s memory size.

Language runtime performance If your application use case is both latency-sensitive and
susceptible to incurring the initial invocation cost frequently (spiky traffic or infrequent
use), then recommend one of the interpreted languages, such as Node.js or Python.

Optimizing code Much of the application performance depends on your logic and depen-
dencies. Pay attention to reusing the objects and using global/static variables. Keep live
or reuse HTTP/session connections, and use default network environments as much as
possible.

Optimizing Storage
AWS storage services are optimized for different storage scenarios—there is no single data
storage option that is ideal for all workloads. When evaluating your storage requirements,
consider data storage options for each workload separately.

To optimize the storage, you must first understand the performance levels of your work-
loads. Conduct a performance analysis to measure input/output operations per second,
throughput, quick access to your data, durability, sensitivity, size, and budget.

852 Chapter 16 ■ Optimization

Amazon offers three broad categories of storage services: object, block, and file storage.
Each offering is designed to meet a different storage requirement, which gives you flexibility
to find the solution that works best for your storage scenarios.

Object Storage
Amazon Simple Storage Service (Amazon S3) is highly durable, general-purpose object
storage that works well for unstructured datasets such as media content.

There are multiple tiers of storage: hot, warm, or cold data. In terms of pricing, the
colder the data, the cheaper it is to store, and the costlier it is to access when needed.

Standard (STANDARD) This is the best storage option for data that you frequently
access. Amazon S3 delivers low latency and high throughput, and it is ideal for use cases
such as cloud applications, dynamic websites, content distribution, gaming, and data
analytics.

Amazon S3 Standard – Infrequent Access (STANDARD_IA) Use this storage option for
data that you access less frequently, such as long-term backups and disaster recovery. It
offers cheaper storage over time, but higher charges to retrieve or transfer data.

Amazon S3 Intelligent-Tiering (INTELLIGENT_TIERING) This storage class is designed
to optimize the cost by moving data to the most cost-effective access tier automatically
without degrading the performance of the application. If an object in the infrequent access
tier is accessed, it is automatically moved back to the frequent access tier.

Amazon S3 One Zone-Infrequent Access (ONEZONE_IA) This storage class provides
a lower-cost option for infrequently accessed data that requires rapid access. The data is
stored in only one Availability Zone (AZ), and it saves up to 20 percent of storage costs as
compared to STANDARD_IA. Use this option for storing secondary backups of on-prem-
ises data or data that can be easily recreated.

Amazon S3 Glacier (GLACIER) This option is designed for long-term storage of infre-
quently accessed data, such as end-of-lifecycle, compliance, or regulatory backups.
Different methods of data retrieval are available at various speeds and cost. Retrieval can
take from a few minutes to several hours.

Amazon S3 Glacier Deep Archive (DEEP_ARCHIVE) This is the lowest-cost class
designed for long-term retention of rarely accessed data. Data will be retained for 7–10
years and may be accessed about once or twice a year. When you need the data, you can
retrieve it within 12 hours. This storage is ideal for maintaining backups of historical regu-
latory or compliance data and disaster recovery backups.

Block Storage
Amazon Elastic Block Store (Amazon EBS) volumes provide a durable block-storage
option for use with Amazon EC2 instances. Use Amazon EBS for data that requires

Optimizing Storage 853

long-term persistence and quick access at assured levels of performance. There are two
types of block storage: solid-state drive (SSD) storage and hard disk drive (HDD) storage.

SSD storage is optimized for transactional workloads wherein performance is closely
tied to IOPS. Choose from two SSD volume options:

General Purpose SSD (gp2) Designed for general use and offers a balance between cost
and performance.

Provisioned IOPS SSD (io1) Best for latency-sensitive workloads that require specific
minimum-guaranteed IOPS. With io1 volumes, you pay separately for Provisioned IOPS,
so unless you need high levels of Provisioned IOPS, gp2 volumes are a better match at
lower cost.

HDD storage is designed for throughput-intensive workloads, such as data warehouses
and log processing. There are two types of HDD volumes:

Throughput Optimized HDD (st1) Best for frequently accessed, throughput-intensive
workloads.

Cold HDD (sc1) Designed for less frequently accessed, throughput-intensive workloads.

File Storage
Amazon Elastic File System (Amazon EFS) provides simple, scalable file storage for use
with Amazon EC2 instances. Amazon EFS supports any number of instances at the same
time. Amazon EFS is designed for workloads and applications such as big data, media-
processing workflows, content management, and web serving.

Amazon S3 and Amazon EFS allocate storage based on your usage, and you pay for
what you use. However, for EBS volumes, you are charged for provisioned (allocated) stor-
age regardless of whether you use it or not. The key to keeping storage costs low without
sacrificing required functionality is to maximize the use of Amazon S3 when possible and
use more expensive EBS volumes with provisioned I/O only when application requirements
demand it.

Optimize Amazon S3
Perform analysis on data access patterns, create inventory lists, and configure lifecycle
policies. Identifying the right storage class and moving less frequently accessed Amazon S3
data to cheaper storage tiers yields considerable savings. For example, by moving data from
the STANDARD to STANDARD_IA storage class, you can save up to 60 percent (on a
per-gigabyte basis) of Amazon S3 pricing. By moving data that is at the end of its lifecycle
and accessed on rare occasions from Amazon S3 Glacier, you can save up to 80 percent of
Amazon S3 pricing.

Storage Management Tools/Features
The following sections detail some of the tools that help to determine when to transition
data to another storage class.

854 Chapter 16 ■ Optimization

Cost Allocation S3 Bucket Tags

To track the storage cost or other criteria for individual projects or groups of projects, label
your Amazon S3 buckets using cost allocation tags. A cost allocation tag is a key-value
pair that you associate with an S3 bucket. To manage storage data most effectively, you can
use these tags to categorize your S3 objects and filter on these tags in your data lifecycle
policies.

Amazon S3 Analytics: Storage Class Analysis

Use this feature to analyze storage access patterns to help you decide when to transition
the right data to the right storage class. This feature observes data access patterns to help
you determine when to transition less frequently accessed STANDARD storage to the
STANDARD_IA storage class.

After storage class analysis observes the infrequent access patterns of a filtered set of
data over a period of time, you can use the analysis results to help you improve your life-
cycle policies. You can configure storage class analysis to analyze all the objects in a bucket.
Alternatively, you can configure filters to group objects together for analysis by common
prefix (that is, objects that have names that begin with a common string), by object tags,
or by both prefix and tags. You’ll most likely find that filtering by object groups is the best
way to benefit from storage class analysis.

You can use the Amazon S3 console, the s3:PutAnalyticsConfiguration REST API, or
the equivalent from the AWS CLI or AWS SDKs to configure storage class analysis.

Amazon S3 Inventory

This tool audits and reports on the replication and encryption status of your S3 objects
on a weekly or monthly basis. This feature provides CSV output files that list objects and
their corresponding metadata, and it lets you configure multiple inventory lists for a single
bucket, organized by different Amazon S3 metadata tags. You can also query Amazon S3
inventory through standard SQL by using Amazon Athena, Amazon Redshift Spectrum,
and other tools, such as Presto, Apache Hive, and Apace Spark.

Amazon CloudWatch

Amazon S3 can also publish storage, request, and data transfer metrics to Amazon
CloudWatch. Storage metrics are reported daily, are available at one-minute intervals for
granular visibility, and can be collected and reported for an entire bucket or a subset of
objects (selected via prefix or tags).

Use Amazon S3 Select
Amazon S3 Select enables applications to retrieve only a subset of data from an object by
using simple SQL expressions. By using Amazon S3 Select to retrieve only the data needed
by your application, you can achieve drastic performance increases—in many cases, you
can get as much as a 400 percent improvement.

Following is a Python sample code snippet that shows how to retrieve columns from an
object containing data in CSV format. This code snippet retrieves the city and airport code,

Optimizing Storage 855

where country name is similar to “United States.” If you have column headers and you set
the FileHeaderInfo to Use, you can identify columns by name in the SQL expression.

result = s3.select_object_content(
 Bucket=example-bucket-us-west-2',
 Key='sample-data/airportCodes.csv',
 ExpressionType='SQL',
 Expression="select s.city, s.code from s3object s where" \
 "s.\"Country (Name)\" like '%United States%'",
 InputSerialization = {'CSV': {"FileHeaderInfo": "Use"}},
 OutputSerialization = {'CSV': {}},
:

Use Amazon Glacier Select
Amazon Glacier Select unlocks an opportunity to query your archived data easily. With
Glacier Select, you can filter directly against an Amazon S3 Glacier object by using stan-
dard SQL statements.

It works like any other retrieval job, except for having an additional set of parameters
(SelectParameters) that you can pass in an initiate job request.

The following is an example of a Python code snippet that shows how to pass an SQL
expression under SelectParameters:

jobParameters = {
 "Type": "select", "ArchiveId": "ID",
 "Tier": "Expedited",
 "SelectParameters": {
 "InputSerialization": {"csv": {}},
 "ExpressionType": "SQL",
 "Expression": "SELECT * FROM archive WHERE _5='498960'",
 "OutputSerialization": {
 "csv": {}
 }
 }

With both Amazon S3 Select and Glacier Select, you can lower your costs and uncover
more insights from your data, regardless of which storage tier it is in.

Optimize Amazon EBS
With Amazon EBS, you are paying for provisioned capacity and performance—even if the
volume is unattached or has low write activity. To optimize storage performance and costs
for Amazon EBS, monitor volumes periodically to identify ones that are unattached or
appear to be underutilized or overutilized, and adjust provisioning to match actual usage.

856 Chapter 16 ■ Optimization

Check Configuration
Follow these configuration guidelines

 ■ To achieve the best performance consistently, launch instances as EBS optimized. For
instances that are not EBS-optimized by default, you can enable EBS optimization
when you launch the instances or enable EBS optimization after the instances are
running.

To enable this feature, you can use either the Amazon EC2 console or AWS Tools.
For AWS CLI, use ebs-optimized with the command run-instances to enable EBS
optimization when launching and with the command modify-instance-attribute to
enable EBS optimization for a running instance.

 ■ Choose an EBS-optimized instance that provides more dedicated EBS throughput
than your application needs; otherwise, the Amazon EBS to Amazon EC2 connection
becomes a performance bottleneck.

 ■ New EBS volumes receive their maximum performance the moment that they are
available and do not require initialization. However, storage blocks on volumes that
were restored from snapshots must be initialized before you can access the block. This
preliminary action takes time and can cause a significant increase in the latency of an
I/O operation the first time each block is accessed.

 ■ To achieve a higher level of performance for a file system than you can provision
on a single volume, create a RAID 0 (zero) array. Consider using RAID 0 when I/O
performance is more important than fault tolerance. For example, you could use it with
a heavily used database where data replication is already set up separately.

Use Monitoring Tools
AWS offers tools that help you optimize block storage.

Amazon CloudWatch

Amazon CloudWatch automatically collects a range of data points for EBS volumes, and
you can then set alarms on volume behavior.

Consider the following important metrics:

BurstBalance When your burst bucket is depleted, volume I/O credits (for gp2 volumes)
or volume throughput credits (for st1 and sc1 volumes) are throttled to the baseline. Check
the BurstBalance value to determine whether your volume is being throttled for this
reason.

VolumeQueueLength If your I/O latency is higher than you require, check VolumeQueueLength
to make sure that your application is not trying to drive more IOPS than you have provi-
sioned. If your application requires a greater number of IOPS than your volume can pro-
vide, consider using a larger gp2 volume with a higher base performance level or an io1
volume with more Provisioned IOPS to achieve faster latencies.

VolumeReadBytes, VolumeWriteBytes, VolumeReadOps, VolumeWriteOps HDD-backed
st1 and sc1 volumes are designed to perform best with workloads that take advantage of

Optimizing Storage 857

the 1,024 KiB maximum I/O size. To determine your volume’s average I/O size, divide
VolumeWriteBytes by VolumeWriteOps. The same calculation applies to read operations. If
the average I/O size is below 64 KiB, increasing the size of the I/O operations sent to an st1
or sc1 volume should improve performance.

AWS Trusted Advisor

AWS Trusted Advisor is another way for you to analyze your infrastructure to identify
unattached, underutilized, and overutilized EBS volumes.

Delete Unattached Amazon EBS Volumes
To find unattached EBS volumes, look for volumes that are available, which indicates that
they are not attached to an Amazon EC2 instance. You can also look at network through-
put and IOPS to determine whether there has been any volume activity over the previous
two weeks, or you can look up the last time the EBS volume was attached. If the volume is
in a nonproduction environment, hasn’t been used in weeks, or hasn’t been attached in a
month, there is a good chance that you can delete it.

Before deleting a volume, store an Amazon EBS snapshot (a backup copy of an EBS vol-
ume) so that the volume can be quickly restored later if needed.

Resize or Change the EBS Volume Type
Identify volumes that are underutilized and downsize them or change the volume type.
Monitor the read/write access of EBS volumes to determine whether throughput is low. If
you have a current-generation EBS volume attached to a current-generation Amazon EC2
instance type, you can use the elastic volumes feature to change the size or volume type or
(for an SSD io1 volume) adjust IOPS performance without detaching the volume.

Follow these tips:

 ■ For General Purpose SSD gp2 volumes, optimize for capacity so that you’re paying
only for what you use.

 ■ With Provisioned IOPS SSD io1 volumes, pay close attention to IOPS utilization rather
than throughput, since you pay for IOPS directly. Provision 10–20 percent above
maximum IOPS utilization.

 ■ You can save by reducing Provisioned IOPS or by switching from a Provisioned IOPS
SSD io1 volume type to a General Purpose SSD gp2 volume type.

 ■ If the volume is 500 GB or larger, consider converting to a Cold HDD sc1 volume to
save on your storage rate.

Delete Stale Amazon EBS Snapshots
If you have a backup policy that takes EBS volume snapshots daily or weekly, you will
quickly accumulate snapshots. Check for stale snapshots that are more than 30 days old
and delete them to reduce storage costs. Deleting a snapshot has no effect on the volume.

858 Chapter 16 ■ Optimization

Optimizing Data Transfer
Optimizing data transfer ensures that you minimize data transfer costs. Review your
user presence if global or local and how the data gets located in order to reduce the
latency issues.

 ■ Use Amazon CloudFront, a global content delivery network (CDN), to locate data
closer to users. It caches data at edge locations across the world, which reduces the
load on your resources. By using CloudFront, you can reduce the administrative effort
in delivering content automatically to large numbers of users globally, with minimum
latency. Depending on your application types, distribute your entire website, including
dynamic, static, streaming, and interactive content through CloudFront instead of
scaling out your infrastructure.

 ■ Amazon S3 transfer acceleration enables fast transfer of files over long distances
between your client and your S3 bucket. Transfer acceleration leverages Amazon
CloudFront globally distributed edge locations to route data over an optimized
network path. For a workload in an S3 bucket that has intensive GET requests, you
should use Amazon S3 with CloudFront.

 ■ When uploading large files, use multipart uploads with multiple parts uploading at
once to help maximize network throughput. Multipart uploads provide the following
advantages:

 ■ Improved throughput—You can upload parts in parallel to improve throughput.

 ■ Quick recovery from any network issues—Smaller part size minimizes the impact
of restarting a failed upload due to a network error.

 ■ Pause and resume object uploads—You can upload object parts over time. After
you initiate a multipart upload, there is no expiry; you must explicitly complete or
abort the multipart upload.

 ■ Begin an upload before you know the final object size—You can upload an object
as you are creating it.

 ■ Using Amazon Route 53, you can reduce latency for your users by serving their
requests from the AWS Region for which network latency is lowest. Amazon Route 53
latency-based routing lets you use Domain Name System (DNS) to route user requests
to the AWS Region that will give your users the fastest response.

Caching
Caching improves application performance by storing frequently accessed data items in
memory so that they can be retrieved without accessing the primary data store. Cached
information might include the results of I/O-intensive database queries or the outcome of
computationally intensive processing.

Relational Databases and Amazon DynamoDB 859

When the result set is not found in the cache, the application can calculate it or retrieve
it from a database of expensive, slowly mutating third-party content and store it in the
cache for subsequent requests.

Amazon ElastiCache
Amazon ElastiCache is a web service that makes it easy to deploy, operate, and scale an
in-memory cache in the cloud. It supports two open-source, in-memory caching engines:
Memcached and Redis.

 ■ The Memcached caching engine is popular for database query results caching, session
caching, webpage caching, API caching, and caching of objects such as images, files,
and metadata. Memcached is also a great choice to store and manage session data for
internet-scale applications in cases wherein persistence is not critical.

 ■ Redis caching engine is a great choice for implementing a highly available in-memory
cache to decrease data access latency, increase throughput, and ease the load off your
relational or NoSQL database and application. Redis has disk persistence built in, and
you can use it for long-lived data.

Lazy loading is a good caching strategy whereby you populate the cache only when an
object is requested by the application, keeping the cache size manageable. Apply a lazy
caching strategy anywhere in your application where you have data that is going to be read
often but written infrequently. In a typical web or mobile app, for example, a user’s profile
rarely changes but is accessed throughout the application.

Amazon DynamoDB Accelerator (DAX)
Amazon DynamoDB Accelerator (DAX) is a fully managed, highly available, in-memory cache
for Amazon DynamoDB. This feature delivers performance improvements from milliseconds
to microseconds, for high throughput. DAX adds in-memory acceleration to your DynamoDB
tables without requiring you to manage cache invalidation, data population, or clusters.

DAX is ideal for applications that require the fastest possible response time read opera-
tions but that are also cost-sensitive and require repeated reads against a large set of data.
For example, consider an ecommerce system that has a one-day sale on a popular product
that would sharply increase the demand or a long-running analysis of regional weather
data that could temporarily consume all of the read capacity in a DynamoDB table.
Naturally, these would negatively impact other applications that must access the same data.

Relational Databases and Amazon
DynamoDB
Traditional relational database management system (RDBMS) platforms store data in a
normalized relational structure that reduces hierarchical data structures to a set of com-
mon elements that are stored across multiple tables.

860 Chapter 16 ■ Optimization

RDBMS platforms use an ad hoc query language (generally a flavor of SQL) to generate
or materialize views of the normalized data to support application-layer access patterns.

A relational database system does not scale well for the following reasons:

 ■ It normalizes data and stores it on multiple tables that require multiple queries to
write to disk.

 ■ It generally incurs the performance costs of an Atomicity, Consistency, Isolation,
Durability (ACID)–compliant transaction system.

 ■ It uses expensive joins to reassemble required views of query results.

For this reason, when your business requires a low-latency response to high-traffic que-
ries, taking advantage of a NoSQL system generally makes technical and economic sense.
Amazon DynamoDB helps solve the problems that limit relational system scalability by
avoiding them.

DynamoDB scales well for these reasons:

 ■ Schema flexibility lets Amazon DynamoDB store complex hierarchical data within
a single item.

 ■ Composite key design lets it store related items close together on the same table.

The following are some recommendations for maximizing performance and minimizing
throughput costs when working with Amazon DynamoDB.

Apply NoSQL Design
NoSQL design requires a different mind-set than RDBMS design. For an RDBMS, you
can create a normalized data model without thinking about access patterns. You can then
extend it later when new questions and query requirements arise.

NoSQL design is different:

 ■ For DynamoDB, by contrast, design your schema after you know the questions it needs
to answer. Understanding the business problems and the application use cases up front
is essential.

 ■ Maintain as few tables as possible in an Amazon DynamoDB application. Most well-
designed applications require only one table.

Keep Related Data Together
Keeping related data in proximity has a major impact on cost and performance. Instead
of distributing related data items across multiple tables, keep related items in your NoSQL
system as close together as possible.

Keep Fewer Tables
In general, maintain as few tables as possible in an Amazon DynamoDB application. Most
well-designed applications require only one table, unless there is a specific reason for using
multiple tables.

Relational Databases and Amazon DynamoDB 861

Distribute Workloads Evenly
The optimal usage of a table’s provisioned throughput depends on the workload patterns of
individual items and the partition key design.

Designing Partition Keys
The more distinct partition key values that your workload accesses, the more those requests
are spread across the partitioned space. In general, you use your provisioned throughput
more efficiently as the ratio of partition key values accessed to the total number of partition
key values increases.

Table 16.1 provides a comparison of the provisioned throughput efficiency of some com-
mon partition key schemas.

TA b le 16 .1 Samples of Partition Key Distributions

Partition Key Value Uniformity

User ID, where the application has many users Good

Status code, where there are only a few possible status codes Bad

Item creation date, rounded to the nearest time period (for example, day,
hour, or minute)

Bad

Device ID, where each device accesses data at relatively similar intervals Good

Device ID, where even if there are many devices being tracked, one is by
far more popular than all the others

Bad

If a single table has only a small number of partition key values, consider distributing
your write operations across more distinct partition key values. Structure the primary key
elements to avoid one “hot” (heavily requested) partition key value that slows the overall
performance.

For example, consider a table with a composite primary key. The partition key repre-
sents the item’s creation date, rounded to the nearest day. The sort key is an item identifier.
On a given day, say 2014-07-09, all of the new items are written to that single partition key
value (and corresponding physical partition).

If the table fits entirely into a single partition (considering growth of your data over
time) and if your application’s read and write throughput requirements don’t exceed the
read and write capabilities of a single partition, your application won’t encounter any unex-
pected throttling because of partitioning.

Implementing Write Sharding
One better way to distribute writes across a partition key space in DynamoDB is to expand
the space. One strategy for distributing loads more evenly across a partition key space is

862 Chapter 16 ■ Optimization

to add a random number or a calculated hash suffix to the end of the partition key values.
Then you can randomize the writes across the larger space. A randomizing strategy can
greatly improve write throughput.

For example, in the case of a partition key that represents today’s date in the Order
table, suppose that each item has an accessible OrderId attribute and that you most often
need to find items by OrderId in addition to date. Before your application writes the item to
the table, it could calculate a hash suffix based on the OrderId (similar to OrderId, modulo
200, + 1) and append it to the partition key date. The calculation might generate a number
between 1 and 200 that is fairly evenly distributed, similar to what the random strategy
produces.

With this strategy, the writes are spread evenly across the partition key values and thus
across the physical partitions. You can easily perform a GetItem operation for a particular
item and date because you can calculate the partition key value for a specific OrderId value.

Upload Data Efficiently
Typically, when you load data from other data sources, Amazon DynamoDB partitions
your table data on multiple servers. You get better performance if you upload data to all the
allocated servers simultaneously.

For example, suppose that you want to upload user messages to a DynamoDB table
that uses a composite primary key with UserID as the partition key and MessageID as the
sort key.

You can distribute your upload work by using the sort key to load one item from each
partition key value, then another item from each partition key value, and so on.

Every upload in this sequence uses a different partition key value, keeping more
DynamoDB servers busy simultaneously and improving your throughput performance.

Use Sort Keys for Version Control
Many applications need to maintain a history of item-level revisions for audit or compli-
ance purposes and to be able to retrieve the most recent version easily.

For each new item, create two copies of the item. One copy should have a version-
number prefix of zero (for example, v0) at the beginning of the sort key, and one should
have a version-number prefix of one (for example, v001_).

Every time the item is updated, use the next higher version prefix in the sort key of
the updated version and copy the updated contents into the item with the version prefix
of zero. This means that the latest version of any item can be located easily by using the
zero prefix.

Keep the Number of Indexes to a Minimum
Create secondary indexes on attributes that are queried often. Indexes that are seldom used
contribute to increased storage and I/O costs without improving application performance.

Relational Databases and Amazon DynamoDB 863

Choose Projections Carefully
Because secondary indexes consume storage and provisioned throughput, keep the size
of the index as small as possible. Also, the smaller the index, the greater the performance
advantage compared to querying the full table. Project only the attributes that you regularly
request. Every time you update an attribute that is projected in an index, you incur the
extra cost of updating the index as well.

Optimize Frequent Queries to Avoid Fetches
To get the fastest queries with the lowest possible latency, project all of the attributes that
you expect those queries to return. In particular, if you query a local secondary index for
attributes that are not projected, Amazon DynamoDB automatically fetches those attri-
butes from the table, which requires reading the entire item from the table. This introduces
latency and additional I/O operations that you can avoid.

Use Sparse Indexes
For any item in a table, Amazon DynamoDB writes a corresponding index entry only if the
index sort key value is present in the item. If the sort key doesn’t appear in every table item,
the index is said to be sparse.

Sparse indexes are useful for queries over a small subsection of a table. It’s faster and less
expensive to query that index than to scan the entire table.

For example, suppose that you have a table in which you store all of your customer
orders with the following key attributes:

Partition key: CustomerId

Sort key: OrderId

To track open orders, you can insert the OrderOpenDate attribute set to the date on
which each order was placed and then delete it after the order is fulfilled. If you then create
an index on CustomerId (partition key) and OrderOpenDate (sort key), only those orders
with OrderOpenDate defined appear in it. That way, when you query the sparse index, the
items returned are the orders that are unfulfilled and sorted by the date on which each
order was placed.

Avoid Scans as Much as Possible
In general, Scan operations are less efficient than other operations in DynamoDB.
A Scan operation scans the entire table or secondary index. It then filters out values to
provide the result you want.

If possible, avoid using a Scan operation on a large table or index with a filter that
removes many results. Also, as a table or index grows, the Scan operation slows down. The
Scan operation examines every item for the requested values and can use up the provisioned
throughput for a large table or index in a single operation.

864 Chapter 16 ■ Optimization

This usage of capacity units by a scan prevents other potentially more important
requests for the same table from using the available capacity units. As a result, you’ll likely
get a ProvisionedThroughputExceeded exception for those requests.

For faster response times, design your tables and indexes so that your applications
can use Query instead of Scan. (For tables, you can also consider using the GetItem and
APIs.) GetItem is highly efficient because it provides direct access to the physical loca-
tion of the item.

Monitoring Costs
When you measure and monitor your users and applications and combine the data you col-
lect with data from AWS monitoring tools, you can perform a gap analysis that tells you
how closely aligned your system utilization is to your requirements. By working continually
to minimize this utilization gap, you can ensure that your systems are cost effective.

Over time, you can continue to reduce cost with continuous monitoring and tagging.
Similar to application development, cost optimization is an iterative process. Because your
application and its usage will evolve over time and because AWS iterates frequently and
regularly releases new options, it is important to evaluate your solution continuously.

Cost Management Tools
AWS provides tools to help you identify those cost-saving opportunities and keep your
resources right-sized. Use these tools to help you access, organize, understand, control, and
optimize your costs.

AWS Trusted Advisor
AWS Trusted Advisor is an online tool that provides you with real-time guidance to help
you provision your resources following AWS best practices.

Whether you’re establishing new workflows or developing applications, or as part of
ongoing improvements, take advantage of the recommendations provided by Trusted
Advisor on a regular basis. By reviewing the recommendations, you can look for opportuni-
ties to save money.

Here are some Trusted Advisor checks that help you determine how to reduce your bill:

 ■ Low utilization of Amazon EC2 instances

 ■ Idle resources, such as load balancers and Amazon RDS DB instances

 ■ Underutilized Amazon EBS volumes and Amazon Redshift clusters

 ■ Unassociated Elastic IP addresses

 ■ Optimization, lease expiration—Amazon Reserved Instances

 ■ Inefficiently configured Amazon Route 53 latency record sets

Monitoring Costs 865

AWS Cost Explorer
Use the AWS Cost Explorer tool to dive deeper into your cost and usage data to identify
trends, pinpoint cost drivers, and detect anomalies. It includes Amazon EC2 usage reports,
which let you analyze the cost and usage of your Amazon EC2 instances over the last 13
months. You can analyze your cost and usage data in aggregate (such as total costs and
usage across all accounts) down to granular details (for example, m2.2xlarge costs within
the Dev account tagged “project: GuardDuty”).

AWS Cost Explorer built-in reports include the following:

Monthly Costs by AWS Service Allows you to visualize the costs and usage associated
with your top five cost-accruing AWS services and gives you a detailed breakdown on all
services in the table view. The reports let you adjust the time range to view historical data
going back up to 12 months to gain an understanding of your cost trends.

Amazon EC2 Monthly Cost and Usage Lets you view all AWS costs over the past two
months, in addition to your current month-to-date costs. From there, you can drill down
into the costs and usage associated with particular linked accounts, regions, tags, and more.

Monthly Costs by Linked Account Allows you to view the distribution of costs across
your organization.

Monthly Running Costs Provides an overview of all running costs over the past three
months and provides forecasted numbers for the coming month with a corresponding con-
fidence interval. This report gives you good insight into how your costs are trending and
helps you plan ahead.

AWS Cost Explorer Reserved Instance Reports include the following:

RI Utilization Report Visualize the degree to which you are using your existing resources
and identify opportunities to improve your Reserved Instance cost efficiencies. The report
shows how much you saved by using Reserved Instances, how much you overspent on
Reserved Instances, and your net savings from purchasing Reserved Instances during the
selected time range. This helps you to determine whether you have purchased too many
Reserved Instances.

RI Coverage Report Discover how much of your overall instance usage is covered by
Reserved Instances so that you can make informed decisions about when to purchase or
modify a Reserved Instance to ensure maximum coverage. These show how much you
spent on On-Demand Instances and how much you might have saved had you purchased
more reservations. The report enables you to determine whether you have under-purchased
Reserved Instances.

AWS Cost Explorer API
Use AWS Cost Explorer API to query your cost and usage data programmatically (using
AWS CLI or AWS SDKs). You can query for aggregated data such as total monthly costs or
total daily usage. You can also query for granular data, such as the number of daily write oper-
ations for Amazon DynamoDB database tables in your production environment. All of the AWS

866 Chapter 16 ■ Optimization

SDKs greatly simplify the process of signing requests and save you a significant amount of
time when compared with using the AWS Cost Explorer API.

You can access your Amazon EC2 Reserved Instance purchase recommendations pro-
grammatically through the AWS Cost Explorer API. Recommendations for Reserved
Instance purchases are calculated based on your past usage and indicate opportunities for
potential cost savings.

The following example retrieves recommendations for Partial Upfront Amazon EC2
instances with a three-year term based on the last 60 days of Amazon EC2 usage.

Here’s the AWS CLI command:

aws ce get-reservation-purchase-recommendation --service "Amazon Redshift"
--lookback-period-in-days SIXTY_DAYS --term-in-years THREE_YEARS --payment-
option PARTIAL_UPFRONT

Here’s the output:

{
 "Recommendations": [],
 "Metadata": {
 "GenerationTimestamp": "2018-08-08T15:20:57Z",
 "RecommendationId": "00d59dde-a1ad-473f-8ff2-iexample3330b"
 }

AWS Budgets
With AWS Budgets, you can set custom budgets that alert you when your costs or usage
exceed (or are forecasted to exceed) your budgeted amount. You can also use AWS Budgets
to set Reserved Instance utilization or coverage targets and receive alerts when your utiliza-
tion drops below the threshold you define. Reserved Instance alerts support Amazon EC2,
Amazon RDS, Amazon Redshift, and Amazon ElastiCache reservations.

Budgets can be tracked at the monthly, quarterly, or yearly level, and you can customize
the start and end dates. You can further refine your budget to track costs associated with
multiple dimensions, such as AWS service, linked account, tag, and others. You can send
budget alerts through email or Amazon Simple Notification Service (Amazon SNS) topic.
For example, you can set notifications that alert you if you accrue 80, 90, and 100 percent
of your actual budgeted costs in addition to a notification that alerts you if you are fore-
casted to exceed your budget.

AWS Cost and Usage Report
The AWS Cost and Usage Report tracks your AWS usage and provides estimated charges
associated with that usage. You can configure this report to present the data hourly or
daily. It is updated at least once a day until it is finalized at the end of the billing period.
The AWS Cost and Usage report gives you the most granular insight possible into your
costs and usage, and it is the source of truth for the billing pipeline. It can be used to
develop advanced custom metrics using business intelligence, data analytics, and third-
party cost optimization tools.

Monitoring Costs 867

The AWS Cost and Usage report is delivered automatically to an S3 bucket that you
specify, and it can be downloaded directly from there (standard Amazon S3 storage rates
apply). It can also be ingested into Amazon Redshift or uploaded to Amazon QuickSight.

Amazon CloudWatch
Amazon CloudWatch is a monitoring service for AWS Cloud resources and the applica-
tions you run on AWS. You can use Amazon CloudWatch to collect and track metrics
and log files, set alarms, and automatically react to changes in your AWS resources. You
can create an alarm to perform one or more of the following actions based on the value
of the metric:

 ■ Automatically stop or terminate Amazon EC2 instances that have gone unused or
underutilized for too long

 ■ Stop your instance if it has an EBS volume as its root device

For example, you may run development or test instances and occasionally forget to shut
them off. You can create an alarm that is triggered when the average CPU utilization per-
centage has been lower than 10 percent for 24 hours, signaling that it is idle and no longer
in use. You can create a group of alarms that first sends an email notification to developers
whose instance has been underutilized for 8 hours and then terminates that instance if its
utilization has not improved after 24 hours.

Amazon CloudWatch Events deliver a near real-time stream of system events that
describe changes in AWS resources. Using simple rules, you can route each type of event
to one or more targets, such as Lambda functions, Amazon Kinesis streams, and Amazon
SNS topics.

AWS Cost Optimization Monitor
AWS Cost Optimization Monitor is an automated reference deployment solution that pro-
cesses detailed billing reports to provide granular metrics that you can search, analyze, and
visualize in a customizable dashboard. The solution uploads detailed billing report data
automatically to Amazon Elasticsearch Service (Amazon ES) for analysis and leverages its
built-in support for Kibana, enabling you to visualize the first batch of data as soon as it’s
processed.

The default dashboard is configured to show specific cost and usage metrics. All of
these metrics, as listed here, were selected based on best practices observed across AWS
customers:

 ■ Amazon EC2 Instances Running per Hour

 ■ Total Cost

 ■ Cost by Tag Key: Name

 ■ Cost by Amazon EC2 Instance Type

 ■ Amazon EC2 Elasticity

 ■ Amazon EC2 Hours per Dollar Invested

868 Chapter 16 ■ Optimization

Cost Optimization: Amazon EC2 Right Sizing
Amazon EC2 Right Sizing is an automated AWS reference deployment solution that uses
managed services to perform a right-sizing analysis and offer detailed recommendations for
more cost-effective instances. The solution analyzes two weeks of utilization data to pro-
vide detailed recommendations for right sizing your Amazon EC2 instances.

Monitoring Performance
After you have implemented your architecture, monitor its performance so that you can
remediate any issues before your customers are aware of them. Use monitoring metrics
to raise alarms when thresholds are breached. The alarm can trigger automated action to
work around any components with poor performance.

AWS provides tools that you can use to monitor the performance, reliability, and avail-
ability of your resources on the AWS Cloud.

Amazon CloudWatch
Amazon CloudWatch is essential to performance efficiency, which provides system-wide
visibility into resource utilization, application performance, and operational health.

You can create an alarm to monitor any Amazon CloudWatch metric in your account.
For example, you can create alarms on an Amazon EC2 instance CPU utilization, Elastic
Load Balancing request latency, Amazon DynamoDB table throughput, or Amazon SQS
queue length.

In the following example, AWS CLI is used to create an alarm to send an Amazon SNS
email message when CPU utilization exceeds 70 percent:

aws cloudwatch put-metric-alarm --alarm-name cpu-mon --alarm-description
"Alarm when CPU exceeds 70 percent" --metric-name CPUUtilization --namespace
AWS/EC2 --statistic Average --period 300 --threshold 70 --comparison-operator
GreaterThanThreshold --dimensions "Name=InstanceId,Value=i-12345678"
--evaluation-periods 2 --alarm-actions arn:aws:sns:us-east-
1:111122223333:MyTopic --unit Percent

Here are a few examples of when and how alarms are sent:

 ■ Sends an email message using Amazon SNS when the average CPU use of an Amazon
EC2 instance exceeds a specified threshold for consecutive specified periods

 ■ Sends an email when an instance exceeds 10 GB of outbound network traffic per day

 ■ Stops an instance and sends a text message (SMS) when outbound traffic exceeds 1 GB
per hour

 ■ Stops an instance when memory utilization reaches or exceeds 90 percent so that
application logs can be retrieved for troubleshooting

Summary 869

AWS Trusted Advisor
AWS Trusted Advisor inspects your AWS environment and makes recommendations that
help to improve the speed and responsiveness of your applications.

The following are a few Trusted Advisor checks to improve the performance of your
service. The Trusted Advisor checks your service limits, ensuring that you take advantage
of provisioned throughput, and monitors for overutilized instances:

 ■ Amazon EC2 instances that are consistently at high utilization can indicate optimized,
steady performance, but this check can also indicate that an application does not have
enough resources.

 ■ Provisioned IOPS (SSD) volumes that are attached to an Amazon EC2 instance that
is not Amazon EBS–optimized. Amazon EBS volumes are designed to deliver the
expected performance only when they are attached to an EBS-optimized instance.

 ■ Amazon EC2 security groups with a large number of rules.

 ■ Amazon EC2 instances that have a large number of security group rules.

 ■ Amazon EBS magnetic volumes (standard) that are potentially overutilized and might
benefit from a more efficient configuration.

 ■ CloudFront distributions for alternate domain names with incorrectly configured DNS
settings.

Some HTTP request headers, such as Date or User-Agent, significantly reduce the
cache hit ratio. This increases the load on your origin and reduces performance because
CloudFront must forward more requests to your origin.

Summary
In this chapter, you learned about the following:

 ■ Cost-optimizing practices

 ■ Right sizing your infrastructure

 ■ Optimizing using Reserved Instances, Spot Instances, and AWS Auto Scaling

 ■ Optimizing storage and data transfer

 ■ Optimizing using NoSQL database (Amazon DynamoDB)

 ■ Monitoring your costs and performance

 ■ Tools, such as AWS Trusted Advisor, Amazon CloudWatch, and AWS Budgets

Achieving an optimized system is a continual process. An optimized system uses all
the provisioned resources efficiently and achieves your business goal at the lowest price
point. Engineers must know the cost of deploying resources and how to architect for cost
optimization. Practice eliminating the waste and bring accountability in every step of the
build process. Use mandatory cost tags on all of your resources to gain precise insights into

870 Chapter 16 ■ Optimization

usage. Define IAM policies to enforce tag usage, and use tagging tools, such as AWS Config
and AWS Tag Editor, to manage tags. Be cost-conscious, reduce the usage by terminating
unused instances, and delete old snapshots and unused keys.

Right size your infrastructure by matching instance types and sizes, and set periodic
checks to ensure that the initial provision remains optimum as your business changes over
time. With Amazon EC2, you can choose the combination of instance types and sizes most
appropriate for your applications. Amazon RDS instances are also optimized for memory,
performance, and I/O.

Amazon EC2 Reserved Instances provide you with a significant discount (up to 75 percent)
compared to On-Demand Instance pricing. Using Convertible Reserved Instances, you can
change instance families, OS types, and tenancies while benefitting from Reserved Instance
pricing. Reserved Instance Marketplace allows you to sell the unused Reserved Instances or
buy them from other AWS customers, usually at lower prices and shorter terms. With size
flexibility, discounted rates for Amazon RDS Reserved Instances are automatically applied to
the usage of any size within the instance family.

Spot Instances provide an additional option for obtaining compute capacity at a reduced
cost and can be used along with On-Demand and Reserved Instances. Spot Fleets enable
you to launch and maintain the target capacity and to request resources automatically to
replace any that are disrupted or manually terminated. Using the termination notices and
persistent requests in your application design help to maintain continuity as the result of
interruptions.

AWS Auto Scaling automatically scales if your application experiences variable load and
uses one or more scalable resources, such as Amazon ECS, Amazon DynamoDB, Amazon
Aurora, Amazon EC2 Spot requests, and Amazon EC2 scaling groups. Predictive Scaling
uses machine learning models to forecast daily and weekly patterns. Amazon EC2 Auto
Scaling enables you to scale in response to demand and known load schedules. It supports the
provisioning of scale instances across purchase options, Availability Zones, and instance
families to optimize performance and cost.

Containers provide process isolation and improve the resource utilization. Amazon ECS
lets you easily build all types of containerized applications and launch thousands of con-
tainers in seconds with no additional complexity. With AWS Fargate technology, you can
manage containers without having to provision or manage servers. It enables you to focus
on building and running applications, not the underlying infrastructure.

AWS Lambda takes care of receiving events or client invocations and then instantiates
and runs the code. That means there’s no need to manage servers. Serverless services have
built-in automatic scaling, availability, and fault tolerance. These features allow you to
focus on product innovation and rapidly construct applications, such as web applications,
websites, web-hooked systems, chatbots, and clickstream.

AWS storage services are optimized to meet different storage requirements. Use the
Amazon S3 analytics feature to analyze storage access patterns to help you decide when to
transition the right data to the right storage class and to yield considerable savings. Monitor
Amazon EBS volumes periodically to identify ones that are unattached or appear to be
underutilized or overutilized, and adjust provisioning to match actual usage.

Exam Essentials 871

Optimizing data transfer ensures that you minimize data transfer costs. Use options
such as Amazon CloudFront, Amazon S3 transfer acceleration, and Amazon Route 53 to
let data reach Regions faster and reduce latency issues.

NoSQL database systems like Amazon DynamoDB use alternative models for data man-
agement, such as key-value pairs or document storage. DynamoDB enables you to offload
the administrative burdens of operating and scaling a distributed database so that you don’t
have to worry about hardware provisioning, setup and configuration, replication, software
patching, or cluster scaling. Follow best practices, such as distributing data evenly, effec-
tive partition and sort keys usage, efficient data scanning, and using sparse indexes for
maximizing performance and minimizing throughput costs, when working with Amazon
DynamoDB.

AWS provides several tools to help you identify those cost-saving opportunities and
keep your resources right-sized. AWS Trusted Advisor inspects your AWS environment to
identify idle and underutilized resources and provides real-time insight into service usage
to help you improve system performance and save money. Amazon CloudWatch collects
and tracks metrics, monitors log files, sets alarms, and reacts to changes in AWS resources
automatically. AWS Cost Explorer checks patterns in AWS spend over time, projects
future costs, identifies areas that need further inquiry, and provides Reserved Instance
recommendations.

Optimization is an ongoing process. Always stay current with the pace of AWS new
releases, and assess your existing design solutions to ensure that they remain cost-effective.

Exam Essentials
Know the importance of tagging. By using tags, you can assign metadata to AWS
resources. This tagging makes it easier to manage, search for, and filter resources in billing
reports and automation activities and when setting up access controls.

Know about various tagging tools and how to enforce the tag rules. With AWS Tag
Editor, you can add tags to multiple resources at once, search for the resources that you
want to tag, and then add, remove, or edit tags for the resources in your search results.
AWS Config identifies resources that do not comply with tagging policies. You can use IAM
policy conditions to force the usage of tags while creating the resources.

Know the fundamental practices in reducing the usage. Follow the best practices of cost
optimization in every step of your build process, such as turning off unused resources, spin-
ning up instances only when needed, and spinning them down when not in use. Use tag-
ging to help with the cost allocation. Use Amazon EC2 Spot Instances, Amazon EC2, and
Reserved Instances where appropriate, and use alerts, notifications, and cost-management
tools to stay on track.

Know the various usage patterns for right sizing. By understanding your business use
case and backing up the analysis with performance metrics, you can choose the most

872 Chapter 16 ■ Optimization

appropriate options, such as steady state; variable; predictable, but temporary; and develop-
ment, test, and production usage.

Know the various instance families for right sizing and the corresponding use cases.
Amazon EC2 provides a wide selection of instances to match capacity needs at the low-
est cost and comes with different options for CPU, memory, and network resources. The
families include General Purpose, Compute Optimized, Memory Optimized, Storage
Optimized, and Accelerated Computing.

Know Amazon EC2 Auto Scaling benefits and how this feature can make your solutions
more optimized and highly available. AWS Auto Scaling is a fast, easy way to optimize
the performance and costs of your applications. It makes smart scaling decisions based on
your preferences, automatically maintains performance even when your workloads are peri-
odic, unpredictable, and continuously changing.

Know how to create a single AWS Auto Scaling group to scale instances across different
purchase options. You can provision and automatically scale Amazon EC2 capacity across
different Amazon EC2 instance types, Availability Zones, and On-Demand, Reserved
Instances, and Spot purchase options in a single AWS Auto Scaling group. You can define
the desired split between On-Demand and Spot capacity, select which instance types work
for your application, and specify preferences for how Amazon EC2 Auto Scaling should
distribute the AWS Auto Scaling group capacity within each purchasing model.

Know how block, object, and file storages are different. Block storage is commonly dedi-
cated, low-latency storage for each host, and it is provisioned with each instance. Object
storage is developed for the cloud, has vast scalability, is accessed over the web, and is not
directly attached to an instance. File storage enables accessing shared files as a file system.

Know key CloudWatch metrics available to measure the Amazon EBS efficiency and how
to use them. CloudWatch metrics are statistical data that you can use to view, analyze,
and set alarms on the operational behavior of your volumes. Depending on your needs, set
alarms and response actions that correspond to each data point. For example, if your I/O
latency is higher than you require, check the metric VolumeQueueLength to make sure that
your application is not trying to drive more IOPS than you have provisioned. Review and
learn more about the available metrics that help optimize the block storage.

Know tools and features that help in efficient data transfer. Using Amazon CloudFront,
you can locate data closer to users and reduce administrative efforts to minimize data
transfer costs. Amazon S3 Transfer Acceleration enables fast data transfer over an opti-
mized network path. Use the multipart upload file option while uploading a large file to
improve network throughput.

Know key differences between RDBMS and NoSQL databases to design efficient solutions
using Amazon DynamoDB. Schema flexibility and the ability to store related items together
make DynamoDB a solution for solving problems associated with changing business needs
and scalability issues unlike relational databases.

Know the importance of distributing the data evenly when designing DynamoDB tables.
Use provisioned throughput more efficiently by making the partition key more distinct.
That way, data spreads throughout the provisioned space. Use the sort key with the

Exam Essentials 873

partition key to make a unique key to achieve better performance while uploading data
simultaneously.

Know the different ways to read data from DynamoDB tables to avoid scans. DynamoDB
provides Query and Scan actions to read data from a table and does not support table joins.
DynamoDB provides the GetItem action for retrieving an item by its primary key. GetItem is
highly efficient because it provides direct access to the physical location of the item. The scan
always scans the entire table and can consume large amounts of system resources.

Know the AWS Cost Management tools and their features. AWS provides tools to help
you manage, monitor, and, ultimately, optimize your costs. Use AWS Cost Explorer for
deeper dives into the cost drivers. Use AWS Trusted Advisor to inspect your AWS infra-
structure to identify overutilized or idle resources. AWS Budgets enables you to set custom
cost and usage budgets and receive alerts when budgets approach or exceed the limits.
There are a wide range of tools to explore, such as AWS Cost Optimization – Amazon EC2
Right Sizing, and monitoring tools to identify additional savings opportunities.

Know how the AWS Trusted Advisor features help in saving costs and improving the per-
formance of your solutions. AWS Trusted Advisor scans your AWS environment, com-
pares it to AWS best practices, and makes recommendations for saving money, improving
system performance, and more. Cost Optimization recommendations highlight unused
and underutilized resources. Performance recommendations help to improve the speed and
responsiveness of your applications.

Know how to evaluate the reporting details in the AWS Cost Explorer default reports.
Cost Explorer provides you with default reports: Cost and Usage reports and Reserved
Instance reports. Cost and Usage reports include your daily costs and monthly costs by service,
listing the top five services. These reports help you to determine whether you have purchased
too many Reserved Instances. The Reserved Instance Coverage reports show how many of
your instance hours are covered by Reserved Instances, how much you spent on On-Demand
Instances, and how much you might have saved had you purchased more reservations. This
enables you to determine whether you have under-purchased Reserved Instances.

Know how to extract recommendations using AWS Cost Explorer API. The Cost
Explorer API allows you to use either AWS CLI or SDKs to query your cost and usage
data. You can query for aggregated data, such as total monthly costs or total daily usage.
You can also query for granular data, such as the number of daily write operations for
DynamoDB database tables in your production environment.

Know all of the Amazon CloudWatch metrics and how to set alarms. With Amazon
CloudWatch, you can observe CPU utilization, network throughput, and disk I/O, and match
the observed peak metrics to a new and cheaper instance type. You choose a CloudWatch
metric and threshold for the alarm to watch. The alarm turns into the alarm state when the
metric breaches the threshold for a specified number of evaluation periods. Use the Amazon
CloudWatch console, AWS CLI, or AWS SDKs for creating or managing alarms.

Know how AWS Lambda integrates with other AWS serverless services to build cost-effective
solutions. AWS Lambda provides the cloud-logic layer and integrates seamlessly with the
other serverless services to build virtually any type of application or backend service. For

874 Chapter 16 ■ Optimization

example, Amazon S3 automatically triggers Lambda functions when an object is created,
copied, or deleted. Lambda functions can process Amazon SQS messages.

Resources to Review
AWS Well-Architected Framework (Whitepaper):

https://d1.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_
Framework.pdf

Cost Optimization Pillar–AWS Well-Architected Framework (Whitepaper):

https://d1.awsstatic.com/whitepapers/architecture/AWS-Cost-
Optimization-Pillar.pdf

Performance Efficiency Pillar–AWS Well-Architected Framework (Whitepaper):

https://d0.awsstatic.com/whitepapers/architecture/AWS-Performance-
Efficiency-Pillar.pdf

Cost Management in the AWS Cloud (Whitepaper):

https://d1.awsstatic.com/whitepapers/aws-tco-2-cost-management.pdf

Architecting for the Cloud–AWS Best Practices (Whitepaper):

https://d1.awsstatic.com/whitepapers/AWS_Cloud_Best_Practices.pdf

Creating a Culture of Cost Transparency and Accountability (Whitepaper):

https://d1.awsstatic.com/whitepapers/cost-optimization-transparency-
accountability.pdf

Maximizing Value with AWS (Whitepaper):

https://d1.awsstatic.com/whitepapers/total-cost-of-operation-benefits-
using-aws.pdf

Laying the Foundation: Setting Up Your Environment for Cost Optimization
(Whitepaper):

https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-
laying-the-foundation/introduction.html

Right Sizing: Provisioning Instances to Match Workloads (Whitepaper):

https://d1.awsstatic.com/whitepapers/cost-optimization-right-sizing.pdf

AWS Storage Optimization (Whitepaper):

https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-
storage-optimization/introduction.html

AWS Storage Services Overview (Whitepaper):

https://d1.awsstatic.com/whitepapers/AWS Storage Services
Whitepaper-v9.pdf

Resources to Review 875

Optimizing Enterprise Economics with Serverless Architectures (Whitepaper):

https://d0.awsstatic.com/whitepapers/optimizing-enterprise-economics-
serverless-architectures.pdf

Serverless Architectures with AWS Lambda (Whitepaper):

https://d1.awsstatic.com/whitepapers/serverless-architectures-with-
aws-lambda.pdf

Cloud Storage with AWS:

https://aws.amazon.com/products/storage/

Tagging Your Amazon EC2 Resources:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html

Amazon EC2 Instance Types:

https://aws.amazon.com/ec2/instance-types/

Amazon EC2 Reserved Instances:

https://aws.amazon.com/ec2/pricing/reserved-instances/

Amazon RDS Reserved Instances:

https://aws.amazon.com/rds/reserved-instances/

Amazon EC2 Spot Instances:

https://aws.amazon.com/ec2/spot/

AWS Auto Scaling:

https://aws.amazon.com/blogs/aws/category/auto-scaling/

Containers on AWS:

https://aws.amazon.com/containers/services/

Automatic Scaling for Spot Fleet:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet-
automatic-scaling.html

Using Amazon Aurora Auto Scaling with Aurora Replicas:

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/
Aurora.Integrating.AutoScaling.html

Amazon Elastic Container Service:

https://docs.aws.amazon.com/ecs/index.html#lang/en_us.

Best Practices for DynamoDB:

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/best-
practices.html

AWS Trusted Advisor:

https://aws.amazon.com/premiumsupport/technology/trusted-advisor/.

876 Chapter 16 ■ Optimization

 Analyzing Your Costs with Cost Explorer:

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/
ce-what-is.html

 Using Amazon CloudWatch Alarms:

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
AlarmThatSendsEmail.html

 AWS re:Invent 2014 | (ENT302) Cost Optimization on AWS (Video):

https://www.youtube.com/watch?v=mqY8xfKU5yE

 Exercises

 Before you begin this task, you must first create an SNS topic (name:
myHighCpuAlarm) and subscribe to it.

 e x e r C i S e 16 .1

Set up a Cpu usage Alarm using AWS Cli

 In this exercise, you will use the AWS CLI to create a CPU usage alarm that sends an email
message using Amazon SNS when the CPU usage exceeds 70 percent.

 1. Set up an SNS topic with the name myHighCpuAlarm and subscribe to it. For more
information, see this article:

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/US_
SetupSNS.html

 2. Create an alarm using the put-metric-alarm command as follows:

 aws cloudwatch put-metric-alarm \
 --alarm-name cpu-mon \
 --alarm-description "Alarm when CPU exceeds 70%" \
 --metric-name CPUUtilization \
 --namespace AWS/EC2 \
 -–statistic Average \
 --period 300 \
 --threshold 70 \
 --comparison-operator GreaterThanThreshold \
 --dimensions Name=InstanceId,Value=i-12345678 \
 --evaluation-periods 2 \
 --alarm-actions arn:aws:sns:us-east-1:111122223333:myHighCpuAlarm \
 --unit Percent

Exercises 877

 For Windows, replace the backslash (\) Unix continuation character at the
end of each line with a caret (̂).

 3. Test the alarm by forcing an alarm state change using the set-alarm-state
 command.

 a. Change the alarm state from INSUFFICIENT_DATA to OK .

 aws cloudwatch set-alarm-state --alarm-name cpu-mon --state-reason
"initializing" --state-value OK

 b. Change the alarm state from OK to ALARM .

 aws cloudwatch set-alarm-state –alarm-name cpu-mon --state-reason
"initializing" --state-value ALARM

 c. Check that you have received an email notifi cation about the alarm.

 Using AWS CLI, you created a CPU alarm that sends an email notifi cation when CPU
usage exceeds 70 percent. You tested it by manually changing its alarm state to ALARM .

 e x e r C i S e 16 . 2

modify Amazon ebS Optimization for a running instance

 In this exercise, you will use the Amazon EC2 console to enable the optimization for a
running instance by modifying its Amazon EBS optimized instance attribute.

 1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/ .

 2. In the navigation pane, click Instances , and select the instance.

 3. Choose Actions ➢ Instance State ➢ Stop .

 4. In the Confi rmation dialog box, choose Yes ➢ Stop .

 It can take a few minutes for the instance to stop.

 5. With the instance still selected, choose Actions ➢ Instance Settings and then
choose Change Instance Type .

 6. In the Change Instance Type dialog box, do one of the following:

 a. If the instance type of your instance is Amazon EBS–optimized, EBS-optimized is
selected by default, and you cannot change it. Choose Cancel .

 b. If the instance type of your instance supports Amazon EBS optimization,
choose EBS-optimized ➢ Apply .

(continued)

878 Chapter 16 ■ Optimization

 c. If the instance type of your instance does not support Amazon EBS optimization,
select an instance type from Instance Type that supports Amazon EBS optimiza-
tion and then choose EBS-optimized ➢ Apply .

 7. Choose Actions ➢ Instance State ➢ Start .

 You enabled the EBS optimization feature for a running Amazon EC2 instance using AWS
Console.

 When you stop an instance, the data on any instance store volumes is
erased. To keep data in instance store volumes, back it up to persistent
storage.

 e x e r C i S e 16 . 3

Create an AWS Config rule

 In this exercise, using the AWS Management Console, you will create an AWS Confi g rule
to monitor whether Elastic IP addresses are attached to Amazon EC2 instances.

 1. Create an Elastic IP address to be used as part of this exercise, but do not attach it to
any Amazon EC2 instance. See the following for instructions:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-
eip.html#using-instance-addressing-eips-releasing

 2. Open the AWS Confi g console at https://console.aws.amazon.com/config/ .

 3. Choose Get Started Now .

 4. On the Settings page, for Resource types to record , select All resources .

 5. For Amazon S3 Bucket , select the Amazon S3 bucket to which AWS Confi g sends
confi guration history and confi guration snapshot fi les.

 6. For Amazon SNS Topic , select whether AWS Confi g streams information by selecting
the Stream confi guration changes and notifi cations to an Amazon SNS topic .

 7. For Topic Name , type a name for your SNS topic.

 8. For Bucket Name , type a name for your Amazon S3 bucket.

 9. For AWS Confi g role , choose the IAM role that grants AWS Confi g permission to
record confi guration information and send this information to Amazon S3 and
Amazon SNS.

 10. Choose Create AWS Confi g service-linked role, and then Next .

e x e r C i S e 16 . 2 (c ont inue d)

Exercises 879

11. On the AWS Config Role page, in the search bar, enter eip to find a specific rule from
the list.

12. Select the eip-attached rule.

13. Choose Next and then Confirm.

AWS Config will run this rule against your resources. The rule flags the unattached
EIP as non-compliant.

14. Delete the AWS Config rule.

15. Release the Elastic IP address. See the following for instructions:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-
eip.html#using-instance-addressing-eips-releasing

From the AWS Config console, you used AWS Config to create a rule to determine
whether an Elastic IP address is attached to an Amazon EC2 instance.

e x e r C i S e 16 . 4

Create a launch Configuration and an AWS Auto Scaling group, and
Schedule a Scaling Action

In this exercise, using AWS Management Console, you will create a launch configuration
and AWS Auto Scaling policy, and verify the scheduled scaling action.

1. To create a launch configuration, complete the following steps:

a. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

b. On the navigation pane, under AWS Auto Scaling, choose Launch Configurations.
On the next page, choose Create launch configuration.

c. On the Choose AMI page, select your custom AMI.

d. On the Choose Instance Type page, select a hardware configuration for your
instance and choose Next: Configure details. Configure the remaining details.

e. On the Configure Details page, do the following:

(i) For Name, type a name for your launch configuration.

 (ii) For Advanced Details, IP Address Type, select Assign a public IP address to
every instance.

f. Choose Skip to review.

g. On the Review page, choose Edit security groups. Follow the instructions to
choose an existing security group, and then choose Review.

h. On the Review page, choose Create launch configuration.

(continued)

880 Chapter 16 ■ Optimization

i. For Select an existing key pair or create a new key pair page, select one of the
listed options.

j. Select the acknowledgment check box, and then choose Create launch configuration.

2. To create an AWS Auto Scaling group, complete the following steps:

a. Select Create an AWS Auto Scaling group using this launch configuration.

b. On the Create AWS Auto Scaling Group page, follow these steps:

(i) For Group name, enter a name for your AWS Auto Scaling group.

(ii) For Group size, enter 1 as the initial number of instances for your AWS Auto
Scaling group.

(iii) For Network, select the default VPC.

(iv) For Subnet, select one or more subnets from the listed subnets.

c. Choose Next: Configure scaling policies.

d. On the Configure scaling policies page, select Keep this group at its initial size
and then choose Review.

e. On the Review page, choose Create AWS Auto Scaling group.

f. On the AWS Auto Scaling group creation status page, choose Close.

3. To schedule an AWS Auto Scaling action and verify that it’s working, complete the
following steps:

a. Select your AWS Auto Scaling group.

b. On the Schedule Actions tab, select Create Scheduled Action.

c. On Schedule Action page, follow these steps:

(i) For Name, type name of the action.

(ii) For Max, type 2.

(iii) For Desired Capacity, type 2.

(iv) For Start Time, select current day in Date (UTC), and type current UTC time +
2 minutes.

d. Select Save.

e. Select the Instances tab, refresh the tab in the next two minutes, and observe
that a new Amazon EC2 instance was created.

In this exercise, you created a launch configuration and an AWS Auto Scaling group using
the launch group that you just created. To test whether automatic scaling is working, you
added a Scaling action to launch a new Amazon EC2 instance by increasing capacity. You
also verified that a new instance was added to the current capacity.

e x e r C i S e 16 . 4 (c ont inue d)

Review Questions 881

Review Questions
1. You are developing an application that will run across dozens of instances. It uses

some components from a legacy application that requires some configuration files to
be copied from a central location and held on a volume local to each of the instances.
You plan to modify your application with a new component in the future that will hold
this configuration in Amazon DynamoDB. Which storage option should you use in the
interim to provide the lowest cost and the lowest latency for your application to access the
configuration files?

A. Amazon S3

B. Amazon EBS

C. Amazon EFS

D. Amazon EC2 instance store

2. Similar to SQL, Amazon DynamoDB provides several operations for reading the data.
Which operation is the most efficient way to retrieve a single item?

A. Query

B. Scan

C. GetItem

D. Join

3. AWS Trusted Advisor offers a rich set of best practice checks and recommendations across
five categories: cost optimization, security, fault tolerance, performance, and service limits.
Which of the following checks is NOT under Cost and Performance categories?

A. Amazon EBS Provisioned IOPS (SSD) volume attachment configuration

B. Amazon CloudFront header forwarding and cache hit ratio

C. Amazon EC2 Availability Zone balance

D. Unassociated Elastic IP address

4. Which of the following common partition schemas includes a partition key design that
distributes I/O requests evenly across partitions and uses provisioned I/O capacity of an
Amazon DynamoDB table efficiently?

A. Status code, where there are only a few possible status codes

B. User ID, where the application has many users

C. Item creation date, rounded to the nearest time period

D. Device ID, where even if there are many devices tracked, one is by far more popular
than all the others

882 Chapter 16 ■ Optimization

5. You are developing an application that consists of a set of Amazon EC2 instances hosting
a web layer and a database hosting a MySQL instance. You are required to add a layer that
can be used to ensure that the most frequently accessed data from the database is fetched
in a faster and more efficient manner. Which of the following can be used to store the
frequently accessed data?

A. Amazon Simple Queue Service (Amazon SQS) queue

B. Amazon Simple Notification Service (Amazon SNS) topic

C. Amazon CloudFront distribution

D. Amazon ElastiCache instance

6. You have an application deployed to the AWS platform. The application makes requests
to an Amazon Simple Storage Service (Amazon S3) bucket. After monitoring the Amazon
CloudWatch metrics, you notice that the number of GET requests has suddenly spiked.
Which of the following can be used to optimize Amazon S3 cost and performance?

A. Add Amazon ElastiCache in front of the S3 bucket.

B. Use Amazon DynamoDB instead of Amazon S3.

C. Place an Amazon CloudFront distribution in front of the S3 bucket.

D. Place an Elastic Load Balancing load balancer in front of the S3 bucket.

7. You are writing an application that will store data in an Amazon DynamoDB table. The
ratio of read operations to write operations will be 1,000 to 1, with the same data being
accessed frequently. Which feature or service should you enable on the DynamoDB table to
optimize performance and minimize costs?

A. Amazon DynamoDB Auto Scaling

B. Amazon DynamoDB cross-region replication

C. Amazon DynamoDB Streams

D. Amazon DynamoDB Accelerator

8. A developer is migrating an on-premises web application to the AWS Cloud. The
application currently runs on a 32-processor server and stores session state in memory. On
Mondays, the server runs at 80 percent CPU utilization, but at only about 5 percent CPU
utilization at other times. How should the developer change the code to optimize running
in the AWS Cloud?

A. Store session state on the Amazon EC2 instance store.

B. Encrypt the session state in memory.

C. Store session state in an Amazon ElastiCache cluster.

D. Compress the session state in memory.

Review Questions 883

9. A company is using an ElastiCache cluster in front of their Amazon RDS instance. The
company would like you to implement logic into the code so that the cluster retrieves data
from Amazon RDS only when there is a cache miss. Which strategy can you implement to
achieve this?

A. Error retries

B. Lazy loading

C. Exponential backoff

D. Write-through

10. Your application will be hosted on an Amazon EC2 instance, which will be part of an AWS
Auto Scaling group. The application must fetch the private IP of the instance. Which of the
following can achieve this?

A. Query the instance metadata.

B. Query the instance user data.

C. Have the application run ifconfig.

D. Have an administrator get the IP address from the Amazon EC2 console.

11. You just developed code in AWS Lambda that uses recursive functions. You see some
throttling errors in the metrics. Which of the following should you do to resolve the issue?

A. Use API Gateway to call the recursive code.

B. Use versioning for the recursive function.

C. Place the recursive function in a separate package.

D. Avoid using recursive code in your function.

12. A production application is making calls to an Amazon Relational Database Service
(Amazon RDS) instance. The application’s reporting module is experiencing heavy traffic,
causing performance issues. How can the application be optimized to alleviate this issue?

A. Move the database to Amazon DynamoDB, and point the reporting module to the new
DynamoDB table.

B. Enable Multi-AZ for the database, and point the reporting module to the secondary
database.

C. Enable read replicas for the database, and point the reporting module to the read
replica.

D. Place an Elastic Load Balancing load balancer in front of the reporting part of the
application.

13. Your application uses Amazon S3 buckets. You have users in other countries accessing
objects in those buckets. What can you do to reduce latency for those users outside of your
country?

A. Host a static website.

B. Change the storage class.

C. Enable cross-region replication.

D. Enable encryption.

884 Chapter 16 ■ Optimization

14. You have an application that uploads objects to Amazon S3 between 200–500 MB. The
process takes longer than expected, and you want to improve the performance of the
application. Which of the following would you consider?

A. Enable versioning on the bucket.

B. Use the multipart upload API.

C. Write the items in batches for better performance.

D. Create multiple threads to upload the objects.

15. You must bootstrap your application script to instances that are launched inside an AWS
Auto Scaling group. Which is the most optimal way to achieve this?

A. Create a Lambda function to install the script.

B. Place a scheduled task on the instance that starts on boot.

C. Place the script in the instance user data.

D. Place the script in the instance metadata.

Appendix Answers to Review
Questions

AWS® Certified Developer Official Study Guide
By Nick Alteen, Jennifer Fisher, Casey Gerena, Wes Gruver, Asim Jalis,
Heiwad Osman, Marife Pagan, Santosh Patlolla and Michael Roth

 Amazon Web Services, Inc.

886 Appendix ■ Answers to Review Questions

Chapter 1: Introduction to AWS
Cloud API
1. B. The specific credentials include the access key ID and secret access key. If the access key

is valid only for a short-term session, the credentials also include a session token.

AWS uses the user name and passwords for working with the AWS Management Console,
not for working with the APIs. Data encryption uses the customer master keys, not API
access.

2. C. Most AWS API services are regional in scope. The service is running and replicating
your data across multiple Availability Zones within an AWS Region. You choose a regional
API endpoint either from your default configuration or by explicitly setting a location for
your API client.

3. A. The AWS SDK relies on access keys, not passwords. The best practice is to use AWS
Identity and Access Management (IAM) credentials and not the AWS account creden-
tials. Comparing IAM users or IAM roles, only IAM users can have long-term security
credentials.

4. C. Although you can generate IAM users for everyone, this introduces management over-
head of a new set of long-term credentials. If you already have an external directory of your
organization’s users, use IAM roles and identity federation to provide short-term, session-
based access to AWS.

5. A. The permissions for DynamoDBFullAccess managed policy grant access to all Amazon
DynamoDB tables in your account. Write a custom policy to scope the access to a
specific table. You can update the permissions of a user independently from the lifecycle of
the table. DynamoDB does not have its own concept of users, but it uses the AWS API and
relies on IAM.

6. B. You can view or manage your AWS resources with the console, AWS CLI, or AWS SDK.
The core functionality of each SDK is powered by a common set of web services on the
backend. Most AWS services are isolated by AWS Region.

7. B. If you look closely at the URL, the AWS Region string is incorrectly set as us-east-1a,
which is specific to the Availability Zone. An AWS Region string ends in a number, and the
correct configuration is us-east-1. If the error was related to API credentials, you would
receive a more specific error related to credentials, such as AccessDenied.

8. B. This policy allows access to the s3:ListBucket operation on example_bucket as a
specific bucket. This does not grant access to operations on the objects within the bucket.
IAM is granular. The date in the Version attribute is a specific version of the IAM policy
language and not an expiration.

9. D. The long-term credentials are not limited to a single AWS Region. IAM is a global ser-
vice, and IAM user credentials are valid across different AWS Regions. However, when the
API call is made, a signing key is derived from the long-term credentials, and that signing
key is scoped to a region, service, and day.

Chapter 2: Introduction to Compute and Networking 887

10. B. The AssumeRole method of the AWS Security Token Service (AWS STS) returns the
security credentials for the role that include the access key ID, secret access key, and session
token. AWS Key Management Service (AWS KMS) is not used for API signing. The identity
provider may provide a SAML assertion, but AWS STS generates the AWS API credentials.

11. D. The DynamoDBReadOnlyAccess policy is a built-in policy that applies to the resource *
wildcard, which means that it applies to any and all DynamoDB tables accessible from the
account regardless of when those tables were created. Because IAM policies are related to
the IAM user, not the access key, rotating the key does not affect the policy. IAM policies
are also global in scope, so you do not need a custom one per AWS Region. You can add
IAM users to IAM groups but not IAM roles. Instead, roles must be assumed for short-term
sessions.

12. B. The IAM trust policy defines the principals who can request role credentials from the
AWS STS. Access policies define what API actions can be performed with the credentials
from the role.

13. C. You can define an IAM user for your new team member and add the IAM user to an
IAM group to inherit the appropriate permissions. The best practice is not to use AWS
account root user credentials. Though you can use AWS Directory Service to track users,
this answer is incomplete, and the AWS KMS is not related to permissions. Roles can be
assumed only for short-term sessions—there are no long-term credentials directly associ-
ated with the role.

14. C. The AWS API backend is accessed through web service calls and is operating system–
and programming language–agnostic. You do not need to do anything special to enable
specific programming languages other than downloading the appropriate SDK.

15. B. The primary latency concern is for customers accessing the data, and there are no
explicit dependencies on existing infrastructure in the United States. Physically locating the
application resources closer to these users in Australia reduces the distance that the infor-
mation must travel and therefore decreases the latency.

Chapter 2: Introduction to Compute
and Networking
1. B. You launch Amazon Elastic Compute Cloud (Amazon EC2) instances into specific sub-

nets that are tied to specific Availability Zones. You can look up the Availability Zone in
which you have launched an Amazon EC2 instance. While an Availability Zone is part of a
region, this answer is not the most specific. You do not get to choose the specific data cen-
ter, and edge locations do not support EC2.

2. B. When you stop an Amazon EC2 instance, its public IP address is released. When you
start it again, a new public IP address is assigned. If you require a public IP address to be
persistently associated with the instance, allocate an Elastic IP address. SSH key pairs and
security group rules do not have any built-in expiration, and SSH is enabled as a service by
default. It is available even after restarts. Security groups do not expire.

888 Appendix ■ Answers to Review Questions

3. A. A restricted rule that allows RDP from only certain IP addresses may block your request
if you have a new IP address because of your location. Because you are trying to connect to
the instance, verify that an appropriate inbound rule is set as opposed to an outbound rule.
For many variants of Windows, RDP is the default connection mechanism, and it defaults
to enabled even after a reboot.

4. A, D. The NAT gateway allows outbound requests to the external API to succeed while
preventing inbound requests from the internet. Configuring the security group to allow
only inbound requests from your web servers allows outbound requests to succeed because
the default rule for the security group allows outbound requests to the APIs that your web
service needs. Option B is incorrect because security group rules cannot explicitly deny
traffic; they can only allow it. Option C is incorrect because network ACLs are stateless,
and this rule would prevent all of the replies to your outbound web requests from entering
the public subnet.

5. C. You are in full control over the software on your instance. The default user that was
created when the instance launched has full control over the guest operating system and
can install the necessary software. Instance profiles are unrelated to the software on the
instance.

6. D. You can query the Amazon EC2 metadata service for this information. Networking
within the Amazon Virtual Private Cloud (Amazon VPC) is based on private IP addresses,
so this rules out options A and B. Because the metadata service is available, you are not
required to use a third-party service, which eliminates option C.

7. A. You can implement user data to execute scripts or directives that install additional
packages. Even though you can use Amazon Simple Storage Service (Amazon S3) to stage
software installations, there is no special bucket. You have full control of EC2 instances,
including the software. AWS KMS is unrelated to software installation.

8. A. Amazon EC2 instances are resizable. You can change the RAM available by changing
the instance type. Option B is incorrect because you can change this attribute only when the
instance is stopped. Although option C is one possible solution, it is not required. Option D
is incorrect because the RAM available on the host server does not change the RAM alloca-
tion for your EC2 instance.

9. A. AWS generates the default password for the instance and encrypts it by using the public
key from the Amazon EC2 key pair used to launch the instance. You do not select a pass-
word when you launch an instance. You can decrypt this with the private key. IAM users
and IAM roles are not for providing access to the operating system on the Amazon EC2
instance.

10. A, B, E. For an instance to be directly accessible as a web server, you must assign a pub-
lic IP address, place the instance in a public subnet, and ensure that the inbound security
group rules allow HTTP/HTTPS. A public subnet is one in which there is a direct route to
an internet gateway. Option C defines a private subnet. Because security groups are stateful,
you are not required to set the outbound rules—the replies to the inbound request are auto-
matically allowed.

Chapter 2: Introduction to Compute and Networking 889

11. A, D. You can use an AMI as a template for launching any number of Amazon EC2
instances. AMIs are available for various versions of Windows and Linux. Option B is false
because AMIs are local to the region in which they were created unless they are explicitly
copied. Option C is false because, in addition to AWS-provided AMIs, there are third-party
AMIs in the marketplace, and you can create your own AMIs.

12. B, D. Option B is true; Amazon Elastic Block Store (Amazon EBS) provides persistent stor-
age for all types of EC2 instances. Option D is true because hardware accelerators, such as
GPU and FGPA, are accessible depending on the type of instance. Option A is false because
instance store is provided only for a few Amazon EC2 instance types. Option C is incorrect
because Amazon EC2 instances can be resized after they are launched, provided that they
are stopped during the resize. Hardware accelerators, such as GPU and FGPA, are acces-
sible depending on the type of instance.

13. B, D. Only instances in the running state can be started, stopped, or rebooted.

14. D. Both the web server and the database are running on the same instance, and they can
communicate locally on the instance. Option A is incorrect because security groups apply
to only network traffic that leaves the instance. Option C is incorrect because network
ACLs apply only to traffic leaving a subnet. Similarly, option B is incorrect because the
public IP address is required for inbound requests from the internet but is not necessary for
requests local to the same instance.

15. C. A public subnet is one in which there is a route that directs internet traffic (0.0.0.0/0) to
an internet gateway. None of the other routes provides a direct route to the internet, which
is required to be a public subnet.

16. D. A private subnet that allows outbound internet access must provide an indirect route to
the internet. This is provided by a route that directs internet traffic to a NAT gateway or
NAT instance. Option C is incorrect because a route to an internet gateway would make
this a public subnet with a direct connection to the internet. The remaining options do not
provide access to the internet.

17. D. Amazon VPC Flow Logs have metadata about each traffic flow within your Amazon
VPC and show whether the connection was accepted or rejected. The other responses do
not provide a log of network traffic.

18. C. Amazon CloudWatch is the service that tracks metrics, including CPU utilization for an
Amazon EC2 instance. The other services are not responsible for tracking metrics.

19. B. EBS volumes provide persistent storage for an Amazon EC2 instance. The data is per-
sisted until the volume is deleted and therefore persists on the volume when the instance is
stopped.

20. F. You can install any software you want on an Amazon EC2 instance, including any inter-
preters required to run your application code.

21. B, C. Web requests are typically made on port 80 for HTTP and port 443 for HTTPS.
Because security groups are stateful, you must set only the inbound rule. Options A and D
are unnecessary because the security group automatically allows the outbound replies to the
inbound requests.

890 Appendix ■ Answers to Review Questions

22. B, D. The customer is responsible for the guest operating system and above. Options C and
E fall under AWS responsibility. AWS is responsible for the virtualization layer, underlying
host machines, and all the way down to the physical security of the facilities.

Chapter 3: Hello, Storage
1. D. Amazon EC2 instance store is directly attached to the instance, which will give you the

lowest latency between the disk and your application. Instance store is also provided at no
additional cost on instance types that have it available, so this is the lowest-cost option.
Additionally, since the data is being retrieved from somewhere else, it can be copied back to
an instance as needed.

Option A is incorrect because Amazon S3 cannot be directly mounted to an Amazon EC2
instance.

Options B and C are incorrect because Amazon EBS and Amazon Elastic File System
(Amazon EFS) would be a higher-cost option with higher latency than instance store.

2. D, E. Objects are stored in buckets and contain both data and metadata.

Option A is incorrect because Amazon S3 is object storage, not block storage.

Option B is incorrect because objects are identified by a URL generated from the bucket
name, service region endpoint, and key name.

Option C is incorrect because Amazon S3 object can range in size from a minimum of 0
bytes to a maximum of 5 TB.

3. B. The volume is created immediately, but the data is loaded lazily, meaning that the
volume can be accessed upon creation, and if the data being requested has not yet been
restored, it will be restored upon first request.

Options A and C are incorrect because it does not matter what the size of the volume is or
the amount of the data that is stored on the volume. Lazy loading will get data upon first
request as needed while the volume is being restored.

Option D is incorrect because an Amazon EBS-optimized instance provides additional, dedi-
cated capacity for Amazon EBS I/O. This minimizes contention, but it does not increase or
decrease the amount of time before the data is made available while restoring a volume.

4. A, B, D. Option C is incorrect because Amazon S3 is accessible through a URL. Amazon
EFS is an AWS service that can be mounted to the file system of multiple Amazon EC2
instances. Amazon S3 can be accessible to multiple EC2 instances, but not through a file
system mount.

Option E is incorrect because, unlike Amazon EBS volumes, storage in a bucket does not
need to be pre-allocated and can grow in a virtually unlimited manner.

5. A, C. Amazon Simple Storage Service Glacier is optimized for long-term archival stor-
age and is not suited to data that needs immediate access or short-lived data that is erased
within 90 days.

Chapter 3: Hello, Storage 891

6. B. Option B is correct because pre-signed URLs allow you to grant time-limited permission
to download objects from an Amazon S3 bucket.

Option A is incorrect because static web hosting requires world-read access to all
content.

Option C is incorrect because AWS IAM policies do not know who are the authenticated
users of your web application, as these are not IAM users.

Option D is incorrect because logging can help track content loss, but not prevent it.

7. A, D. Option A is correct because the data is automatically replicated within an availability
zone.

Option D is correct because Amazon EBS volumes persist when the instance is stopped.

Option B is incorrect. There are no tapes in the AWS infrastructure.

Option C is incorrect because Amazon EBS volumes can be encrypted upon creation and
used by an instance in the same manner as if they were not encrypted.

8. C. The Max I/O performance mode is optimized for applications where tens, hundreds, or
thousands of EC2 instances are accessing the file system. It scales to higher levels of aggre-
gate throughput and operations per second with a trade-off of slightly higher latencies for
file operations.

Option A is incorrect because the General-Purpose performance mode in Amazon EFS is
appropriate for most file systems, and it is the mode selected by default when you create a
file system. However, when you need concurrent access from 10 or more instances to the file
system, you may need to increase your performance.

Option B is incorrect. This is an option to increase I/O throughput for Amazon EBS vol-
umes by connecting multiple volumes and setting up RAID 0 to increase overall I/O.

Option D is incorrect. Changing to a larger instance size will increase your cost for com-
pute, but it will not improve the performance for concurrently connecting to your Amazon
EFS file system from multiple instances.

9. A, B, D. Options A, B, and D are required, and optionally you can also set a friendly
CNAME to the bucket URL.

Option C is incorrect because Amazon S3 does not support FTP transfers.

Option E is incorrect because HTTP does not need to be enabled.

10. C. A short period of heavy traffic is exactly the use case for the bursting nature of general-
purpose SSD volumes—the rest of the day is more than enough time to build up enough
IOPS credits to handle the nightly task.

Option A is incorrect because to set up a Provisioned IOPS SSD volume to handle the peak
would mean overprovisioning and spending money for more IOPS than you need during
off-peak time.

Option B is incorrect because instance stores are not durable.

Option D is incorrect because magnetic volumes cannot provide enough IOPS.

892 Appendix ■ Answers to Review Questions

11. C, D, E. Option A is incorrect because you store data in Amazon S3 Glacier as an archive.
You upload archives into vaults. Vaults are collections of archives that you use to organize
your data. Amazon S3 stores data in objects that live in buckets.

Option B is incorrect because archives are identified by system-created archive IDs, not key
names like in S3.

12. A. Amazon EFS supports one to thousands of Amazon EC2 instances connecting to a file
system concurrently.

Options B and C are incorrect because Amazon EBS and Amazon EC2 instance store can
be mounted only to a single instance at a time.

Option D is incorrect because Amazon S3 does not provide a file system connection, but
rather connectivity over the web. It cannot be mounted to an instance directly.

13. B. There is no delay in processing when commencing a snapshot.

Options A and C are incorrect because the size of the volume or the amount of the data that
is stored on the volume does not matter. The volume will be available immediately.

Option D is incorrect because an Amazon EBS-optimized instance provides additional,
dedicated capacity for Amazon EBS I/O. This minimizes contention, but it does not change
the fact that the volume will still be available while taking a snapshot.

14. B, C, E. Amazon S3 bucket policies can specify a request IP range, an AWS account, and a
prefix for objects that can be accessed.

Options A and D are incorrect because bucket policies cannot be restricted by company
name or country of origin.

15. B, D. Option B is incorrect because Amazon S3 cannot be mounted to an Amazon EC2
instance like a file system.

Option D is incorrect because Amazon S3 should not serve as primary database storage
because it is object storage, not transactional block-based storage. Databases are generally
stored on disk in one or more large files. If you needed to change one row in a database, the
entire database file would need to be updated in Amazon S3, and every time you needed to
access a record, you’d need to download the whole database.

16. B, C, E. Option A is incorrect because static web hosting does not restrict data access. You
can host a website on Amazon S3, but the bucket must have public read access, so everyone
in the world will have read access to this bucket.

Option B is correct because creating a presigned URL for an object optionally allows you to
share objects with others.

Option C is correct because Amazon S3 access control lists (ACLs) enable you to manage
access to buckets and objects, defining which AWS accounts or groups are granted access
and the type of access.

Option D is incorrect because using an Amazon S3 lifecycle policy does not restrict data
access. Lifecycle policies can be used to define actions for Amazon S3 to take during an
object’s lifetime (for example, transition objects to another storage class, archive them, or
delete them after a specified period of time).

Chapter 3: Hello, Storage 893

Option E is correct because a bucket policy is a resource-based AWS IAM policy that
allows you to grant permission to your Amazon S3 resources for other AWS accounts or
IAM users.

17. C, E. Option A is incorrect because even though you get increased redundancy with using
cross-region replication, that does not protect the object from being deleted.

Option B is incorrect because vault locks are a feature of Amazon S3 Glacier, not a
feature of Amazon S3.

Option D is incorrect because a lifecycle policy would move the object to Amazon
Glacier, moving it out of your intended storage in S3 and reducing the time to access the
data, and it does not prevent it from being deleted once it arrives in Amazon
S3 Glacier.

C and E are correct. Versioning protects data against inadvertent or intentional deletion by
storing all versions of the object, and MFA Delete requires a one-time code from a multi-
factor authentication (MFA) device to delete objects.

18. C. To track requests for access to your bucket, enable access logging. Each access log
record provides details about a single access request, such as the requester, bucket name,
request time, request action, response status, and error code (if any). Access log information
can be useful in security and access audits. It can also help you learn about your customer
base and understand your Amazon S3 bill.

19. A, B, D. Option A is correct because cross-region replication allows you to replicate data
between distance AWS Regions to satisfy these requirements.

Option B is correct because this can minimize latency in accessing objects by maintaining
object copies in AWS Regions that are geographically closer to your users.

Option D is correct because you can maintain object copies in both regions, allowing lower
latency by bringing the data closer to the compute.

Option C is incorrect because cross-region replication does not protect against accidental
deletion.

Option E is incorrect because Amazon S3 is designed for 11 nines of durability for objects
in a single region. A second region does not significantly increase durability.

20. C. If data must be encrypted before being sent to Amazon S3, client-side encryption must
be used.

Options A, B, and D are incorrect because they use server-side encryption. This will only
encrypt the data at rest in Amazon S3, not prior to transit to Amazon S3.

21. B. Data is automatically replicated across at least three Availability Zones within a single
region.

Option A is incorrect because you can optionally choose to replicate data to other regions,
but that is not done by default.

Option C is incorrect because versioning is optional, and data in Amazon S3 is durable
regardless of turning on versioning.

Option D is incorrect because there are no tapes in the AWS infrastructure.

894 Appendix ■ Answers to Review Questions

Chapter 4: Hello, Databases
1. B, D, E. Amazon Relational Database Service (Amazon RDS) manages the work involved

in setting up a relational database, from provisioning the infrastructure capacity to install-
ing the database software. After your database is up and running, Amazon RDS automates
common administrative tasks, such as performing backups and patching the software that
powers your database. Option A is incorrect. Because Amazon RDS provides native data-
base access, you interact with the relational database software as you normally would. This
means that you’re still responsible for managing the database settings that are specific to
your application. Option C is incorrect. You need to build the relational schema that best
fits your use case and are responsible for any performance tuning to optimize your database
for your application’s workflow and query patterns.

2. B. Amazon Neptune is a fast, reliable, fully managed graph database to store and manage
highly connected datasets. Option A is incorrect because Amazon Aurora is a managed
SQL database that is meant for transactional workloads that are ACID-compliant. Option
C is incorrect because this is a managed NoSQL database service, which is meant for more
key-value datasets with no relationships. Option D is incorrect because Amazon Redshift
is a data warehouse that can be used for running analytical queries (OLAP) on data ware-
houses that are petabytes in scale.

3. B. NoSQL databases, such as Amazon DynamoDB, excel at scaling to hundreds of thou-
sands of requests with key-value access to user profile and session. Option A is incorrect
because the session state is typically suited for small amounts of data, and DynamoDB can
scale more effectively with this type of dataset. Option C is incorrect because Amazon Red-
shift is a data warehouse service that is used for analytical queries on petabyte scale datas-
ets, so it would not be a good solution. Option D is incorrect because DynamoDB provides
scale, whereas MySQL on Amazon EC2 eventually becomes bottlenecked. Additionally,
NoSQL databases are much faster and more scalable for this type of dataset.

4. A. 1 RCU = One strongly consistent read per second of 4 KB.

15 KB is four complete chunks of 4 KB (4 × 4 = 16).

So you need 25 × 4 = 100 RCUs.

5. C. 1 RCU = Two eventually consistent reads per second of 4 KB.

15 KB is four complete chunks of 4 KB (4 × 4 = 16).

So you need (25 × 4) / 2 = 50 RCUs.

6. D. 1 WCU = 1 write per second of 1 KB (1024 bytes).

512 bytes uses one complete chunk of 1 KB (512/1024 = 0.5, rounded up to 1).

So you need 100 × 1 = 100 WCUs.

7. B. Amazon DynamoDB Accelerator (DAX) is a write-through caching service that quickly
integrates with DynamoDB with a few quick code changes. DAX will seamlessly inter-
cept the API call, and your caching solution will be up and running in a short amount of

Chapter 5: Encryption on AWS 895

time. Option A is incorrect because you could implement your own solution; however, this
would likely take a significant amount of development time. Option C is incorrect because
your company would like to get the service up and running quickly. Implementing Redis
on Amazon EC2 to meet your application’s needs would take additional time. Option D is
incorrect for many of the same reasons as option C, as time is a factor here. Additionally,
your company would like to refrain from managing more EC2 instances, if possible.

8. B. With Amazon ElastiCache, only Redis can be run in a high-availability configuration.
Option A is incorrect because this would add complexity to your architecture. It would also
likely introduce additional latency, as the company is already using Amazon RDS. Option
C is incorrect because ElastiCache for Memcached does not support a high-availability
configuration. Option D is incorrect because DAX is a caching mechanism that is used for
DynamoDB, not Amazon RDS.

9. C. Amazon Redshift is the best option. It is a managed AWS data warehouse service that
allows you to scale up to petabytes worth of data, which would definitely meet their needs.
Option A is incorrect because Amazon RDS cannot store that much data; the limit of
Amazon RDS for Aurora is 64 TB. Option B is incorrect because DynamoDB is not meant
for analytical-type queries—it is meant for simple queries and key-value pair data, which
is more transactional based. You can query based on only the partition and sort key in
DynamoDB. Option D is incorrect because Amazon ElastiCache is a caching solution that
is meant for temporary data. However, you could store queries that ran in Amazon Redshift
inside ElastiCache. This would improve the performance of frequently run queries, but by
itself is not a solution.

10. A. Scans are less efficient than queries. When possible, always use queries with
DynamoDB. Option B is incorrect because doing nothing isn’t a good solution; the problem
is unlikely to go away. Option C is incorrect because a strongly consistent read would actu-
ally be a more expensive query in terms of compute and cost. Strongly consistent reads cost
twice as much as eventually consistent reads. Option D is incorrect because the concern is
with reading data, not writing data. WCUs are write capacity units.

Chapter 5: Encryption on AWS
1. B, D, E. Option A is incorrect because data can be encrypted in any location (on-premises

or in the AWS Cloud). Option C is incorrect because encryption keys should be stored in a
secured hardware security module (HSM). Option B is correct because there must be data
to encrypt in order to use an encryption system. Option D is correct because tools and a
process must be in place to perform encryption. Option E is correct because encryption
requires a defined algorithm.

2. A, C. Option B is incorrect because KMI does not have a concept of a data layer. Option D
is incorrect because KMI does not have a concept of an encryption layer. Option A is cor-
rect because the storage layer is responsible for storing encryption keys. Option C is correct
because the management layer is responsible for allowing authorized users to access the
stored keys.

896 Appendix ■ Answers to Review Questions

3. A, C, D. Option A is correct because this is a common method to offload the responsibility
of key storage while maintaining customer-owned management processes. Option C is cor-
rect because customers can use this approach to fully manage their keys and KMI. Option
D is correct because AWS Key Management Service (AWS KMS) supports both encryption
and KMI. Option B is incorrect because this would imply significant overhead to manage
the storage while not providing customer benefits.

4. D. Option A is incorrect; with SSE-S3, Amazon S3 is responsible for encrypting the
objects, not AWS KMS. Option B is incorrect because the customer provides the key to
the Amazon S3 service. Option C is incorrect because the question specifically states that
server-side encryption is used. Option D is correct because none of the other options listed
server-side encryption with AWS KMS (SSE-KMS), whereby AWS KMS manages the keys.

5. B. Option A is incorrect. AWS KMS does not currently support asymmetric encryption.
Option B is correct because AWS CloudHSM supports both asymmetric and symmet-
ric encryption. Options C and D are incorrect because CloudHSM supports asymmetric
encryption.

6. A, B. Option A is correct because AWS KMS uses AES-256 as its encryption algorithm.
Option B is correct because CloudHSM supports a variety of symmetric encryption
options. Options C and D are incorrect because AWS KMS and CloudHSM support sym-
metric encryption options.

7. C. Option A is incorrect because the organization does not want to manage any of the
encryption keys. With AWS KMS, it will have to create customer master keys (CMKs).
Option B is incorrect because by using customer-provided keys, the organization would
have to manage the keys. Option C is correct because Amazon S3 manages the encryption
keys and performs rotations periodically. Option D is incorrect because SSE-S3 provides
this option.

8. C. Option A is incorrect because AWS KMS provides a centralized key management dash-
board; however, this feature does not leverage CloudHSM. Option B is incorrect because
you want to use AWS KMS with CloudHSM and not use it as a replacement for AWS KMS.
Option C is correct because custom key stores allow AWS KMS to store keys in an Cloud-
HSM cluster. Option D is incorrect because S3DistCp is a feature for Amazon Redshift
whereby it copies data from Amazon S3 to the cluster.

9. A. Option A is correct because AWS KMS provides the simplest solution with little devel-
opment time to implement encryption on an Amazon EBS volume. Option B is incorrect
because even though you can use open source or third-party tooling to encrypt volumes,
there would be some setup and configuration involved. Using CloudHSM would also
require some configuration and setup, so option C is incorrect. Option D is incorrect
because AWS KMS enables you to encrypt Amazon EBS volumes.

10. D. Options A, B, and C are incorrect because AWS KMS integrates with all these services.

Chapter 6: Deployment Strategies 897

Chapter 6: Deployment Strategies
1. D. Option D is correct because AWS CodePipeline is a continuous delivery service for fast

and reliable application updates. It allows the developer to model and visualize the software
release process. CodePipeline automates your build, test, and release process when there is a
code change.

Option A is incorrect because AWS CodeCommit is a secure, highly scalable, managed
source control service that hosts private Git repositories.

Option B is incorrect because AWS CodeDeploy automates code deployments to any
instance and handles the complexity of updating your applications.

Option C is incorrect because AWS CodeBuild compiles source code, runs tests, and pro-
duces ready-to-deploy software packages.

2. A, B, C, D. A, B, C, and D are correct because you can use them all to create a web server
environment with AWS Elastic Beanstalk.

Option E is incorrect because AWS Lambda is an event-driven, serverless computing plat-
form that runs code in response to events. Lambda automatically manages the computing
resources required by that code.

3. C. Elastic Beanstalk supports Java, Node.js, and Go, so options A, B, and D are incorrect.
It does not support Objective C, so option C is the correct answer.

4. A. Elastic Beanstalk deploys application code and the architecture to support an environ-
ment for the application to run.

5. A, C. Elastic Beanstalk supports Linux and Windows. No support is available for an
Ubuntu-only operating system, Fedora, or Jetty.

6. A, B. Elastic Beanstalk can run Amazon EC2 instances and build queues with Amazon
SQS.

7. A, B. Elastic Beanstalk can access Amazon S3 buckets and connect to Amazon RDS data-
bases. It cannot install Amazon GuardDuty agents or create or manage Amazon WorkSpaces.

8. C. By using IAM policies, you can control access to resources attached to users, groups,
and roles.

9. B, C. Elastic Beanstalk creates a service role to access AWS services and an instance role to
access instances.

10. C. Elastic Beanstalk runs at no additional charge. You incur charges only for services
deployed.

11. D. Charges are incurred for all accounts that use the allocated resources.

12. C. An existing Amazon RDS instance is deleted if the environment is deleted. There is no
auto-retention of the database instance. You must create a snapshot to retain the data and
to restore the database.

898 Appendix ■ Answers to Review Questions

Chapter 7: Deployment as Code
1. A. Options B and D are incorrect because the deployment is already in progress, and this

would not be possible if the AWS CodeDeploy agent had not been installed and running
properly. The CodeDeploy agent sends progress reports to the CodeDeploy service. The
service does not attempt to query instances directly, and the Amazon EC2 API does not
interact with instances at the operating system level. Thus, option C is incorrect, and option
A is correct.

2. B. Option B is correct because the ApplicationStop lifecycle event occurs before any
new deployment files download. For this reason, it will not run the first time a deployment
occurs on an instance. Option C is incorrect, as this is a valid lifecycle event. Option A is
incorrect. Option D is incorrect because lifecycle hooks are not aware of the current state of
your application. Lifecycle hook scripts execute any listed commands.

3. A. Option B requires precise timing that would be overly burdensome to add to a CI/CD
workflow. Option C would not include edge cases where both sources are updated within
a small time period and would require separate release cadences for both sources. Option
D is incorrect, as AWS CodePipeline supports multiple sources. When multiple sources are
configured for the same pipeline, the pipeline will be triggered when any source is updated.

4. C. Option A is incorrect because storing large binary objects in a Git-based repository can
incur massive storage requirements. Any time a binary object is modified in a repository, a
new copy is saved. Comparing cost to Amazon S3 storage, it is more expensive to take this
approach. By building the binary objects into an Amazon Machine Image (AMI), you are
required to create a new AMI any time changes are made to the objects; thus, option B is
incorrect. Option D and E introduce unnecessary cost and complexity into the solution. By
using both an AWS CodeCommit repository and Amazon S3 archive, the lowest cost and
easiest management is achieved.

5. D. Option A is incorrect because rolling deployments without an additional batch would
result in less than 100 percent availability, as one batch of the original set of instances
would be taken out of circulation during the deployment process. Option B is incorrect
because if you add an additional batch, it would ensure 100 percent availability at the low-
est cost but would require a longer update process than replacing all instances at once.
Option C is incorrect because, by default, blue/green deployments will leave the original
environment intact, accruing charges until it is manually deleted. Option D is correct as
immutable updates would result in the fastest deployment for the lowest cost. In an immu-
table update, a new Auto Scaling group is created and registered with the load balancer.
Once health checks pass, the existing Auto Scaling group is terminated.

6. D. Option C is incorrect because Amazon S3 does not have a concept of service roles.
When a pipeline is initiated, it is done in response either to a change in a source or when
a previous change is released by an authorized AWS IAM user or role. However, after the
pipeline has been initiated, the AWS CodePipeline service role is used to perform pipeline
actions. Thus, options A and B are incorrect. Option D is correct, because the pipeline’s
service role requires permissions to download objects from Amazon S3.

Chapter 7: Deployment as Code 899

7. B. Option A is incorrect because this output is used only in the CodeBuild console. Option
D is incorrect because CodeBuild natively supports this functionality. Though option C
would technically work, CodeBuild supports output artifacts in the buildspec.yml speci-
fication. The BuildSpec includes a files directive to indicate any files from the build envi-
ronment that will be passed as output artifacts. Thus, option B is correct.

8. C. Option A is incorrect because a custom build environment would expose the secrets
to any user able to create new build jobs using the same environment. Option B is also
incorrect. Though uploading the secrets to Amazon S3 would provide some protection,
administrators with Amazon S3 access may still be able to view the secrets. Option D is
incorrect because AWS does not recommend storing sensitive information in source control
repositories, as it is easily viewed by anyone with access to the repository. Option D is cor-
rect. By encrypting the secrets with AWS KMS and storing them in AWS Systems Manager
Parameter Store, you ensure that the keys are protected both at rest and in transit. Only
AWS IAM users or roles with permissions to both the key and parameter store would have
access to the secrets.

9. A. Options B, C, D, and E are incorrect. AWS Lambda functions can execute as part of a
pipeline only with the Invoke action type.

10. A, B. Options D and E are incorrect because FIFO/LIFO are not valid pipeline action con-
figurations. Option C is incorrect because pipeline stages support multiple actions. Pipeline
actions can be specified to occur both in series and in parallel within the same stage. Thus,
options A and B are correct.

11. D. Option A is incorrect because it will only create or update a stack, not delete the exist-
ing stack. Option B is incorrect because the desired actions are in the wrong order. Option
C is incorrect because the final action, “Replace a failed stack,” is not needed. Option D is
correct. Only two actions are required. First, the stack must be deleted. Second, the replace-
ment stack can be created. Unless otherwise required, however, both actions can be essen-
tially accomplished by using one “Create or update a stack” action.

12. D. Option A is incorrect. AWS CodeCommit is fully compatible with existing Git tools,
and it also supports authentication with AWS Identity and Access Management (IAM)
credentials. Options B and C are incorrect. These are the only protocols over which you
can interact with a repository. You can use the CodeCommit credential helper to
convert an IAM access key and secret access key to valid Git credentials for SSH and
HTTPS authentication. Thus, option D is correct.

13. C. Options A, B, and D are all valid Amazon Simple Notification Service (Amazon SNS)
notification event sources for CodeCommit repositories. Option C is correct because Ama-
zon SNS notifications cannot be configured to send when a commit is made to a repository.

14. C, E. Options A, B, and D are incorrect because these action types do not support Code-
Build projects. Options C and E are correct because CodeBuild projects can be executed in
a pipeline as part of build and test actions.

15. D. Environment variables in CodeBuild projects are not encrypted and are visible using the
CodeBuild API. Thus, options A, B, and C are incorrect. If you need to pass sensitive infor-
mation to build containers, use Systems Manager Parameter Store instead. Thus, option D
is correct.

900 Appendix ■ Answers to Review Questions

16. A. Because AWS does not have the ability to create or destroy infrastructure in customer
data centers, options B, C, and D are incorrect. Option A is correct because on-premises
instances support only in-place deployments.

17. C. Options A and B are incorrect because AWS CodeDeploy will not modify files on
an instance that were not created by a deployment. Option D is incorrect because this
approach could result in failed deployments because of missing settings in your configura-
tion file. Option C is correct. By default, CodeDeploy will not remove files that it does not
manage. This is maintained as a list of files on the instance.

18. C. Option A is incorrect because function versions cannot be modified after they have been
published. Option B is also incorrect because function version numbers cannot be changed.
Aliases can be used to point to different function versions; however, the alias itself can-
not be overwritten (it is a pointer to a function version). Thus, option D is incorrect. AWS
Lambda does not support in-place deployments. This is because, after a function version
has been published, it cannot be updated. Option C is correct.

19. C. AWS CodePipeline requires that every pipeline contain a source stage and at least one
build or deploy stage. Thus, the minimum number of stages is 2.

20. C. Option A is not correct because deleting the old revisions will temporarily resolve the
issue. However, future deployments will continue to consume disk space. The same reason-
ing applies to options B and D, which are also temporary solutions to the problem. The
CodeDeploy agent configuration file includes a number of useful settings. Among these, a
limit can be set on how many revisions to store on an instance at any point in time. Thus,
option C is correct.

Chapter 8: Infrastructure as Code
1. D. Only the Resources section of a template is required. If this section is omitted, AWS

CloudFormation has no resources to manage. However, a template does not require Param-
eters, Metadata, or AWSTemplateFormatVersion. Thus, options A, B, C, and E are
incorrect.

2. E. The return value of the Ref intrinsic function for an AWS::ElasticLoadBalancing::
LoadBalancer resource is the load balancer name, which is not valid in a URL, so option A
is incorrect. Since the application server instances are in a private subnet, neither will have
a public DNS name; thus, option B is incorrect. Option C uses incorrect syntax for the Ref
intrinsic function. Option D attempts to output a URL for the database instance. Thus,
option E is correct.

3. A, C, D. If account limits were preventing the launch of additional instances, the stack
creation process would fail as soon as AWS CloudFormation attempts to launch the
instance (the Amazon EC2 API would return an error to AWS CloudFormation in
this case). Thus, option B is incorrect. Any issues preventing the instance from calling
cfn-signal and sending a success/failure message to AWS CloudFormation would cause
the creation policy to time out. Thus, options A, C, and D are correct answers.

Chapter 8: Infrastructure as Code 901

4. C. Option A is incorrect because AWS CloudFormation does not monitor the status of your
database and would not be able to determine whether the database is corrupted. It also
does not track whether there are currently running transactions before attempting updates.
Thus, option E is incorrect. If an invalid update is submitted, the stack generates an error
message when attempting the database update. Thus, option D is incorrect. Though option
B would work, it is not needed to remove the database from the stack and manage it
separately. Option C is correct because an AWS CloudFormation service role extends the
default timeout value for stack actions to allow you to manage resources with longer update
periods.

5. A. Custom resource function permissions are obtained by a function execution role, not
the service role invoking the stack update; thus, option B is incorrect. When the AWS
Lambda function corresponding to a custom resource no longer exists, the custom resource
will fail to update immediately; thus, option C is incorrect. However, if the custom resource
function is executed but does not provide a response to the AWS CloudFormation service
endpoint, the resource times out with the aforementioned error. Thus, option A is correct.

6. A. AWS CloudFormation processes transformations by creating a change set, which
generates an AWS CloudFormation supported template. Without the AWS::Serverless
transform, AWS CloudFormation cannot process the AWS SAM template. For any stack
in your account, the current template can be downloaded using the get-stack-template
AWS CLI command. This command will return templates as processed by AWS CloudFor-
mation; thus, option B is incorrect. Option C is also incorrect, because the original template
is not saved before executing the transform. Option D is also incorrect, as AWS CloudFor-
mation saves the current template for all stacks.

7. E. AWS SAM supports other AWS CloudFormation resources, and it is not limited to defin-
ing only AWS::Serverless::* resource types; thus, option D is incorrect, and option A is
correct. However, the AWS::Serverless transform will not automatically associate server-
less functions with AWS::ApiGateway::RestApi resources. The transform will automati-
cally associate any functions with the serverless API being declared, or it will create a new
one when the transform is executed. Thus, option B is also correct. Option C is also correct
because AWS Serverless also supports Swagger definitions to outline the endpoints of your
OpenAPI specification.

8. A. The cfn-init helper script is used to define which packages, files, and other configura-
tions will be performed when an instance is first launched. The cfn-signal helper script is
used to signal back to AWS CloudFormation when a resource creation or update has com-
pleted, so options B and C are incorrect. Option D is incorrect because cfn-update, is not
a valid helper script. The cfn-hup helper script performs updates on an instance when its
parent stack is updated. Thus, option A is correct.

9. C. Wait conditions accept only one signal and will not track additional signals from the
same resource; thus, options A and B are incorrect. WaitCount is an invalid option type, so
option D is incorrect. Option C is correct because creation policies enable you to specify a
count and timeout.

902 Appendix ■ Answers to Review Questions

10. A. Options B and C will affect resources in your account. Option D would let you see the
syntax differences between two template versions, but this does not indicate what type of
updates will happen on the resources themselves. Thus, option D is incorrect. Change sets
create previews of infrastructure changes without actually executing them. After reviewing
the changes that will be performed, the change set can be executed on the target stack.

11. B. Option A is incorrect, as this is a supported feature of nested stacks. Option C creates a
circular dependency between the parent and child stacks (the parent stack needs to import
the value from the child stack, which cannot be created until the parent begins creation).
Option D is incorrect because cross-stack references are not possible without exporting and
importing outputs. Option B uses intrinsic functions to access resource properties in the
same manner as any other stack resource.

12. B. AWS CloudFormation does not assume full administrative control on your account, and
it requires permissions to interact with resources you own. AWS CloudFormation can oper-
ate using a service role; however, this must be explicitly passed as part of the stack opera-
tion. Otherwise, it will execute with the same permissions as the user performing the stack
operation. Thus, option B is the correct answer.

13. C. Because the reference to the Amazon DynamoDB table is made as part of an arbitrary
string (the function code), AWS CloudFormation does not recognize this as a dependency
between resources. To prevent any potential errors, you would need to declare explicitly
that the function depends on the table. Thus, option C is correct.

14. E. Replacing updates results in the deletion of the original resource and the creation of a
replacement. AWS CloudFormation creates the replacement first with a new physical ID
and verifies it before deleting the original. Because of this, option E is correct (all of the
above).

15. B, C. Option A is incorrect, as it states that no interruption will occur. Options D and E
are not valid update types. Replacing updates delete the original resource and provision
a replacement. Updates with some interruption have resource downtime, but the original
resource is not replaced. Thus, options B and C are correct.

16. A. The export does not need to be removed from the stack before it can be deleted, so
option B is incorrect. Options C and D are also incorrect, as the stack does not need to be
deleted. However, the stack cannot be deleted until any other stacks that import the value
remove the import. Thus, option A is correct.

17. B, D, E. If a stack update fails for any reason, the next state would be UPDATE_ ROLLBACK_
IN_PROGRESS, which must occur before the rollback fails or completes. A stack that is
currently updating can either complete the update, fail to update, or complete and clean up
old resources. Thus, options B, D, and E are correct.

18. B. Because the stack status shows the update has completed, you know that the update
did not fail. This means that options A and D are incorrect. When a stack updates and
resources are created, they will not be deleted unless the update fails. Thus, option C is
incorrect. Old resources that are no longer required are removed during the cleanup phase.
Thus, option B is correct.

19. A, C. AWS CloudFormation currently supports JSON and YAML template formats only.

Chapter 9: Configuration as Code 903

20. E. AWS CloudFormation provides a number of benefits over procedural scripting. The risk
of human error is reduced because templates are validated by AWS CloudFormation before
deployment. Infrastructure is repeatable and versionable using the same process as applica-
tion code development. Individual users provisioning infrastructure need a reduced scope of
permissions when using AWS CloudFormation service roles. Thus, option E is correct.

21. B. Option C is incorrect because, though on-premises servers can be part of a custom
resource’s workflow, they do not receive requests directly. Options D and E are incorrect
because specific actions are not declared in custom resource properties. Option A is incor-
rect because AWS services themselves do not process custom resource requests. Specifically,
Amazon SNS topics and AWS Lambda functions can act as recipients to custom resource
requests. Thus, option B is correct.

22. C. Options A and B are incorrect because they would require interacting with other AWS
services using the AWS CLI. For certain situations, such as running arbitrary commands in
Amazon EC2 instance user data scripts, this would work. However, not all resource types
have this ability. Option D is incorrect, as this is a built-in functionality of AWS CloudFor-
mation. Option C is correct because any data that is declared in a custom resource response
is accessible to the remainder of the template using the Fn::GetAtt intrinsic function.

Chapter 9: Configuration as Code
1. E. You can raise all of the limits listed by submitting a limit increase request to AWS Support.

2. D. Option A is incorrect because instances do not attempt to download new cookbooks
when performing Chef runs. Option B is incorrect because AWS OpsWorks Stacks does not
have a concept of cookbook caching. Option C is incorrect because lifecycle events do not
allow you to specify cookbook versions. Option D is correct because after updating a cus-
tom cookbook repository, any currently online instances will not automatically receive the
updated cookbooks. To upload the modified cookbooks to the instances, you must first run
the Update Custom Cookbooks command.

3. B. Options A, C, and D are incorrect because OpsWorks Stacks provides integration with
Elastic Load Balancing to handle automatic registration and deregistration. Option B is cor-
rect as the Elastic Load Balancing layers for OpsWorks Stacks automatically register instances
when they come online and deregister them when they move to a different state. You can also
enable connection draining to prevent deregistration until any active sessions end.

4. A, B. Option C is incorrect because changing the cluster capacity will not affect service
scaling. Option D is incorrect because submitting a replacement will result in the same
behavior. If there are insufficient resources to launch replacement tasks when a service
updates, Amazon Elastic Container Service (Amazon ECS) will continue to attempt to
launch the tasks until it is able to do so. If you increase the cluster size, additional resources
add to the pool to allow the new task to start. After it has done so, the old task will termi-
nate. After it terminates, the cluster can scale back to its original size. If the downtime of
this service does not concern you, set the minimum in-service percentage to 0 percent to
allow Amazon ECS to terminate the currently running task before it launches the new one.
Thus, options A and B are correct.

904 Appendix ■ Answers to Review Questions

5. B. Options A, C, and D are incorrect because no other parties have access to the underly-
ing clusters in AWS Fargate. When you use the Fargate launch type, AWS provisions and
manages underlying cluster instances for your containers. You do not need to manage main-
tenance and patching. Thus, option B is correct.

6. A. Option B is incorrect, as this is a matter of personal preference. Option C is also incor-
rect because instances can be stopped and started individually, not only in layers at a
time. Option D is incorrect because the configure lifecycle event runs on all instances in a
stack, regardless of layer. Assigning recipes is performed at the layer level, meaning that all
instances in the same layer will run the same configuration code. Organizing instances into
layers based on purpose removes the need to add complex conditional logic. Thus, option A
is correct.

7. C. Option A is incorrect because AWS OpsWorks Stacks does not include a central Chef
Server. Option B is incorrect because storing recipes as part of an AMI would introduce
considerable complexity for regular recipe code updates. Option D is incorrect because
Amazon EC2 is not a valid storage location for cookbooks. A custom cookbook repository
location is configured for a stack. When instances in the stack are first launched, they will
download cookbooks from this location and run them as part of lifecycle events. Thus,
option C is correct.

8. A. Option B is incorrect because you cannot associate a single Amazon RDS database
instance with multiple stacks at the same time. Option C is incorrect because this approach
would require manual snapshotting and data migration that is not necessary. Option D
is incorrect. Migration of database instances between stacks is a common workflow. To
migrate an Amazon RDS layer, you must remove it from the first layer before you add it to
the second. Thus, option A is correct.

9. C. Option A is incorrect because 24/7 instances are normally recommended for constant
demand. Option B is incorrect because load-based instances are recommended for variable,
unpredictable demand changes. Option D is incorrect because On-Demand is an Ama-
zon ECS instance type, not an OpsWorks Stacks instance type. You configure time-based
instances to start and stop on a specific schedule. AWS recommends this for a predictable
increase in workload throughout a day. Thus, option C is correct.

10. B. Option A is incorrect because 24/7 instances are normally recommended for constant
demand. Option C is incorrect because time-based instances are recommended for changes
in load that are predictable over time. Option D is incorrect because Spot is an Amazon
ECS instance type, not an OpsWorks Stacks instance type. Option B is correct because
load-based instances are recommended for unpredictable changes in demand.

11. A. Option B is incorrect because the Amazon ECS service role is used to create and man-
age AWS resources on behalf of the customer. Option C is incorrect because AWS Systems
Manager is not part of Amazon ECS. Option D is incorrect because Amazon ECS auto-
mates the process of stopping and starting containers within a cluster. The Amazon ECS
agent is responsible for all on-instance tasks such as downloading container images and
starting or stoping containers. Thus, option A is correct.

Chapter 10: Authentication and Authorization 905

12. B. Option A is incorrect. Though high availability is a tenet of SOA, it is not a requirement.
Option C is incorrect because SOA does not define how development teams are organized.
Option D is incorrect because SOA does not define what should or should not be procured
from vendors. Service-oriented architecture involves using containers to implement discrete
application components separately from one another to ensure availability and durability of
each component. Thus, option B is correct.

13. D. A single task definition can describe up to 10 containers to launch at a time. To launch
more containers, you need to create multiple task definitions. Task definitions should group
containers by similar purpose, lifecycle, or resource requirements. Thus, option D is correct.

14. A. Option B is incorrect because PAT cannot be configured within your VPC (it must be
configured using a proxy instance of some kind). Option C is incorrect because containers
can be configured to bind to a random port instead of a specific one. Dynamic host port
mapping allows you to launch multiple copies of the same container listening on different
ports. Classic Load Balancers do not support dynamic host port mapping. Thus, option D
is incorrect. Option A is correct because the Application Load Balancer is then responsible
for mapping requests on one port to each container’s specific port.

15. A. Options B and C are incorrect because they do not consider the Availability Zone of
each cluster instance when placing tasks. Option D is incorrect because least cost is not a
valid placement policy. The spread policy distributes tasks across multiple availability zones
and cluster instances. Thus, option A is correct.

Chapter 10: Authentication and
Authorization
1. D. You need to use a third-party IdP as the confirmation of identity. Based on that confir-

mation, a policy can be assigned. Option A is incorrect because roles cannot be assigned to
users outside of your account. Option B is incorrect because you cannot assign an IAM user
ID to a user that is external to AWS. Option C is incorrect because it makes provisioning an
identity a manual process.

2. D. An identity provider (IdP) answers the question “Who are you?” Based on this answer,
policies are assigned. Those policies control the level of access to the AWS infrastructure
and applications (if using AWS for managed services).

Option A is incorrect; it is one of the functions of a service provider—to control access to
applications. Option B is incorrect; policies are used to control access to APIs, which is how
access to the AWS infrastructure is controlled. Option C is incorrect; identity providers do
no error checking on policy assignment.

3. A. Where possible, using multi-factor authentication (MFA) minimizes the impact of lost
or compromised credentials. Option B is incorrect in that embedding credentials is both
a security risk and makes credential administration much more difficult. Option C would
decrease the opportunity for misuse. It would not address any misuse that was a result of
internal users. Option D is a good step but not as secure as option A.

906 Appendix ■ Answers to Review Questions

4. D. If you want to use Security Assertion Markup Language (SAML) as an identity provider
(IdP), use SAML 2.0. With Amazon Cognito, you can use Google (option A), Microsoft
Active Directory (option B), and your own identity store (option C) as identity providers.

5. C. By using AWS Cloud services, such as Amazon Cognito, you are able to view the API
calls in AWS CloudTrail. Amazon CloudWatch Logs are generated if you are using Amazon
Cognito to control access to AWS resources. Option A is incorrect as AWS can act as an
IdP for non-AWS services. Option B is incorrect in that Amazon CloudWatch allows you to
monitor the creation and modification of identity pools. It will not show activity. Option D
is incorrect because the service provider assigns the policies, not the identity provider (IdP).

6. A, C. AD Connecter is easy to set up, and you continue to use the existing AD console to
do configuration changes on Active Directory. Option B is incorrect because you cannot
connect to multiple Active Directory domains with AD Connector, only a single one. AD
Connector requires a one-to-one relationship with your on-premises domains. You can
use AD Connector for AWS-created applications and services. Option D is incorrect
because AD Connector is used to support AWS services.

7. A. To use AWS Single Sign-On (AWS SSO), you must set up AWS Organizations Service
and enable all the features. AWS SSO uses Microsoft Active Directory (either AWS Man-
aged Microsoft Active Directory or Active Directory Connector [AD Connector] but
not Simple Active Directory). AWS SSO does not support Amazon Cognito. Option B is
incorrect because AWS SSO does not use SAML. Options C and D are incorrect because
you do not need to deploy either Simple AD or Amazon Cognito as a prerequisite for
using AWS SSO.

8. C. Option C is correct because GetFederationToken returns a set of temporary security
credentials (consisting of an access key ID, a secret access key, and a security token) for
a federated user. You call the GetFederationToken action using the long-term security
credentials of an IAM user. This is appropriate in contexts where those credentials can
be safely stored, usually in a server-based application. Option D is incorrect because
GetSessionToken provides only temporary security credentials. Option A is incorrect
because AssumeRole is shorter lived (the default is 60 minutes; can be extended to 720 min-
utes). Options B and D are incorrect because GetUserToken and GetSessionToken are
nonexistent APIs.

9. B. Because it is a managed service, you are not able to access the Amazon EC2 instances
directly running AWS Managed Microsoft AD. AWS Managed Microsoft AD provides for
daily snapshots, monitoring, and the ability to sync with an existing on-premises Active
Directory.

10. A. Amazon Active Directory Connector (AD Connector) allows you to use your existing
RADIUS-based multi-factor authentication (MFA) infrastructure to provide authentication.

Chapter 11: Refactor to Microservices 907

Chapter 11: Refactor to Microservices
1. B. Option B is correct because a Parallel state enables you to execute several different

execution paths at the same time in parallel. This is useful if you have activities or tasks
that do not depend on each other and can execute in parallel. This can make your workflow
complete faster. Option A is incorrect because it executes only one of the branches, not all.
Option C is incorrect because it can execute one task, not multiple. Option D is incorrect
because it waits and does not execute any tasks.

2. B. The messages move to the dead-letter queue if they have met the Maximum Receives
parameter (the number of times that a message can be received before being sent to a dead-
letter queue) and have not been deleted.

3. A. Amazon Simple Queue Service (Amazon SQS) attributes supports 256 KB messages.
Refer to Table 11.2, Table 11.3, and Table 11.4.

4. B. Option B is correct because to send a message larger than 256 KB, you use Amazon SQS
to save the file in Amazon S3 and then send a link to the file on Amazon SQS. Option A
is incorrect because using the technique in option B, this is possible. Option C is incorrect
because AWS Lambda cannot push messages to Amazon SQS that exceed the size limit of
256 KB. Option D is incorrect because it does not address the question.

5. C. Option C is correct if you need to send messages to other users. Create an Amazon
SQS queue and subscribe all the administrators to this queue. Configure an Amazon
CloudWatch event to send a message on a daily cron schedule into the Amazon SQS queue.
Option A is not correct because Amazon SQS queues do not support subscriptions. Option
B is not correct because the message is sent without any status information. Option D is not
correct because AWS Lambda does not allow sending outgoing email messages on port 22.
Email servers use port 22 for outgoing messages. Port 22 is blocked on Lambda as an antis-
pam measure.

6. A. Amazon SNS supports the same attributes and parameters as Amazon SQS. Refer to
Table 11.2, Table 11.3, and Table 11.4.

7. D. Option D is correct because there is no limit on the number of consumers as long as
they stay within the capacity of the stream, which is based on the number of shards. For a
single shard, the capacity is 2 MB of read or five transactions per second. Options A and B
are incorrect because there is no limit on the number of consumers that can consume from
the stream. Option C is incorrect because together the consumers can consume only 2 MB
per second or five transactions per second.

8. C. Option C is correct because Amazon Kinesis Data Streams is a service for ingesting
large amounts of data in real time and for performing real-time analytics on the data.
Option A is not correct because you use Amazon SQS to ingest events, but it does not pro-
vide a way to aggregate them in real time. Option B is incorrect because Amazon SNS is a
notification service that does not support ingesting. Option D is incorrect because Amazon
Kinesis Data Firehose provides analytics; however, it has a latency of at least 60 seconds.

908 Appendix ■ Answers to Review Questions

9. A. Options B, C, and D are incorrect because there are no guarantees about where the
records for Washington and Wyoming will be relative to each other. They could be on the
same shard, or they could be on different shards. Option A is correct because the records
for Washington will not be distributed across multiple shards.

10. E. Option E is correct because all the options from A through D are correct. Options A, B,
C, and D are all valid options for writing Amazon Kinesis Data Streams producers.

Chapter 12: Serverless Compute
1. D. Option D is correct because it enables the company to keep their existing AWS Lambda

functions intact and create new versions of the AWS Lambda function. When they are
ready to update the Lambda function, they can assign the PROD alias to the new version.
Option A is possible; however, this adds a lot of unnecessary work, because developers
would have to update all of their code everywhere. Option B is incorrect because moving
regions would require moving all other services or introducing latency into the architecture,
which is not the best option. Option C is possible; however, creating new AWS accounts for
each application version is not a best practice, and it complicates the organization of such
accounts unnecessarily.

2. B. At the time of this writing, the maximum amount of memory for a Lambda function is
3008 MB.

3. A. At the time of this writing, the default timeout value for a Lambda function is
3 seconds. However, you can set this to as little as 1 second or as long as 300 seconds.

4. C. Options A, B, and D are all viable answers; however, the question asks what is the best
serverless option. Lambda is the only serverless option in this scenario; therefore, option C
is the best answer.

5. D. At the time of this writing, the maximum execution time for a Lambda function is 300
seconds (5 minutes).

6. A. At the time of this writing, Ruby is not supported for Lambda functions.

7. A. At the time of this writing, the default limit for concurrent executions with Lambda is
set to 1000. This is a soft limit that can be raised. To do this, you must open a case through
the AWS Support Center page and send a Server Limit Increase request.

8. C. There are two types of policies with Lambda: a function policy and an execution policy,
or AWS role. A function policy defines which AWS resources are allowed to invoke your
function. The execution role defines which AWS resources your function can access. Here,
the function is invoked successfully, but the issue is that the Lambda function does not have
access to process objects inside Amazon S3. Option A is not correct because a function
policy is responsible for invoking or triggering the function; here, the function is invoked
and executes properly. Option B is not correct, as the scenario states that the trust policy is
valid. The execution policy or AWS role is responsible for providing Lambda with access to
other services; thus, the correct answer is option C.

Chapter 13: Serverless Applications 909

9. A. Option A is correct because Lambda automatically retries failed executions for asyn-
chronous invocations. You can also configure Lambda to forward payloads that were not
processed to a DLQ, which can be an Amazon SQS queue or Amazon SNS topic. Option B
is incorrect because a VPC network is an AWS service that allows you to define your own
network in the AWS Cloud. Option C is incorrect because this is dealing with concurrency
issues, and here you have no problems with Lambda concurrency. Additionally, concur-
rency is enabled by default with Lambda. Option D is incorrect because Lambda does sup-
port SQS.

10. C. Option C is correct because the environment variables enable you to pass settings
dynamically to your function code and libraries without changing your code. Option A is
not correct, because dead-letter queries are used for events that could not be processed by
Lambda and need to be investigated later. Option B is not correct because it can be done.
Option D is incorrect because this can be accomplished through environment variables.

Chapter 13: Serverless Applications
1. D. Option A is incorrect. While AWS CloudFormation can help you provision infrastruc-

ture, AWS Serverless Application Model (AWS SAM) is optimized for deploying AWS
serverless resources by making it easy to organize related components and resources that
operate on a single stack; therefore, option A is not the best answer. Option C is incor-
rect because AWS OpsWorks is managed by Puppet or Chef, which you can use to deploy
infrastructure. However, these are not the optimal answers given that you are specifically
looking for serverless technologies. The same is true for Ansible in option B. Option D is
correct because AWS SAM is an open-source framework that you can use to build serverless
applications on AWS.

2. B. CORS is responsible for allowing cross-site access to your APIs. Without it, you will
not be able to call the Amazon API Gateway service. You use a stage to deploy your API,
and a resource is a typed object that is part of your API’s domain. Each resource may have
an associated data model and relationships to other resources and can respond to different
methods. Option A is incorrect because you do need to enable CORS. Option B is cor-
rect because CORS is responsible for allowing one server to call another server or service.
For more information on CORS, see: https://developer.mozilla.org/en-US/docs/
Web/HTTP/CORS. Option C is incorrect, as deploying a stage allows you to deploy your
API. Option D is incorrect, as a resource is where you can define your API, but it is not yet
deployed to a stage and “live.”

3. A, C. There are three benefits to serverless stacks: no server management, flexible scaling,
and automated high availability. Costs vary case by case. For these reasons, option A and
option C are the best answers.

4. D. Option A is incorrect; API Gateway only supports HTTPS endpoints. Option B is
 incorrect because API Gateway does not support creating FTP endpoints. Option C
is incorrect; API Gateway does not support SSH endpoints. API Gateway only creates
HTTPS endpoints.

910 Appendix ■ Answers to Review Questions

5. C. Option A is incorrect because Amazon CloudFront supports a variety of sources,
including Amazon S3. Option B is incorrect, because serverless applications contain both
static and dynamic data. Additionally, CloudFront supports both static and dynamic data.
Option C is correct because CloudFront supports a variety of origins. For the serverless
stack, it supports Amazon S3. Option D is incorrect because Amazon S3 is a valid origin
for CloudFront.

6. D. Option A, option B, and option C are each not the only language/platform supported.
Option D is correct because all of these languages/platforms are supported.

7. C. Option C is correct because Amazon Cognito supports SMS-based MFA.

8. D. Options A, B, and C are incorrect because Amazon Cognito supports device tracking
and remem bering.

9. A. Option A is correct because the events property allows you to assign Lambda to an
event source. Option B is incorrect because handler is the function handler in an Lambda
function. Option C is incorrect because context is the context object for a Lambda func-
tion. Option D is incorrect because runtime is the language that your Lambda function
runs as.

10. D. Option A is incorrect. You can run React in an AWS service. Option B is incorrect. You
can run your web server with Amazon S3. With option C, you do not need to load balance
Lambda functions because Lambda scales automatically. Option D is correct. You can run
a fully dynamic website in a serverless fashion. You can also use JavaScript frameworks
such as Angular and React. The NoSQL database may need to be refactored to run in
Amazon DynamoDB.

Chapter 14: Stateless Application
Patterns
1. B. Option B is correct because the maximum size of an item in an DynamoDB table is

400 KB. Option C is incorrect because 4 KB is the capacity of a strongly consistent read
per second, or two eventually consistent reads per second, for an item up to 4 KB in size.
Option D is incorrect because 1,024 KB is not the size limit of an DynamoDB item. The
maximum item size is 400 KB.

2. C. Option C is correct because when creating a new bucket, the bucket name must be glob-
ally unique. Option A is incorrect because versioning is disabled by default. Option B is incor-
rect because the maximum size for an object stored in Amazon S3 is 5 TB, not 5 GB. Option
D is incorrect because you cannot change a bucket name after you have created the bucket.

3. B. Option B is correct because storage class is the only factor that is not considered when
determining which region to choose. Option A is incorrect because latency is a factor
when choosing a bucket region. Option C is incorrect because prices are different between
regions; thus, you might consider cost when choosing a bucket region. Option D is incorrect
because you may be required to store your data in a bucket in a particular region based on
legal requirements or compliance.

Chapter 14: Stateless Application Patterns 911

4. C. Option C is correct because the recommended technique for protecting your table data
at rest is the server-side encryption. Option A is incorrect because fine-grained access con-
trols are a mechanism for providing access to resources and API calls, but the mechanism is
not used to encrypt or protect data at rest. Option B is incorrect because TLS protects data
in transit, not data at rest. Option D is incorrect because client-side encryption is applied to
data before it is transmitted from a user device to a server.

5. D. Option D is correct because versioning-enabled buckets enable you to recover objects
from accidental deletion or overwrite. Option A is incorrect because lifecycle policies are
used to transition data to a different storage class and do not protect objects against acci-
dental overwrites or deletions. Option B is incorrect because enabling MFA Delete on the
bucket requires an additional method of authentication before allowing a deletion. Option
C is incorrect because using a path-style URL is unrelated to protecting overwrites or acci-
dental deletions.

6. C, D. Options C and D are correct because Amazon S3 stores objects in buckets, and each
object that is stored in a bucket is made up of two parts: the object itself and the metadata.
Option A is incorrect because Amazon S3 stores data as objects, not in fixed blocks. Option
B is incorrect because the size limit of an object is 5 TB.

7. C. Option C is correct because DynamoDB Streams captures a time-ordered sequence of
item-level modifications in any DynamoDB table, and the service stores this information in
a log for up to 24 hours. Options A, B, and D are incorrect because
24 hours is the maximum time that data persists on an Amazon DynamoDB stream.

8. B. Option B is correct because DynamoDB Streams ensures that each stream record
appears exactly once in the stream. Options A and C are incorrect because each stream
record appears exactly once. Option D is incorrect because you cannot set the retention
period.

9. A. Option A is correct because your bucket can be in only one of three versioning states:
versioning-enabled, versioning-disabled, or versioning-suspended. Thus, versioning-paused
is a state that is not a valid configuration. Options A, B, and C are incorrect—they are all
valid bucket states for versioning.

10. A. Option A is correct because QueryTable is the DynamoDB operation used to find items
based on primary key values. Option B is incorrect because UpdateTable is the DynamoDB
operation used to modify the provisioned throughput settings, global secondary indexes,
or DynamoDB Streams settings for a given table. Option C is incorrect because DynamoDB
does not have a Search operation. Option D is incorrect because Scan is the DynamoDB
operation used to read every item in a table.

11. A, B, C. Option D is incorrect because when compared to the other options, a bank
balance is not likely to be stored in a cache; it is probably not data that is retrieved as
frequently as the others are fetched. Options A, B, and C are all better data candidates
to cache because multiple users are more likely to access them repeatedly. Although, you
could also cache the bank account balance for shorter periods if the database query is not
performing well.

912 Appendix ■ Answers to Review Questions

12. A, D. Options A and D are correct because Amazon ElastiCache supports both the Redis
and Memcached open-source caching engines. Option B is incorrect because MySQL is
not a caching engine—it is a relational database engine. Option C is incorrect because
Couchbase is a NoSQL database and not one of the caching engines that ElastiCache
supports.

13. C. Option C is correct because the default limit is 20 nodes per cluster.

14. C. Option C is correct because ElastiCache is a managed in-memory caching service.
Option A is incorrect because the description aligns more closely to the Elasticsearch
Service. Option B is incorrect because this is not an accurate description of the ElastiCache
service. Option D is incorrect because, as a managed service, ElastiCache does not manage
Amazon EC2 instances.

15. B, D, E. Option B is correct because DynamoDB is a NoSQL low-latency transactional
database that you can use to store state. Option D is correct because Amazon Elastic File
System (Amazon EFS) is an elastic file system that you can also use to store state. Option E
is correct because ElastiCache is an in-memory cache that is also a good solution for storing
state. Option A is incorrect because Amazon CloudFront is a content delivery network that
is used more for object caching, not in-memory caching. Option C is incorrect because
Amazon CloudWatch is a metric repository and does not provide any kind of user-accessible
storage. Option F is incorrect because Amazon SQS is used for exchanging messages.

16. C. Option C is correct because Amazon DynamoDB is a nonrelational database that deliv-
ers reliable performance at any scale. Option A is incorrect because Amazon S3 Glacier is
for data archiving and long-term backup. It is also an object store and not a database store.
Option B is incorrect because Amazon RDS is designed for relational workloads. Option D
is incorrect because Amazon Redshift is a data warehousing service.

17. D. Option D is correct because local secondary indexes on a table are created when the
table is created. Options A and C are incorrect because you can have five local secondary
indexes or five global secondary indexes per table. Option B is incorrect because you can
create global secondary indexes after you have created the table.

Chapter 15: Monitoring and
Troubleshooting
1. B. Option A is incorrect because you do not want to scale in to reduce your capacity when

you are experiencing a high load. Option C is incorrect because you do not want to scale in
to reduce your capacity when your application is taking a long time to respond. Option D
is incorrect because metrics are required for triggering AWS Auto Scaling events. Option B
is correct because scaling out should occur when more resources are being consumed than
normal, and scaling in should occur when less resources are being consumed.

Chapter 15: Monitoring and Troubleshooting 913

2. D. Options A, B, C, and D are all incorrect because data points with a period of 300 sec-
onds are stored for 63 days in Amazon CloudWatch.

3. D. Option A is incorrect because AWS CloudTrail events show who made the request.
Option B is incorrect because CloudTrail shows when the request was made, and option C
is incorrect because CloudTrail shows what was requested. Option E is incorrect because
CloudTrail shows what resource was acted on. Option D is correct because CloudTrail can
provide no insight into why a request was made.

4. C. Option A would work; however, it is not the most cost-effective way because logs stored
in CloudWatch cost more than logs stored in Amazon S3. Option B is incorrect because
CloudWatch cannot ingest logs without access to your servers. Option C is correct because
archiving logs from CloudWatch to Amazon S3 reduces overall data storage costs.

5. A, B, D. Option C is incorrect because CloudWatch has no way to access data in your
applications or servers. You must push the data either by using the CloudWatch SDK or
AWS CLI or by installing the CloudWatch agent. Option A is correct because the Cloud-
Watch agent is required to send operating system and application logs to CloudWatch.
Option B is likewise correct because metrics logs are sent to CloudWatch using the
PutMetricData and PutLogEvents API actions. Option D is also correct because the
AWS CLI can be used to send metrics to CloudWatch using the put-metric-data and
put-log-events commands.

6. C. Options A and B are incorrect because the strings must match a filter pattern equal to
404. Option C is correct because 404 matches the error code present in the example logs.

7. A. AWS X-Ray color-codes the response types you get from your services. For 4XX, or
client-side errors, the circle is orange. Thus, option B is incorrect. Application failures
or faults are red, and successful responses, or 2XX, are green. Thus, options C and D
are incorrect. For throttling, or 5XX series errors, the circle is purple. Thus, option A is
correct.

8. C. Option A is incorrect because CloudTrail logs list security-related events and do not
provide a dashboard feature. Option B is incorrect because CloudWatch alarms are used
to notify you when something isn’t operating based on your specifications. Option D is
incorrect because Amazon CloudWatch Logs are for sending and storing server logs to the
CloudWatch service; however, you could use these logs to create a metric and then place
it on the CloudWatch dashboard. Option C is the correct answer. Use CloudWatch dash-
boards to create a single interface where you can monitor all the resources.

9. D. CloudTrail stores the CloudTrail event history for 90 days; however, if you would like
to store this information permanently, you can create an CloudTrail trail, which stores the
logs in Amazon S3.

10. D. Option C is incorrect because the LookupEvents API action can be used to query event
data. Options A and B are also incorrect because the AWS CLI and the AWS Management
Console use the same CloudTrail APIs to query event data. Thus, option D is correct.

914 Appendix ■ Answers to Review Questions

11. B, D. Management events are operations performed on resources in your AWS account.
Data events are operations performed on data stored in AWS resources. For example,
modifying an object in Amazon S3 would qualify as a data event, and changing a bucket
policy would qualify as a management event. Because options A, C, and E involve sending
or receiving data, not modifying or creating AWS resources, they are data events. Thus,
options B and D are correct.

12. A, C, D. When installing the CloudWatch Logs agent, no additional networking con-
figuration is required as long as your instance can reach the CloudWatch API endpoint.
Therefore, option B is incorrect. You can use AWS Systems Manager to install and start the
agent, but it is not required to install the Systems Manager agent alongside the CloudWatch
Logs agent; thus, option E is incorrect. When installing the agent, you must configure the
specific logs to send. The agent must be started before new log data is sent to CloudWatch
Logs.

13. A. CloudWatch alarms support triggering actions in Amazon EC2, EC2 Auto Scaling,
and Amazon SNS. Thus, options B, C, and D are incorrect. It is possible to trigger AWS
Lambda functions from an alarm, but only by first sending the alarm notification to an
Amazon SNS topic. Thus, option A is correct.

14. D. CPU, network, and disk activity are metrics that are visible to the underlying host for an
instance. Thus, options A, B, and C are incorrect. Because memory is allocated in a single
block to an instance and is managed by the guest OS, the underlying host does not have
visibility into consumption. This metric would have to be delivered to CloudWatch as a
custom metric by using the agent. Thus, option D is correct.

15. A. No namespace starts with an Amazon prefix; therefore, options B and D are incorrect.
Option C is incorrect because namespaces are specific to a service (Amazon EC2), not a
resource (an instance). Option A is correct because the Amazon EC2 service uses the AWS
prefix, followed by EC2.

Chapter 16: Optimization
1. D. Amazon EC2 instance store is directly attached to the instance, which gives you the

lowest latency between the disk and your application. Instance store is also provided at no
additional cost on instance types that have it available, so this is the lowest-cost option.
Additionally, because the data is being retrieved from somewhere else, it can be copied
back to an instance as needed. Option A is incorrect because Amazon S3 cannot be directly
mounted to an Amazon EC2 instance. Options B and C are incorrect because Amazon EBS
and Amazon EFS would be higher-cost options, with a higher latency than an instance
store.

2. C. GetItem retrieves a single item from a table. This is the most efficient way to read a
single item because it provides direct access to the physical location of the item. Options A
and B are incorrect. Query retrieves all the items that have a specific partition key. Within
those items, you can apply a condition to the sort key and retrieve only a subset of the

Chapter 16: Optimization 915

data. Query provides quick, efficient access to the partitions where the data is stored. Scan
retrieves all of the items in the specified table, and it can consume large amounts of system
resources based on the size of the table. Option D is incorrect. DynamoDB is a nonrela-
tional NoSQL database, and it does not support table joins. Instead, applications read data
from one table at a time.

3. C. Option C is a fault-tolerance check. By launching instances in multiple Availability
Zones in the same region, you help protect your applications from a single point of failure.
Options A and B are performance checks. Provisioned IOPS volumes in the Amazon
EBS are designed to deliver the expected performance only when they are attached to an
Amazon EBS optimized instance. Some headers, such as Date or User-Agent, significantly
reduce the cache hit ratio (the proportion of requests that are served from a CloudFront
edge cache). This increases the load on your origin and reduces performance because
CloudFront must forward more requests to your origin. Option D is a cost check. Elastic IP
addresses are static IP addresses designed for dynamic cloud computing. A nominal charge
is imposed for an Elastic IP address that is not associated with a running instance.

4. B. Options A, C, and D are incorrect because partition keys used in these options could
cause “hot” (heavily requested) partition keys because of lack of uniformity. Design your
application for uniform activity across all logical partition keys in the table and its second-
ary indexes. Use distinct values for each item.

5. D. Option A is incorrect because SQS is a messaging service. Option B is incorrect because
SNS is a notification service. Option C is incorrect because CloudFront is a web distribu-
tion service. Option D is correct because ElastiCache improves the performance of your
application by retrieving data from high throughput and low latency in-memory data
stores. For details, see https://aws.amazon.com/elasticache.

6. C. Option C is correct because CloudFront optimizes performance if your workload is
mainly sending GET requests. There are also fewer direct requests to Amazon S3, which
reduces cost. For details, see https://docs.aws.amazon.com/AmazonS3/latest/dev/
request-rate-perf-considerations.html.

7. D. Option A is incorrect because AWS Auto Scaling is optimal for unpredictable work-
loads. Option B is incorrect because cross-region replication is better for disaster recovery
scenarios. Option C is incorrect because DynamoDB streams are better suited to stream
data to other sources. Option D is correct because Amazon DynamoDB Accelerator (DAX)
provides fast in-memory performance. For details, see https://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/DAX.html.

8. C. Option A is incorrect because EC2 instance store is too volatile to be optimal. Option
B is incorrect because this is a security solution and will not impact performance positively.
Option C is correct because ElastiCache is ideal for handling session state. You can abstract
the HTTP sessions from the web servers by using Redis and Memcached. Option D is
incorrect because compression is not the optimal solution given the choices. For details, see
https://aws.amazon.com/caching/session-management/.

9. B. Option B is correct because lazy loading only loads data into the cache when necessary.
This avoids filling up the cache with data that isn’t requested. Options A, C, and D are

916 Appendix ■ Answers to Review Questions

incorrect because they do not match the requirement of the question. For details, see
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/
Strategies.html.

10. A. Option A is correct because information about the instance, such as private IP, is stored
in the instance metadata. Option B is incorrect because private IP information is not
stored in the instance user data. Option C is incorrect because running ifconfig is manual
and not automated. Option D is incorrect because it is not clear on what type of instance
the application is running. For details, see https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/ec2-instance-metadata.html.

11. D. Options A, B, and C are incorrect because they are not recommended best practices.
Option D is correct because it is one of the recommendations in the best practices docu-
mentation, “Avoid using recursive code.” For details, see https://docs.aws.amazon.com/
lambda/latest/dg/best-practices.html.

12. C. Option A is incorrect because changing the entire architecture is not ideal. Option B is
incorrect because Multi-AZ is used for fault tolerance. Option C is correct because loads
can be reduced by routing read queries from your application to the read replica. Option D
is incorrect because using an Elastic Load Balancing load balancer will not reduce the query
load. For details, see https://aws.amazon.com/rds/details/read-replicas/.

13. C. Option A is incorrect because this is relevant only when you need a static website.
Option B is incorrect because changing the storage class does not help with latency. Option
C is correct because cross-region replication maintains object copies in regions that are
geographically closer to your users, reducing latency. Option D is incorrect because
encryption is necessary only for securing data at rest. For details, see https://docs.aws
.amazon.com/AmazonS3/latest/dev/crr.html.

14. B. Options A, C, and D are incorrect because they are not optimal for handling large
object uploads to Amazon S3. Option B is correct because a multipart upload enables
you to upload large objects in parts to Amazon S3. For details, see https://docs
.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html.

15. C. Option A is incorrect because this is not the optimal approach for bootstrapping. Option B
is incorrect because, while possible, bootstrapping in the user data is optimal. Option C is
correct because instance user data is used to perform common automated
configuration tasks and run scripts after boot. Option D is incorrect because
bootstrapping is done in instance user data, not instance metadata. For details, see
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html.

A
accelerated computing instances, 39
access control

Amazon DynamoDB, IAM policy and,
732–735

Amazon EFS (Elastic File System), 776
Amazon S3

ACLs (access control lists), 124
bucket policies, 123
defense in depth, 124–125
user policies, 123–124

ElastiCache, 747
access keys, 14, 16

KMI (key management infrastructure),
263

ACLs (access control lists), 58–61, 105, 124
AD Connector (Active Directory Connector),

506–507
AD DS (Active Directory Domain

Services), 506
ADM (Amazon Device Messaging), 537
Advanced Message Queuing Protocol.

See AMQP
AES-256 (Advanced Encryption Standard),

95, 120. 187, 261, 263, 271, 272, 731
AFR (annual failure rate), 93
ALB (Application Load Balancer), 287, 479
all-at-once deployment, 300
Amazon API Gateway, 623, 627–628

Amazon CloudWatch and, 632–633
API keys, 631
authorizers, 630
AWS Lambda, integration, 631
CORS (cross-origin resource sharing), 631
definition support, 634
endpoints, 628
HTTP methods, 630
monitoring metrics, 807
OpenAPI specification, 634
resources, 629
RESTful APIs, 631
security, 633–634
stages, 630

Amazon Aurora
automatic scaling, 848
databases, 176
DB clusters, 190–191

cluster volume, 191
instances, 191

global databases, 192
serverless, 192

Amazon Aurora Serverless, 642–643
Amazon CloudFront

AWS Elastic Beanstalk and, 297–298
content delivery, 626–627

Amazon CloudWatch, 189–190
alarms, 814–817
Amazon API Gateway and, 632–633
Amazon SQS, queue monitoring

and, 533
AWS Lambda functions, 602–603
cases, 800
cost management and, 867
dashboards, 817–818
log aggregation, 811–812
log processing, 814
log searches, metric filters, 812–814
metrics

aggregations, 804
Amazon API Gateway, 807
Amazon DynamoDB, 806
Amazon EC2, 805
Amazon Lambda, 807
Amazon S3, 806
Amazon SNS, 808
Amazon SQS, 808
AWS Auto Scaling groups, 805
built-in, 802
custom, 808–810
data points, 802–803
Elastic Load Balancing, 804
repository, 801
statistics, 803–804
statistics retrieval, 810–811

microservices, 521
monitoring, 798
performance monitoring, 868

Index

AWS® Certified Developer Official Study Guide
By Nick Alteen, Jennifer Fisher, Casey Gerena, Wes Gruver, Asim Jalis,
Heiwad Osman, Marife Pagan, Santosh Patlolla and Michael Roth

 Amazon Web Services, Inc.

918 Amazon Cognito – Amazon DynamoDB

Amazon Cognito, 498, 505
Amazon SNS, endpoints, 539
authentication

device tracking, 636–637
identity pools, 639
multi-factor authentication (MFA), 636
password policies, 636
SDK, 639–640
SMS messages, 636
UI (user interface) customization,

637–639
user pools, 634–635

authorizers, 630
Amazon Device Messaging (ADM), 537
Amazon DynamoDB, 569, 664

access control, fine grained, 214–216
adding to tables, 692
atomic counters, 715
attribute projects, 687–688
attributes, 197, 198–199, 669
AWS Auto Scaling, 848
automatic scaling, 707–711
backfilling, 693
backups, on-demand, 216, 737
base table, 688–689
best practices, 216–217
burst capacity, 682, 710
condition keys, 735–736
conditional writes, 716–717, 721
control plane operations, 678
data plane operations, 679–680
data retrieval, 209–212
data types, 669–671
deleting databases, 694
encryption, 216
encryption at rest, 730–732
error handling, 720, 721
expressions, 724–729
global secondary indexes, 686–687
hash attribute, 665
IAM and, 214–216
index key violations, 694
index name, 688–689
item attributes, 722–723
items, 198, 669, 715
local secondary indexes, 694–700
managing, 691
monitoring metrics, 806
nonrelational database, 177

NoSQL databases, 177
object persistent model, 214
optimistic locking, 713–714
partition key, 665–668
partitions, 197, 711–713
permissions, IAM policy conditions,

732–735
PITR (point-in-time-recovery),

738–739
primary key, 199–200, 665–666
provisioned throughput, 689–690
queries, 688

filter expressions, 730
key condition expressions,

729–730
read consistency, 730

range attributes, 666
read capacity units, 690
read consistency, 206, 207
read/write throughput, 207, 672–673

adaptive capacity, 209
burst capacity, 209
on-demand, 208
provisioned throughput, 208
RCU (read capacity unit), 207
reserved capacity, 208
WCU (write capacity unit), 207–208

resource allocation, 693
restore, point-in-time recovery, 216
restores, on-demand, 737–738
return values, 680–681
scanning, 688–689
secondary indexes, 201, 665, 683

alternate key, 684
base table, 683
configuration, 685
global secondary indexes, 202–205,

682, 684
local secondary indexes, 201–202,

204–205, 682, 684
shards, 668
sort key, 666
state, 665, 678
status in table, 692
streams, 205
synchronizing, 689
tables, 197, 198, 665, 672

creating, 691–692
global, 212–213

Amazon DynamoDB Local downloadable database – Amazon ECS 919

names, 665
replica, 213
state, 678

tags, 714–715
throttle capacity, 682
throughput, provisioned, 672

capacity, reads/writes, 672–673
capacity unit consumption, 674–675
item sizes, 674–675
reads capacity unit (RCU)

consumption, 675–676
settings, 674
writes capacity unit (WCU)

consumption, 676–678
TTL (time to live), 719–720
version number, 713–714
write capacity units, 690
write cost, 690–691

Amazon DynamoDB Local downloadable
database, 214

Amazon DynamoDB Streams, 665
API (application programming interface),

705
AWS Lambda triggers, 706–707
concurrency, 547
consumers, 546–547
cross-region replication, 701
data, retention limit, 705
endpoints, 701–702
Kinesis Adapter, 703–704
shards, 547
stream records, 700–701

shards, 703
streams, 702–704
use case, 546

Amazon EBS (Elastic Block Store), 40, 93,
155, 157, 158

Amazon EFS comparison, 144
Amazon S3 comparison, 144
AWS OpsWorks Stacks, layers, 454
block storage, 87
Elastic Volumes, 94–95
encryption, 95–96, 265, 274
HDD (hard disk drive)-backed

volumes, 93
SSD comparison, 94

instance store comparison, 143–144
performance optimization, 95–97
snapshots, 95

SSD (solid-state drive)-backed volumes,
93–94

storage, persistent, 40–41
storage optimization, 855–857
troubleshooting, 97
use cases, 94

Amazon EC2 (Elastic Compute Cloud), 38,
67, 91, 158, 235–236, 587

AD DS (Active Directory Domain
Services), 506

Amazon VPC and, 67
answers to review questions, 887–890
Auto Scaling, 847–848
Availability Zones, 38
bare-metal access, 38
elastic network interfaces, 42
instance store, 97–99, 155
instance types, 39
instances

accelerated computing, 39
access, 43
CloudWatch, 50
compute optimized, 39
connecting to, 45–46
families, 39
general purpose, 39
key pairs, 43
lifecycle, 43–44
memory optimized, 39
monitoring, 50
storage optimized, 39

metadata, IMDS, 47–48
monitoring metrics, 805
on-premises AppSpec, 362–366
on-premises configuration, 359–361
primary network interfaces, 42
private IP addresses, 42
public IP addresses, 42
RDP (Remote Desktop Protocol) and, 43
security groups, 42
users, default, 43
VPC, default, 42
webpages, custom, 49–50

Amazon ECR (Elastic Container
Repository), 476, 481, 487

Amazon ECS (Elastic Container Service),
38, 446

Amazon ECR, 476, 481
architecture, 473–474

920 Amazon ECS Service Discovery – Amazon RDS (Relational Database Service)

AWS CodePipeline and, 321,
482–483

AWS Fargate, 475–476, 484
clusters, 472–475, 486
container agent, 481
containers, 476

deployment, 471–472
task definition, 477–478

Docker, 471, 473, 474, 484
Docker containers, 476, 481
images, 476, 481
overview, 472
service limits, 482
services, 478–479
task definition, 476–478
task scheduling, 479–480

Amazon ECS Service Discovery, 480
Amazon EFS (Elastic File System), 136–137,

157, 773
access control, 776
Amazon EBS comparison, 144
Amazon S3 comparison, 144
authentication, 776
AWS DataSync, 139–140
AWS DX (Direct Connect) and,

775–776
data consistency, 776
file storage, 87
file sync, 139
file system, 137, 778–779
file system access, 137–139
IAM, user creation, 777
performance, 140–141, 779–780
resources, 777
scaling, throughput scaling, 780–781
security, 141–142
VPC, 773–775

Amazon EKS (Elastic Container Service for
Kubernetes), 38

Amazon Elastic Container Service, 325
Amazon ElastiCache. See ElastiCache
Amazon EMR

encryption, 267–268
S3DistCp, 272

Amazon Kinesis, 86
Amazon Kinesis Data Analytics,

544–545, 569

Amazon Kinesis Data Firehose, 151–152,
158, 543–544, 569

Amazon Kinesis Data Streams, 540, 569
applications, 541
consumer options, 543
data blob, 541
Fluentd, 542
Flume, 542
Kinesis Video Streams, 542
messages, deleting, 541
open source tools, 542
partition key, 541
producers, 542–543
real-time analytics, 542
streams, names, 541
throughput, 541–542

Amazon Kinesis Video Streams, 545, 569
Amazon Lambda, monitoring metrics, 807
Amazon Lightsail, 38
Amazon Machine Image. See AMI (Amazon

Machine Image
Amazon MQ, 570

active/standby broker for high
availability, 550

AMQP (Advanced Message Queuing
Protocol), 551

single-instance broker, 550
Amazon Neptune, 231–232

graph database, 177
Amazon Polly, 5, 11–12
Amazon QLDB (Quantum Ledger

Database), ledger database, 177
Amazon RDS (Relational Database Service),

55, 180, 238, 274
Amazon Aurora, 190–192
Amazon CloudWatch, 189–190
availability, 181–182
AWS Elastic Beanstalk and, 298
backups, 181, 185–186
best practices, 192–194
configuration, 181
database migration, 489
encryption, 187–188, 266–267
engines, 182–185
hosting and, 182
IAM DB authentication, 188–189
instances, 464

Amazon Redshift – Amazon S3 Glacier 921

Multi-AZ, 186–187, 238
procurement, 181
relational databases, 177
security, 181–182

implementing, 193–194
Amazon Redshift

256-abit AES keys, 272
architecture, 220–222
AWS CloudHSM cluster master key, 272
AWS KMS cluster master key, 272–273
data warehouse, 177
loading data, 224
querying data, 224
Redshift Spectrum, 225–226
security, 224–225
snapshots, 224
table, 222–224

Amazon Resource Name. See ARN
(Amazon Resource Name)

Amazon Route 53, domain names, 625–626
Amazon S3 (Simple Storage Service), 10, 64,

157, 747, 782
access control, 123–125
Amazon EBS comparison, 144
Amazon EFS comparison, 144
authentication, 129
AWS CLI, 128
AWS CodePipeline and, 321
AWS Elastic Beanstalk and, 297
AWS explorers, 128
AWS SDKs, 128
buckets, 99–105, 155–156, 748–760
consistency model, 114–118, 755–756
CORS (cross-origin resource sharing),

107–108
CRR (cross-region replication), 127–128
data consistency, 156
data lake architecture, 129–130
encryption, 156, 264–265, 274

client-side, 121–123
data protection, 760
envelope encryption, 119–120
server-side, 271, 760
SSE (Server-Side Encryption), 120–121

lifecycle configuration, 157
MFA Delete, 127
monitoring metrics, 806

object operations, 108–109, 765–770
object storage, 87
object tagging, key-value pairs, 106
objects, 105, 761–765, 769, 783
performance, 130–134

Amazon CloudFront, 133
GET requests and, 772
multipart uploads, 133
object key naming, 131–132
range GETs, 133
request rate and, 770–771
TCP scaling, 133–134
TCP selective acknowledgment,

133–134
transfer acceleration, 132–133
workloads and, 130, 771–772

presigned URLs, 118
query string authentication, 125

pricing, 134
query string authentication, 125–126
requests, 129
serverless applications, 129
stateless applications, 129
static website, 126, 156, 623–624
storage classes, 156

Amazon S3 Glacier, 111–113
Amazon S3 Standard, 109–110
comparison, 114
frequently access objects, 757–758
GLACIER, 759
infrequently access objects, 758
OneZone_IA, 111
RRS (Reduced Redundancy

Storage), 110
RTO (recovery time objective), 111
setting, 759
Standard_IA, 110

storage optimization, 853–855
uses, 155
values, large attribute, 772
VPC (virtual private cloud) endpoints,

128
web server, 622–623
web traffic logs, 624–625

Amazon S3 Glacier, 157
archives, 112–113
AWS SDKs, 112–113

922 Amazon SNS (Simple Notification Service) – Amazon VPC (Virtual Private Cloud)

encryption, 113
object storage, 87
objects, restoring, 113
RTO (recovery time objective), 111
Vault Lock, 111–112
vaults, 111

Amazon SNS (Simple Notification Service),
325, 534, 569

Amazon SQS comparison, 540
API owner operations

AddPermission, 536
CreateTopic, 536
DeleteTopic, 536
GetTopicAttributres, 536
ListSubscriptions, 536
ListSubscriptionsByTopic, 536
ListTopics, 536
RemovePermission, 536
SetTopicAttributes, 536

API subscriber operations
ConfirmSubscription, 537
ListSubscriptions, 537
Subscribe, 537
UnSubscribe, 537

APIs, clean up, 537
billing, 539–540
clients, 534–535
device tokens, 538–539
DLQ (dead letter queue), 599
endpoints, 535

Amazon Cognito, 539
mobile, 538
proxy server, 539

Free Tier, 539–540
limits, 539–540
messages, topics, 534
mobile, 537–539
monitoring metrics, 808
registration IDs, 538–539
restrictions, 539–540
subscriptions, 534
topics, 534, 536
transport protocols

email, 537
Email-JSON, 537
HTTP, 537
HTTPS, 537

workflow, 535

Amazon SQS (Simple Queue Service), 294,
523, 569

Amazon SNS comparison, 540
ChangeMessageVisibility action, 527
consumers, 523
DelaySeconds action, 528
DeleteMessage action, 528
distributed cluster of servers, 525
DLQ (dead letter queue), 599
log server, 524
MessageRetentionPeriod action, 528
messages

attributes, 532
storage, 525–526

monitoring metrics, 808
producers, 523
queue, 525

Amazon CloudWatch and, 533
dead-letter, 531–532
dead-letter queue, 528–530
dead-letter troubleshooting, 531
FIFO (first-in, first-out), 526, 529–530
SSE settings, 533
standard, 526
standard queues, 529–530

ReceiveMessage action, long
polling, 526

ReceiveMessageWaitTimeSeconds
action, 527

responses, 523
servers, distributed cluster, 525
VisibilityTimeout action, 526
WaitTimeSeconds, 527

Amazon Timestream, time series
database, 177

Amazon VPC (Virtual Private Cloud), 38,
67, 268–269

CIDR notation, 51
connection types, 52
default, 42
DHCP (Dynamic Host Configuration

Protocol), 63
IP addresses, 52–53
NAT (network address translation),

61–63
network ACLs (access control lists),

58–61
network traffic monitoring, 64

AMI (Amazon Machine Image) – Auto Scaling 923

route tables, 55–56
security groups, 56–58
stacks, AWS OpsWorks Stacks, 453
subnets, 54–55

AMI (Amazon Machine Image), 41–42,
506, 593

Amazon EBS and, 97
AWS Elastic Beanstalk, 306

AMQP (Advanced Message Queuing
Protocol), 551

AFR (annual failure rate), 93
API keys, 631
APIs (application programming interfaces), 2

Amazon SNS
AddPermission, 536
ConfirmSubscription, 537
CreateTopic, 536
DeleteTopic, 536
GetTopicAttributres, 536
ListSubscriptions, 536, 537
ListSubscriptionsByTopic, 536
ListTopics, 536
RemovePermission, 536
SetTopicAttributes, 536
Subscribe, 537
UnSubscribe, 537

answers to review questions,
886–887

AWS Lambda functions, 589
AWS STS

AssumeRole, 503
AssumeRoleWithSAML, 504
AssumeRoleWithWebIdentity, 504
DecodeAuthorizationMessage, 504
GetCallerIdentity, 504
GetFederationToken, 504
GetSessionToken, 505

control plane, 497
credentials, 14–15

assigning, 48
endpoints, 10–12, 13
microservices, 521
requests, 6
responses, 7

APNS (Apple Push Notification Service),
537, 538–539

Application Load Balancer (See ALB
(Application Load Balancer)

applications
Amazon Kinesis Data Streams, 541–542
Amazon S3, 129
AWS OpsWorks Stacks, 459–460
capacity, 289
deployment, 288–289
mapping to AWS database service, 178
running on instances, 44–50
serverless, 129, 622
stateless, 129

AppSpec configuration file, 299
architecture

data lake, 129–130
three-tier, 282

versus serverless stack, 640–642
ARN (Amazon Resource Name), 22–23

Amazon SNS, 536
AWS Lambda functions, 600

attributes, nested, 722–723
authentication

Amazon Cognito and, 634–640
answers to review questions, 905–907
versus authorization, 496
control planes, 497
federation, 496
IAM, 19–20
MFA (multi-factor authentication),

15–16, 636
RDP, 497
SSH, 497

authoritative data, 90
authorization, 497–498

answers to review questions,
905–907

versus authentication, 496
AWS SSO (Single Sign-On),

500–501
control planes, 497
cross-account access, 499
federation, 496
IAM, 19–20
permissions policy, 499
RDP, 497
source accounts, 499
SSH, 497
target accounts, 499
trust policy, 499

Auto Scaling, 845–849

924 Availability Zones – AWS CloudTrail

Availability Zones, 705
Amazon EC2 (Elastic Compute

Cloud), 38
AWS Region, 9, 10

AWS (Amazon Web Services)
cloud services, calling, 5–9
resource management, 4
SOAP support, 128–129

AWS Amplify JavaScript library, 128
AWS ASG (Auto Scaling Group), 383
AWS Auto Scaling, 289

groups, 289–290
groups, monitoring metrics, 805
microservices, 521

AWS Budgets, 2, 866
AWS CLI (Command Line Interface), 3, 4,

128, 382
AWS Lambda functions, 589
credentials, assigning, 48

AWS Cloud, 2, 86, 176, 284–287
AWS Cloud9, 66, 334
AWS CloudFormation, 382

application deployment, 289
AWS CloudFormation Designer, 406
AWS CodePipeline and, 321, 429–432
change sets, 384, 434–435
condition functions

FN::AND, 398
FN::IF, 398
FN::NOT, 398
FN::OR, 398

creation policies, 436
custom resource providers, 406–407
helper scripts

cfn-get-metadata, 425
cfn-hup, 425–426
cfn-init, 424
cfn-signal, 424–425

infrastructure and, 382–384
intrinsic functions

Fn::Base64, 395
Fn::Cidr, 395
Fn::FindInMap, 395
Fn::GetAtt, 396
Fn::GetAZs, 396
Fn::Join, 396–397
Fn::Select, 397
Fn::Split, 397

Fn::Sub, 397–398
Ref, 398

metadata keys
AWS::CloudFormation::Designer,

405
AWS::CloudFormation::Init,

399–404
AWS::CloudFormation::Interface,

404–405
overview, 382–383
permissions, 385–386, 435
resource relationships, 408, 435
resources, 435, 408–411
service limits, 429
stacks, 384

CREATE_COMPLETE, 411
CREATE_FAILED, 412
CREATE_IN_PROGRESS, 412
DELETE_COMPLETE, 412
DELETE_FAILED, 412
DELETE_IN_PROGRESS, 412
deletion policies, 416–417
export output, 417–418
exports, 417
import output, 417–418
nested, 417, 418–419
policies, 420–422
ROLLBACK_COMPLETE, 412
ROLLBACK_FAILED, 412
ROLLBACK_IN_PROGRESS, 412
UPDATE_COMPLETE, 412
UPDATE_COMPLETE_CLEANUP_IN_

PROGRESS, 412–413
UPDATE_IN_PROGRESS, 412
UPDATE_ROLLBACK_COMPLETE, 413
UPDATE_ROLLBACK_COMPLETE_

CLEANUP_IN_PROGRESS, 413
UPDATE_ROLLBACK_IN_PROGRESS, 413
updates, 413–416, 436

StackSets, 427–429
templates, 386–394, 435
wait conditions, 436

AWS CloudFormation CLI, 422–423
AWS CloudHSM, 262, 268–269
AWS CloudTrail

events, 818–820
monitoring, 798
trails, 820

AWS Code services – AWS Elastic Beanstalk 925

AWS Code services, 318
AWS CodePipeline, 318

AWS CodeBuild, 318, 319, 344–345, 373
AWS CodePipeline and, 321, 352
build environments, 350–351
build projects, 345–349
service limits, 351

AWS CodeCommit, 292, 318, 319, 332–333,
372, 373

AWS CodePipeline and, 321, 344
branches, 341
commits, 339–340
credentials, 333–334
development tools, 334
files, 337
migration to, 341–343
pull requests, 337–338
repository, 335–337
service limits, 343

AWS CodeDeploy, 299, 319, 352–353, 373
applications, 362
AppSpec file, 362–369
AWS CodeDeploy agent, 369–370
AWS CodePipeline and, 321, 371
deployment configurations, 359–361
deployment groups, 356–359
deployments, 354–356
in-place deployment, 300
revision, 353–354
service limits, 370

AWS CodePipeline, 318, 319, 372
actions, 323
Amazon ECS and, 321
Amazon S3, 321
approval actions, 325–238
artifacts, 326–327
AWS CloudFormation and, 321, 430–432
AWS CodeBuild and, 321, 352
AWS CodeCommit and, 321, 344
AWS CodeDeploy and, 321, 371
AWS Elastic Beanstalk and, 321
AWS Lambda, 321
AWS OpsWorks Stacks, 321
build actions, 324
CI/CD (continuous integration/

continuous deployment), 318
deploy actions, 325
GitHub and, 324

invoke actions, 326
pipelines, 322, 330–332
revisions, 322–323
service limits, 329
source actions, 323–324
stages, 323
tasks, 329–332
test actions, 324
transactions, 326–327
workflow, 320

AWS compute, 17
AWS Config

AWS Elastic Beanstalk and, 298
tagging and, 836

AWS Cost and Usage Report, cost
management and, 866–867

AWS Cost Explorer, cost management
and, 865

AWS Cost Explorer API, cost management
and, 865–866

AWS Cost Optimization Monitor, cost
management and, 867

AWS Database Migration Service, 176
AWS database service, application

mapping, 178
AWS DataSync, 86
AWS Direct Connect, 86, 128, 152–153,

158, 159
AWS Directory Service, 509
AWS DMS (Database Migration Service),

177, 233–235
database migration, 177

AWS DX (Direct Connect), 774–776
AWS EB CLI (Elastic Beanstalk CLI), 296
AWS Elastic Beanstalk, 38, 290–291, 325.

See also AWS EB CLI (Elastic
Beanstalk CLI)

Amazon CloudFront and, 297–298
Amazon RDS, 298
Amazon S3 and, 297
applications, 289, 293
AWS CodePipeline and, 321
AWS Config, 298
components, 307
deployment, 307
ebextensions directory, 296–297
ElastiCache, 298–299
environment, 293–297

926 AWS Fargate – AWS OpsWorks Stacks

environment tier, 293–294, 307
health dashboard, 303–306
IAM and, 299
implementation, 291–292
metrics, 304
resources, 307
source repository and, 292–293

AWS Fargate, 475–476, 484, 486
AWS Free Tier, 2
AWS General Reference, 13
AWS Import/Export, 146–147, 158
AWS IoT (Internet of Things), 570
AWS IoT Device Management

device shadow, 550
message broker, 549–550
MQTT (Message Queuing Telemetry

Transport), 547
OTA (over-the-air) updates, 547
rules engine, 548–549

AWS IoT (Internet of Things) Device SDK, 4
AWS KMS (Key Management Service), 95,

260–262, 269–270, 760
AWS Lambda, 38, 586–587

Amazon API Gateway integration, 631
Amazon CloudWatch and, metrics,

602–603
Amazon DynamoDB Streams, 706–707
AWS CodePipeline and, 321
AWS X-Ray, 603–604
environment variables, 599
functions

aliases, 600–601
concurrency, 597–598
concurrency limits, 598–599
context object, 595
creating, 589–590
descriptions, 596
DLQ (dead letter queue), 599
even objects, 595
execution methods, 590–592
execution permissions, 592
function handler, 594
function package, 593–594
invocation models, 590–592
invocation permissions, 593
InvocationType parameter, 591
invoking, 601–602
memory, 596

network configuration, 596–597
Nonstreaming Event Source (Push

Model), 590–591
Streaming Event Source (Pull Model),

590, 592
tags, 596
timeouts, 596
versioning, 599–600

languages supported, 589
optimization and, 851

AWS Managed Microsoft AD, 507–508
AWS Management Console, 3–4, 12,

303, 590
access, 15–16
authentication, multi-factor

authentication, 15–16
AWS Elastic Beanstalk, health dashboard,

303–305
AWS Lambda functions, 589
health monitoring, 303–305
IAM roles, 305–306

AWS Mobile SDK, 4, 128
AWS OpsWorks

Amazon EC2 auto scaling, 448
application deployment, 289
AWS CodePipeline and, 321
Chef compliance, 448
code repository, 448

AWS OpsWorks Agent, lifecycle events,
461–462

AWS OpsWorks for Chef Automate, 447
application deployment, 289

AWS OpsWorks for Puppet Enterprise, 447
AWS OpsWorks Stacks, 446, 484, 485

apps, 459–460
attribute files, 449
auto healing, 486
AWS CodePipeline and, 470
Chef 11, 464–465
Chef 12, 464–465
Chef Server, 450
Chef Solo, 447
components, 485
cookbooks, 456, 449–452
deployment, 470–471
instances, 456–459, 464, 467–469,

485–486
layers, 453–456

AWS Region – Bouncy Castle 927

lifecycle events, 461–463, 486
Permissions, 460–461, 486
recipes, 449–450, 461–462
resource management

Amazon EBS volumes, 463
elastic IP addresses, 464

service limits, 469
stacks, 452–453, 471
templates, custom, 456

AWS Region, 9–10, 23
API endpoints, 10–12
Availability Zones, 9, 10
planned regions, 9
samples, 13
selecting region, 14

AWS SAM (Serverless Application Model),
643–645

AWS SAM CLI, 645–647
AWS SCT (Schema Conversion Tool),

233–235
AWS SDK for Python, Boto, 4
AWS SDKs (software development kits), 3–4,

7–12, 128
AWS Lambda functions, 589
instances, 48

AWS Serverless Application Repository, 647
AWS Signature Version 4, 7
AWS Snow family, 86
AWS Snowball, 147–148, 158
AWS Snowball Edge, 148–150, 158
AWS Snowmobile, 150–151, 158
AWS SSO (Single Sign-On), 500–502
AWS Step Functions, 570

Choice Rules, 559–561
Choice state, 556–557
end state, 564
error handling, 564
input/output, 564–568
Parallel state, 561–564
state machines, 551–554
tasks, 554–556
use case, 568

AWS Storage Gateway, 86, 158
cached volume mode, 146
encryption, 266
file gateway, 146
migration and, 145–146
stored volume mode, 146

tape gateway, 146
volume gateway, 146

AWS STS (Security Token Service), 18
APIs, 503–505
credentials, 48

temporary, 502–503
AWS Systems Manager Parameter

Store, 346
AWS Tag Editor, 836
AWS Trusted Advisor

cost management and, 864
performance monitoring, 869

AWS VPN, 158, 775
AWS X-Ray, 820

application request tracking, 821–823
AWS Lambda functions and, 603–604
monitoring, 798
use cases, 821

AWS::CloudFormat::Init, 400,
403–404

AWS::CloudFormation::Designer, 405
AWS::CloudFormation::Init, 435
AWS::CloudFormation::Interface,

404–405
AWS::CloudFormation::Stack, nesting,

418–419

B
Baidu Cloud Push, 537
bare-metal access, 38
binary scalar types, 670
BlazeMeter, 324
BLOB (binary large object) data, 88
block storage, 86, 91, 155, 782, 852

Amazon EBS, 87, 93
Amazon EC2 (Elastic Compute Cloud),

instance store, 97–98
DAS (direct-attached storage), 91
ERP (enterprise resource planning

systems), 91
NAS (network-attached storage), 91
SAN (storage area network), 91

block-level encryption, 265
blue/green deployment, 301, 310, 355
Boolean scalar types, 670
Bouncy Castle, 266

928 buckets (Amazon S3) – critical/regulated data

buckets (Amazon S3), 155–156
limitations, 99–100
namespace, universal, 100
operations, 103–105
regions, 103
versioning, 101–103

buffers, Amazon Kinesis Data Firehose, 544
build phase of release lifecycle, 283

C
C# (.NET Core 1.0), AWS Lambda and, 589
C# (.NET Core 2.0), AWS Lambda and, 589
C++, AWS SDKs (AWS software

development kits), 4
canary release, 630
CAP theorem (consistency, availability,

partition tolerance), 115–116
CD (continuous delivery), 285
cfn-get-metadata helper script, 425
cfn-hup helper script, 425–426
cfn-init helper script, 424
cfn-signal helper script, 424–425
Chef, 446, 485
Chef 11, 464–467
Chef 12, 464–465
Chef Client, 447
Chef Server, 447, 450
Chef Solo, 447
Chef Zero, 447
CI (continuous integration), 285
CIA (confidentiality, integrity, availability)

model, storage and, 91–92
CI/CD (continuous integration/continuous

deployment), 285–286, 318
AWS CodeBuild, 286
AWS CodeCommit, 286
AWS CodeDeploy, 287
AWS CodePipeline, 286

CIDR (Classless Inter-Domain Routing)
notation, 51

Classic Load Balancer, 287
client-side encryption, 121–123
cloud, database migration, 232–233

AWS DMS, 233–234
AWS SCT, 234–235

cloud services, calling, 5–9

CloudBees, 324
cloud-init directive, 47
CloudWatch, 50
CMK (customer master key), 96
code, configuration as, 446
cold data, 89
compliance, AWS KMS, 262
compute optimized instances, 39
condition functions, AWS CloudFormation

FN::AND, 398
FN::IF, 398
FN::NOT, 398
FN::OR, 398

configuration
answers to review questions, 903–905
Chef, 447–448
as code, 446
Puppet, 447–448

configuration management, 447–448
containers

deployments, 302–303
microservers, 522
optimization and, 849–850

continuous delivery, 319
continuous integration. See CI (continuous

integration)
CI/CD (continuous integration/continuous

deployment). See CI/CD
control planes, 497
cookbooks, 485

AWS OpsWorks Stacks
custom, 456
dependencies, 451–452
management, 450–451

CORS (cross-origin resource sharing), 631
cost management

Amazon CloudWatch, 867
AWS Budgets, 866
AWS Cost and Usage Report, 866–867
AWS Cost Explorer, 865
AWS Cost Explorer API, 865–866
AWS Cost Optimization Monitor, 867
AWS Trusted Advisor, 864
EC2 Right Sizing, 868

cost optimization, 834
AWS usage reduction, 836–838
tagging, 835–836

critical/regulated data, 90

cross-origin resource sharing – deployment 929

cross-origin resource sharing. See CORS
CRR (cross-region replication), 127–128
custom builds, identity provider, 499

D
DAS (direct-attached storage), 91
data, structure, 88
data at rest, encryption, 119
data dimensions, 87–88, 154
data in transit, encryption, 119
data lake architecture, 129–130
data lakes, 86
data migration, 145, 158

Amazon Kinesis Data Firehose, 151–152
AWS Direct Connect, 152–153
AWS Import/Export, 146–147
AWS Snowball, 147–148
AWS Snowball Edge, 148–150
AWS Snowmobile, 150–151
AWS Storage Gateway, 145–146
VPN connections, 153

data plane, 497
data protection, 118. See also encryption
data temperature, 89
data transfer, 858

Amazon CloudFront, 858
Amazon Kinesis, 86
Amazon S3 transfer acceleration, 858
AWS DataSync, 86
AWS Direct Connect, 86
AWS Snow family, 86
AWS Storage Gateway, 86
caching, 858–859
S3 Transfer Acceleration, 86

data types
document, 671
scalar, 670

data value, 89–90
data warehousing

Amazon Redshift, 177, 220–226
architecture, 217–220
benefits, 217
data lake comparison, 219
data mart comparison, 219–220
database comparison, 218
databases, 176

database migration
Amazon RDS, 489
AWS DMS (Database Migration

Service), 177
cloud, 232–235
heterogeneous, 233
homogenous, 233

database services, mapping to database
types, 176–177

databases
Amazon Aurora, 176
Amazon EC2, 235–236
answers to review questions, 894–895
AWS OpsWorks Stacks, deployments, 471
compliance, IAM, 236–237
data warehouse, 176
DAX (Amazon DynamoDB Accelerator),

230
ElastiCache, 229–230
graph, 176, 230–232
IAM (AWS Identity and Access

Management), 188–189
in-memory data stores, 176

caching, 226–227
in-memory key-value store, 228

ledger, 176
nonrelational, 176, 237

Amazon DynamoDB, 196–217
NoSQL, 195–196

relational, 237, 176, 178–180
Amazon Aurora, 190–192
Amazon CloudWatch, 189–190
Amazon RDS, 177, 180–188
Amazon RDS best practices, 192–194
IAM DB authentication, 188–189

security, IAM, 236–237
time-series, 176

DAX (Amazon DynamoDB Accelerator), 230
dead letter queue). See DLQ (dead letter

queue)
decrypting passwords, Windows, 45–46
deployment

all-at-once deployment, 300
answers to review questions, 897
applications, 288–290
AppSpec file, 299
AWS CloudFormation, AWS

CodePipeline and, 430–432

930 deployment phase of release lifecycle – encryption

AWS CodeDeploy, 299
AWS CodePipeline, CI/CD, 318
AWS Elastic Beanstalk, 290–291

implementation, 291, 292
container deployments, 302–303
continuous delivery, 319
ELB (Elastic Load Balancing)

Application Load Balancer, 287
environment variables, 284
highly available applications, 287–288
in-place deployment, 300
rolling, 301–302
scalable applications, 287–288
source repository, 292–293

deployment phase of release lifecycle, 283
dereference operators, 722–723
developer tools, AWS Cloud9, 66
DHCP (Dynamic Host Configuration

Protocol), 63
direct-attached storage. See DAS (direct-

attached storage)
DLQ (dead letter queue), 599
dm-crypt, 265
DNS (domain name servers), 63, 506
Docker containers, 295–296

Amazon ECR, 481
CLI tools, 481

document data types, 671
domain names, Amazon Route 53, 625–626
dual-stack mode, IPv6 addresses, 53

E
ebextensions directory, 296–297, 307
EC2 Right Sizing, cost management and,

868
Eclipse, 334
eCryptfs, 265
elastic IP addresses, 53
Elastic Load Balancing

AWS OpsWorks Stacks, layers, 454
monitoring metrics, 804

elastic network interfaces, 42
Elastic Volumes (Amazon EBS), 94–95
ElastiCache

access control, 747
application state, 739

AWS Elastic Beanstalk and,
298–299

backups, snapshots, 746–747
cache hits, 742–743
cache misses, 742–743
clusters, 741–742
data access patterns, 745
distributed cache, 740–741
endpoints, 742
in-memory data store, 177
in-memory key-value store, 739
lazy loading, 744
Memcached, 229–230, 739
Multi-AZ replication groups, 746
nodes, 741
Redis, 229–230, 739
replication groups, 742, 746
scaling, 745
snapshots, 746–747
TTL (time to live), 742
write-through, 744

ELB (Elastic Load Balancing), 287, 383
EncFs, 265
encryption

Amazon EBS, 95–96, 265–266, 274
Amazon EMR, 267–268
Amazon RDS, 266–267

AWS KMS, 187–188
Amazon S3, 156, 264–265, 271, 274
answers to review questions, 895–896
AWS CloudHSM, 262
AWS KMS (Key Management Services),

95, 260–262, 269–271
AWS managed, 263, 268–269
AWS Storage Gateway, 266
client-side, 122–123
customer managed, 263, 264–268
data at rest, 119
data in transit, 119
data protection, 760
dm-crypt, 265
eCryptfs, 265
EncFs, 265
file systems, accessing, 779
Loop-AES, 265
server-side, 271, 760
SSE (Server-Side Encryption), 119
TrueCrypt, 265

endpoints – exercises 931

endpoints
Amazon SNS, 535
API regional endpoints, 10–12
ElastiCache, 742

envelope encryption, 270
environment

AWS Elastic Beanstalk, 293–297
variables

AWS Lambda, 599
deployment, 284

ERP (enterprise resource planning
systems), 91

exercises
account sign up, 26
Amazon API Gateway, running

locally, 659
Amazon Cloud Directory setup,

514–515
Amazon CloudTrail, 827–828
Amazon CloudWatch

alarms, 826–827
dashboard, 828

Amazon Cognito setup, 516
Amazon DynamoDB table

backup, 791
creation, 250–251, 789
global tables, 790
removal, 255
restore, 792
scanning, 254–255
users, 252

Amazon DynamoDB user lookup, 253
Amazon EBS optimization, 877–878
Amazon EC2 (Elastic Compute Cloud)

instance connection, 73
key pairs, 69
private subnet, 75–76
as web server, 71–73

Amazon ECS
clusters, 488–489
containers, 488–489

Amazon EFS, volumes, 787–788
Amazon Kinesis Data Stream, 575–577
Amazon RDS

database migration, 489
database tier security, 242–243
endpoint value, 245–246
removal, 249–250

Amazon S3
AWS Lambda function invocation,

615–616
buckets, uploading to, 788
event triggers, 616–617

Amazon S3 buckets, 163
AWS Lambda functions and, 608
deleting, 167–169
emptying, 167–169
final output, JSON, 608–609
HTML file edits, 653–655
object load, 164–166
Swagger template, 652–653
unencrypted uploads, 275–276
verifying buckets, 609–610

Amazon S3 versioning, 789
Amazon SNS, SMS text message, 575
Amazon SQS, 573–574
Amazon VPC, 70
application version update, 311–312
auto scaling groups, 879–880
AWS CLI

configuration, 28
CPU usage alarm, 876–877
installation, 28

AWS Cloud9, 77–78
AWS CloudFormation, 437–439
AWS CodeBuild project creation,

375–376
AWS CodeCommit repository, pull

request, 374
AWS CodeDeploy, application creation,

375
AWS Config rule creation, 878–879
AWS IAM role creation, 612–614
AWS KMS

CMK (customer master key), 277–278
create/disable key, 276–277

AWS Lambda
event source generation, 657
function creation, 614–615
function modification, 658–659
function preparation, 610–612
function testing, 617
invocation by Amazon S3, 615–616
local function definition, 656
running, 657

AWS Managed Microsoft AD, 512–514

932 FaaS (function-as-a-service) – HSM (hardware security module)

AWS OpsWorks Stacks
auto healing event notification, 490
environment launch, 488

AWS SAM template, 655–656
local API, 658

AWS Step Function, 578–581
batch processes, writing data, 253–254
blue/green solution deployment, 310
cleanup, 78–79
code samples, downloading, 28–29
cross-region replication, 791
deployment, 309
ElastiCache, Memcached cluster,

786, 787
environment, AWS Elastic Beanstalk,

310–311
IAM administrator group creation, 26–27
IAM administrator user creation, 26–27
IAM roles, API calls, 71
instances, private, requests, 76–77
launch configuration, 879–880
MariaDB database instance setup,

243–245
NAT, instances in private subnet, 74–75
profiles, 30–32
Python script, API calls, 29
regions, 29–30
scaling actions, 879–880
Simple AD setup, 510–512
SQL table creation, 246–248
SQL table queries, 248–249

F
FaaS (function-as-a-service), 587
federation, 496, 498–500, 509
file gateways, 146
file storage, 86, 91, 155, 853

Amazon EFS, 87
file-system encryption, 265
FIPS (Federal Information Processing

Standards), 260
Fn::Base64, 395
Fn::Cidr, 395
Fn::FindInMap, 395
Fn::GetAtt, 396

Fn::GetAZs, 396
Fn::Join, 396–397
Fn::Select, 397
Fn::Split, 397
Fn::Sub, 397–398
FPGA (Field Programmable Gate

Array), 39
frozen data, 89
function-as-a-service). See FaaS (function as

a service)

G
GCM (Google Cloud Messaging for

Android), 538–539
general purpose instances, 39
Ghost Inspector, 324
GitHub, AWS CodePipeline and, 324
Go, AWS SDKs (AWS software development

kits), 4
Go 1.x, AWS Lambda and, 589
GPU (Graphics Processing Unit), 39
graph databases, 176–177, 230–232

H
Hadoop, Amazon EMR, 266
HDD (hard disk drive)-backed

volumes, 93
SSD comparison, 94

helper scripts, AWS CloudFormation,
425–426

heterogeneous database migration, 233
highly available applications, deployment,

287–288
highly structured data, 88
HIPAA (Health Insurance Portability and

Accountability Act), 508
HMAC (hash message authentication

code), 266
homogenous database migration, 233
hot data, 89
HPE (Hewlett Packard Enterprise) Storm

Runner Load, 324
HSM (hardware security module), 260

IaC (infrastructure as code) – IP addresses 933

I
IaC (infrastructure as code), 382, 434
IAM (AWS Identity and Access

Management), 5, 13, 14–15, 496
access keys, 16
Amazon DynamoDB, 732–736
authentication, 19–20
authorization, 19–20
AWS Elastic Beanstalk and, 299
condition element, 734
database security, 236–237
DB authentication, 188–189
dev tools, 16
groups, 16–17
identities, 19–20
as IdP (identity provider), 496
Management Console, 15–16
many-to-many relationships, users and

groups, 16
metadata, 48
permissions, 20–21, 733–735
policies, 20–24
roles, 17–18, 20, 24
users, 15, 24

Amazon EFS, 777
roles, 20

identity, 497–498
identity consumer, 498
identity provider, 498–499, 505–506
Microsoft Active Directory, 500

identity services, federation, 496
IdP (identity provider), 496, 509

federation, 496
images

AMI (Amazon Machine Language),
41–42

software images, 41–42
IMDS (instance metadata service), 47–48
immutable deployment, 301–302
infrastructure

answers to review questions,
900–903

AWS CloudFormation and, 382
repeatable, 383
templates and, 384
versionable, 383

infrastructure as code. See IaC
(infrastructure as code)

in-memory data stores, 176–177, 226–228
in-place deployment, 300, 354
instance metadata service, See IMDS

(instance metadata service)
instance reservations

EC2 reservations, 841–842
pricing, 840–841
RDS reservations, 842

instance store
Amazon EBS comparison, 143–144
Amazon EC2 (Elastic Compute Cloud),

97–99, 155
volumes, 98

instances, 38
accelerated computing, 39
access, 43
Amazon EC2 (Elastic Compute Cloud),

45–46, 50
applications, running on, 44–50
AWS OpsWorks Stacks, 456–459, 464,

467–469
CloudWatch, 50
compute optimized, 39
families, 39
general purpose, 39
memory optimized, 39
metadata, 67
storage optimized, 39
stores, 40–41
types, 39

IntelliJ, 334
intrinsic functions, AWS CloudFormation

Fn::Base64, 395
Fn::Cidr, 395
Fn::FindInMap, 395
Fn::GetAtt, 396
Fn::GetAZs, 396
Fn::Join, 396–397
Fn::Select, 397
Fn::Split, 397
Fn::Sub, 397–398
Ref, 398

IOPS (input/output operations per
second), 773

IP addresses, 42, 52–53

934 IPv6 addresses – monitoring

IPv6 addresses, 53
iSCSI (internet Small Computer System

Interface), 145–146

J
Java, AWS SDKs (AWS software

development kits), 4
Java 8, AWS Lambda and, 589
JavaScript, AWS SDKs (AWS software

development kits), 4
JCE (Java Cryptography Extension), 261
Jenkins, 324
JSON (JavaScript Object Notation),

identity, 497

K
key pairs, Amazon EC2 (Elastic Compute

Cloud), 43
KMI (key management infrastructure),

263, 273

L
latency, 157
layers, AWS OpsWorks Stacks,

453–456
LDAP (Lightweight Directory Access

Protocol), 506, 508
ledger databases, 176–177
lexicon, 11
lifecycle, release lifecycle, 282–284
lifecycle configuration, 134–135
lifecycle policies, 102
Lightweight Directory Access Protocol. See

LDAP (Lightweight Directory Access
Protocol)

load balancers, 287, 479
local secondary indexes, 201–202, 204–205,

682, 684
logs, web traffic, 624–625
Loop-AES, 265
loosely structured data, 88

M
Memcached, 229–230
memory optimized instances, 39
message infrastructure, refactor to

microservices and, 522
message-oriented middleware. See MoM

(message-oriented middleware)
metadata, 67
MFA (multi-factor authentication), 15–16,

127, 636
microservices, 521

answers to review questions, 907–908
containers, 522
monolithic architectures and, 588
refactor to, 522

Microsoft Active Directory, 500
AD Connector (Active Directory

Connector), 506–507
AD DS (Active Directory Domain

Services), 506
AWS Managed Microsoft AD, 505–507,

507–508
AWS SSO (Single Sign-On) and,

501–502
migration, 145, 158

Amazon Kinesis Data Firehose,
151–152

to AWS CodeCommit, 341–343
AWS Direct Connect, 152–153
AWS Import/Export, 146–147
AWS Snowball, 147–148
AWS Snowball Edge, 148–150
AWS Snowmobile, 150–151
AWS Storage Gateway, 145–146
VPN connections, 153

MoM (message-oriented middleware), 523
monitor phase of release lifecycle, 284
monitoring, 303, 798

Amazon CloudWatch, 189–190, 798
alarms, 814–815, 815–817
cases, 800
dashboards, 817–818
log aggregation, 811, 812
log processing, 814
log searches, 812–814
metrics, 802–811

monolithic architectures versus microservices – optimization 935

metrics repository, 801–811
microservices, 521
monitoring, 798

answers to review questions, 912–914
AWS CloudTrail, 798

events, 818–820
trails, 820

AWS Management Console, 303–306
AWS X-Ray, 798, 820–823
metrics, 799–800

monolithic architectures versus
microservices, 588

MPNS (Microsoft Push Notification Service)
Windows Phone, 538

multi-factor authentication. See MFA (multi-
factor authentication)

MVC (Model-View-Controller)
architecture, 623

N
namespaces, buckets (Amazon S3),

100–101
NAS (network-attached storage), 91
NAT (network address translation),

61–63, 128
nesting

attributes, 722–723
AWS::CloudFormation::Stack,

418–419
.NET, AWS SDKs (AWS software

development kits), 4
network ACLs (network access control lists),

58–61, 68
network address translation. See NAT

(network address translation)
network-attached storage. See NAS

(network-attached storage)
Network Load Balancer, 287
networks

Amazon VPC, 51
connecting to others, 51–52
connection types, 52
DHCP (Dynamic Host Configuration

Protocol), 63
IP addresses, 52–53

NAT (network address translation),
61–63

network ACLs (access control lists),
58–61

network traffic monitoring, 64
primary network interfaces, 42
route tables, 55–56
security groups, 56–58
subnets, 54–55
virtual, elastic network interfaces, 42

Node.js 4.3, AWS Lambda and, 589
Node.js 6.10, AWS Lambda and, 589
Node.js 8.10, AWS Lambda and, 589
nonrelational databases, 176, 237

Amazon Document DB, 177
Amazon DynamoDB, 196–217
NoSQL, 177, 195–196

Nouvola, 324
null scalar types, 670
number scalar types, 670

O
object storage, 86, 91, 155, 782

Amazon S3, 87, 99–105
Amazon S3 Glacier, 87
DEEP_ARCHIVE, 852
GLACIER, 852
INTELLIGENT_TIERING, 852
ONEZONE_IA, 852
STANDARD_IA, 852

objects, 99, 108–109, 761–765
OIDC (OpenID Connect), 498, 500
OP (OpenID provider), 500
OpenSSL, 266
OpsWorks Stacks, 325
optimistic locking, 713–714
optimization

answers to review questions, 914–916
Auto Scaling, 845–846

accessing, 848–849
Amazon Aurora, 848
Amazon EC2 Auto Scaling, 846–847
AWS Auto Scaling, 847–848
DynamoDB, 848

AWS Lambda and, 851

936 partitions – relational databases

containers, 849–850
cost optimization, 834–838
costs, 864–868
data transfer, 858–859
instance reservations, 841–842
RDBMS (relational database management

system), 859–864
right sizing, 838–840
serverless approaches, 850–851
Spot Instances, 843–845
storage, 851–857

P
partitions

Amazon DynamoDB, 197, 711
distribution, 711–713
partition key, 665–668, 712–713
primary key, 199–200
sort key, 713

ARN, 23
CAP theorem (consistency, availability,

partition tolerance), 115–116
nonrelational databases, 197
partition key, Amazon Kinesis Data

Streams, 541
passwords, decrypting, Windows, 45–46
PCI DSS (Payment Card Industry Data

Security Standard), 508
performance monitoring

Amazon CloudWatch, 868
AWS Trusted Advisor, 869

permissions
Amazon DynamoDB, IAM policy and,

732–735
AWS CloudFormation, 385–386

StackSets, 428–429
AWS OpsWorks Stacks, 460–461
wildcards, 22

persistent storage, 40–41
PHP, AWS SDKs (AWS software

development kits), 4
policies, IAM, 20–24
POSIX (Portable Operating System

Interface), 773
presigned URLs, 118, 125

primary network interfaces, 42
private IP addresses, 53
private subnets, 55, 67
privileges, IAM policies, 21
programmatic access, 16
public IP addresses, 53
public subnets, 55, 67
push notifications, Amazon SNS mobile,

537–539
Python 2.7, AWS Lambda and, 589
Python 3.6, AWS Lambda and, 589

Q
query string authentication, 125–126

R
RDBMS (relational database management

system), optimization and,
859–860

fewer tables, 860
indexes, 862–863
NoSQL and, 860
projections, 863
query frequency, 863
related data, 860
scan operations, 863–864
sort keys, version control, 862
workload distribution, 861–862

RDP (Remote Desktop Protocol), 238
Amazon EBS, 97
Amazon EC2 (Elastic Compute Cloud)

instances, 43
data plane, 497

read consistency, 206–207
reads per second. See RPS (reads per

second)
Redis, 229–230
Ref, 398
refactor to microservices, 522
regions, ARN, 23
relational databases, 178–179, 237. See

also RDBMS (relational database
management system)

release lifecycle – service token acts 937

ACID
atomicity, 179
consistency, 180
durability, 180
isolation, 180

Amazon Aurora, 190–192
Amazon CloudWatch, 189–190
Amazon RDS, 177, 180–189, 238

Amazon Aurora, 190–192
Amazon CloudWatch, 189–190
best practices, 192–194

columns, 178–179
data integrity, 179
fields, 179
foreign keys, 179
IAM DB authentication, 188–189
managed, 176, 180
nonrelational, Amazon Document DB,

177
objects, 178
primary keys, 179
rows, 179
SQL (Structured Query Language), 179
transactions, 179
unmanaged, 180

release lifecycle, 282–284
Remote Desktop Protocol. See RDP (Remote

Desktop Protocol)
repeatable infrastructure, 383
repositories, deployment and, 292–293
Representational State Transfer. See REST
reproducible data, 90
resource management, security, shared

responsibility model, 64–65, 155
resources, 24

ARN, 24
usage reduction, 836–838

REST (Representational State Transfer), 623
RESTful APIs, 631
right sizing, 838–840
roles, IAM, 17–18
rolling deployment, 301–302
route tables, 55
RPS (reads per second), 88
Ruby, AWS SDKs (AWS software

development kits), 4
Runscope, 324

S
S3 Transfer Acceleration, 86
S3DistCp, 272
same-origin policy, 631
SAML (Security Assertion Markup

Language), 498, 499
SAN (storage area network), 91
scalable applications, deployment,

287–288
scalar data types, 670
SDLC (software development lifecycle), 282

AWS Cloud, 284–285
environment variables, 284
release lifecycle, 282–284

secondary indexes, 201, 665, 683
alternate key, 684
base table, 683
configuration, 685
global secondary indexes, 202–205,

682, 684
local secondary indexes, 201–202,

204–205, 682, 684
security, shared responsibility model, 64–65,

155
Security Assertion Markup Language. See

SAML (Security Assertion Markup
Language)

security groups, 56–58, 68
serverless applications, 622

Amazon Aurora Serverless, 642–643
Amazon S3, 129
answers to review questions, 909–910
AWS SAM (Serverless Application

Model), 643–645
AWS SAM CLI, 645–647
AWS Serverless Application Repository,

647
user cases, 647

serverless compute, 586. See also AWS
Lambda

answers to review questions,
908–909

serverless stack versus three-tier
architecture, 640–642

server-side encryption, AWS KMS, 271
service token acts, 406

938 services – storage

services
ARN, 23
managed, 65–66
unmanaged, 65–66

shared responsibility security model, 64–65,
155

storage and, 91
Simple AD (Simple Active Directory), 507
snapshots, Amazon EBS, 95
SOA (service-oriented architecture),

476–477, 798
SOAP, 128–129
software

customization, user data and, 46–47
images, 41–42

Solano CI, 324
source phase of release lifecycle, 283
source repository, deployment and, 292–293
Spot Instances, 844–845
SSD (solid-state drive)-backed volumes, 93

HDD comparison, 94
SSDs (solid-state drives), 665
SSE (Server-Side Encryption), 119

SSE-C (customer-provided keys), 120
SSE-KMS (AWS KMS), 120–121
SSE-S3 (Amazon S3 managed keys), 120,

760
SSH (Secure Shell), data plane, 497
SSL (Secure Sockets Layer), ELB (Elastic

Load Balancing), 287
SSML (Speech Synthesis Markup

Language), 5
stacks, AWS OpsWorks Stacks, 452–453
StackSets (AWS CloudFormation), 427–429
state machines, AWS Step Functions,

551–554
stateless application pattern, 129, 664

answers to review questions, 910–912
static websites, 126

Amazon S3, 156
stop deployments, 355
storage

Amazon EBS, 40–41, 94–97, 855–857
Amazon EFS, 136–142
Amazon S3, 853–855

access control, 123–125
authentication, 129
AWS CLI, 128

AWS explorers, 128
AWS SDKs, 128
buckets, 99–105
classes, 109–114, 156
consistency model, 114–118
CORS (cross-origin resource sharing),

107–108
CRR (cross-region replication),

127–128
data lake architecture, 129–130
encryption, 118–123
MFA Delete, 127
objects, 105–108
performance, 130–134
presigned URLs, 118
pricing, 134
query string authentication, 125–126
requests, 129
serverless applications, 129
stateless applications, 129
static websites, 126
VPC (virtual private cloud)

endpoints, 128
answers to review questions, 890–893
block, 86, 91, 155, 782
block storage, 852
CIA (confidentiality, integrity,

availability) model, 91–92
comparisons, 142–144
DAS (direct-attached storage), 91
data dimensions, 87–88
data lakes, 86
data temperature, 89
data transfer, 86
data value, 89–90
data volume and, 157
ERP (enterprise resource planning

systems), 91
file, 86, 91, 155
file storage, 853
highly structured data, 88
item size and, 157
latency, 157
loosely structured data, 88
mental model, 87
NAS (network-attached storage), 91
object, 86, 91, 155, 782, 852
optimization, 851–857

storage area network (SAN) – zeroization 939

persistent, 40–41
products, 142–143
SAN (storage area network), 91
shared responsibility model, 91
temporary, 41
unstructured data, 88

storage area network (SAN), 91
storage optimized instances, 39
string scalar types, 670
subnets, 55, 67
Sun Java JCE, 261
system-level encryption, 265

T
tape gateways, 146
TeamCity, 324
templates

AWS CloudFormation, 386–394
AWS CloudFormation CLI,

transforms, 423
AWS OpsWorks Stacks, custom, 456
infrastructure, 384
transforms, AWS CloudFormation

CLI, 423
temporary storage, 41
test phase of release lifecycle, 283
three-tier architecture, 282

versus serverless stack, 640–642
time series databases, Amazon

Timestream, 177
time-series databases, 176
TLS (Transport Layer Security),

ELB, 287
transient data, 90
troubleshooting, 303, 798

Amazon EBS, 97
answers to review questions, 912–914

TrueCrypt, 265
trust policies, IAM roles, 18

U
unstructured data, 88
user data, 46–47, 67
users, IAM, 15

V
variables, environment variables

AWS Lambda, 599
deployment, 284

variety, data, 88
velocity, data, 88
versionable infrastructure, 383
versioning, buckets (Amazon S3),

100–101
virtual networks, interfaces, elastic network

interfaces, 42
Visual Policy Editor, 24
Visual Studio, 334
volume, data, 88
volume gateways, 146
VPC (virtual private cloud)

Amazon EFS, 773–775
endpoints, 128

VPNs (virtual private networks), 128, 159
data migration, 153

W
warm data, 89
web servers

Amazon S3, 622–623
traffic logs, 624–625

webpages, custom, Amazon EC2 (Elastic
Compute Cloud) and, 49–50

websites, static, 126
wildcards, permissions, 22
Windows, passwords, decrypting,

45–46
WNS (Windows Push Notification

Services), 538
WORM (Write Once Read Many), 111
WPS (writes per second), 88

X–Y–Z
x-amzn-requestid header, 7
Xebia Labs, 325

zeroization, 268

Comprehensive Online
Learning Environment
Register to gain one year of FREE access to the online interactive learning environment
and test bank to help you study for your AWS Certified Developer - Associate exam—

included with your purchase of this book!

The online test bank includes the following:

• Assessment Test to help you focus your study to specific objectives
• Chapter Tests to reinforce what you’ve learned
• Practice Exams to test your knowledge of the material
• Digital Flashcards to reinforce your learning and provide last-minute test prep before

the exam
• Searchable Glossary to define the key terms you’ll need to know for the exam

Go to http://www.wiley.com/go/sybextestprep to register and gain access to this
comprehensive study tool package.

Register and Access the Online Test Bank

To register your book and get access to the online test bank, follow these steps:

1. Go to bit.ly/SybexTest.
2. Select your book from the list.
3. Complete the required registration information, including answering the security

verification to prove book ownership. You will be emailed a PIN code.
4. Follow the directions in the email or go to https://www.wiley.com/go/sybextestprep.
5. Enter the PIN code you received and click the “Activate PIN” button.
6. On the Create an Account or Login page, enter your username and password, and

click Login. A “Thank you for activating your PIN!” message will appear. If you
don’t have an account already, create a new account.

7. Click the “Go to My Account” button to add your new book to the My Products page.

AWS® Certified Developer Official Study Guide
By Nick Alteen, Jennifer Fisher, Casey Gerena, Wes Gruver, Asim Jalis,
Heiwad Osman, Marife Pagan, Santosh Patlolla and Michael Roth

 Amazon Web Services, Inc.

